
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Fast Unified Classification Algorithm
Based on

Accelerated Proximal Gradient Method

Naoki ITO, Akiko TAKEDA and Kim-Chuan TOH

METR 2015–18 May 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Fast Unified Classification Algorithm
Based on

Accelerated Proximal Gradient Method

Naoki ITO and Akiko TAKEDA

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
{naoki ito,takeda}@mist.i.u-tokyo.ac.jp

Kim-Chuan TOH

Department of Mathematics
National University of Singapore

mattohkc@nus.edu.sg

May 2015

The binary classification is one of the most important problem in machine
learning. A wide variety of binary classification models have been known
including support vector machines (SVMs). To achieve a good prediction
performance, it is important to find a suitable model for a given dataset.
However, it is often time consuming and impractical for practitioners to try
various classification models because each model employs a different formula-
tion and algorithm. If we have a unified formulation for various classification
models and an algorithm which solves the unified formulation, it may be-
come easier to compare the performance of different classification models for
a given dataset. Though several unified formulations have been proposed,
e.g. unified classification model (UCM) proposed by Takeda et al., there are
no unified algorithms which can deal with such unified formulations to the
best of our knowledge.

1

In this paper, we develop a general optimization algorithm based on an
accelerated proximal gradient method for UCM. Our algorithm can deal with
various classification models without changing its framework. In addition,
we also show that our UCM includes three existing unified formulations of
binary classification: coherent risk minimization model, generalized ν-SVM,
and coherent classification loss function (CCLF) minimization model. This
illustrates the generality of UCM and our algorithm. Numerical experiments
show that our algorithm is stable and highly competitive to specialized al-
gorithms designed for specific models (e.g., sequential minimal optimization
(SMO) for SVM).

1 Introduction

In the field of machine learning, the binary classification is one of the most important
problem. A wide variety of binary classification models have been known including
support vector machines (SVMs) [Cortes and Vapnik, 1995, Schölkopf et al., 2000]. To
achieve a good prediction performance, it is important to find a suitable model for a given
dataset. In general, each classification model employs a different formulation and algo-
rithm. Therefore, for practitioners who are looking for a suitable classification model
for their dataset, it is often time consuming and impractical to try various classifica-
tion models; they might have to change not only the optimization algorithms but also
solvers/software in order to solve different kind of optimization problems. If we have a
unified formulation including various classification models and an algorithm which solves
the unified formulation, then it will speed up the process of finding the best classification
model for a given dataset.

For the purpose, we can use a unified classification model (UCM) proposed by [Takeda
et al., 2013]. It is formulated as a robust optimization problem of a linear function: a
minimization problem of the worst case coefficient over an assumed uncertainty set U
(i.e., min-max problem). The differences in the models lie in the uncertainty set U
used, which determines the feasible region of the inner max problem. The min-max
problem is reduced to a single-level optimization problem (e.g., quadratic optimization
problem and second-order cone problem) by using an appropriate uncertainty set U and
taking the dual for the inner max problem. For example, when U is given by the reduced
convex hull [Bennett and Bredensteiner, 2000, Crisp and Burges, 2000] of samples, UCM
would lead to the well-known ν-SVM [Schölkopf et al., 2000]. We also can construct a
new classification model by defining a new type of U for a given dataset. There are
individual optimization methods proposed for UCM with specific U , e.g. [Takeda et al.,
2013, Iwata et al., 2014, Bertsimas and Takeda, 2014], but to the best of our knowledge,
there are currently no unified algorithms which are applicable to UCM with various U .

In this paper, we propose a fast unified classification algorithm for UCM. We first
derive a simple unified formulation of classification models by focusing on a convex
variant of UCM. Secondly, we design an efficient optimization algorithm for solving the
resulting unified model. The key idea is to adapt the accelerated proximal gradient

2

(APG) method [Beck and Teboulle, 2009] to solve a dual formulation of UCM, as well
as to develop efficient algorithms for projections onto the associated feasible set U .
Thirdly, in order to make our APG method practically efficient, we employed various
techniques such as backtracking line search and adaptive restarting strategies to speed
up the convergence of the algorithm.

Our unified algorithm using the APG method makes it easy to select a suitable model
for given datasets, because we can use the same algorithmic framework while comparing
various binary classification models; by only changing the computation of projections,
it can solve UCMs with different uncertainty sets U .

The APG method has typically been used for unconstrained optimization problems, es-
pecially where the objective function has both differentiable and simple non-differentiable
terms. For example, Beck and Teboulle [2009] applied the APG method to uncon-
strained `1-regularized least square regression. Zhou et al. [2010] used another variant
of APG method [Nesterov, 2005] to solve primal SVMs (i.e., unconstrained hinge loss
minimization problems.) The APG method has demonstrated good performance for
those problems in practice. On the other hand, UCM is formulated as an optimization
problem constrained over U . For such a constrained problem, the APG method requires
the computation of the projection of a point onto the feasible region. Thus the practical
efficiency of the APG method would depend on the projection.

Although the computation of the projection is not always easy in general, popular
classification models typically lead to simple feasible sets U for which projection onto
such sets can be computed efficiently. Even if a classification model has a complicated
set U , we can still take advantage of the structure of U in the APG method by designing
an augmented Lagrangian method to compute the projection. Our work here has thus
widen the application range of the APG method from individually discussed classification
models to UCM.

From the viewpoint of computational complexity, our algorithm can reduce the gap
from the optimal objective value at the quadratic order ofO(1/k2), where k is the number
iterations. The iteration complexity is proven to be optimal for first-order algorithms
in the sense of [Nemirovsky and Yudin, 1983]. Indeed, it is superior to other common
algorithms designed in machine learning, e.g. Frank-Wolfe algorithm [e.g. Frank and
Wolfe, 1956, Jaggi, 2013] and the alternating direction method of multipliers (ADMM)
[e.g. Gabay and Mercier, 1976, Boyd et al., 2010] which have the iteration complexity
of O(1/k). There is also an accelerated version of ADMM [Goldstein et al., 2012] for
strongly convex problems, but UCM is not strongly convex in general.

We also show that UCM includes three unified formulations of classification models:
the coherent risk minimization model [Bertsimas and Takeda, 2014] which is a simpli-
fied version of [Gotoh et al., 2014], the generalized ν-SVM [Kanamori et al., 2013] and
the model based on the coherent classification loss function (CCLF) [Yang et al., 2014],
though the relations among these models are not discussed in those papers. Figure 1
illustrates the relations among the classification models. The coherent risk measure is
a class of measure functions which has been extensively studied in the area of financial
engineering. Gotoh et al. [2014] brings the concept of the coherent risk into the binary
classification, and constructs a unified binary classification model using a powerful repre-

3

Coherent risk min.

Generalized ν-SVM
ν-SVM

CCLF min.

Unified Classification Model

MM-MPM

Figure 1: Relations among Classification Models

sentation theorem known for the coherent risk measure. The generalized ν-SVM extends
the hinge loss function of ν-SVM to proper, closed, and convex functions. The CCLF
is a generic term for quasi-convex functions satisfying five specific properties which are
extracted from the empirical 0–1 loss function (i.e., rate of misclassification). Yang et al.
[2014] considers the classification model based on the CCLF minimization. Though the
three models are very general, UCM can cover them. This also implies the generality of
our optimization algorithm.

While our method has extensive generality, numerical experiments show that it per-
forms stably and is highly competitive to specialized algorithms designed for specific
classification models (such as SMO [Platt, 1998] for ν-SVM). Indeed, our method solved
classification models with a linear kernel substantially faster than SMO and the interior-
point methods for large datasets.

The rest of this paper is organized as follows. Section 2 outlines a binary classifica-
tion problem and UCM. Section 3 shows the APG method for UCM and introduces the
backtracking rule. In Section 4, we develop efficient algorithms for computing projec-
tions used in the APG method. Section 5 shows that UCM includes three generalized
classification models: the coherent risk minimization model, generalized ν-SVM, and the
CCLF minimization model. Numerical experiments are presented in Section 6.

Notation. We define the plus operator as [u]+ := max{0, u}. The number of the
elements in a set A is denoted by |A|. Column vectors are denoted by boldface letters,
e.g. x, and its i-th element is denoted as xi. e denotes the all-one vector. ‖x‖ denotes
the Euclidean norm (`2-norm) of a vector x. The convex hull of a set {x1, . . . ,xk} is
denoted by conv({x1, . . . ,xk}), i.e.

conv({x1, . . . ,xk}) =
{ k∑
i=1

qixi
∣∣ q>e = 1, q ≥ 0

}
.

The projection PA(x̄) of a point x̄ onto A is defined as follows:

PA(x̄) = argmin
x∈A

1

2
‖x− x̄‖2. (1)

Other notation needed for binary classification models will be introduced in Section 2.

4

2 Binary Classification Models

Let X ⊂ Rn be the input domain and {+1,−1} be the set of the binary labels. Suppose
that we have samples,

(x1, y1), . . . , (xm, ym) ∈ X × {+1,−1}.

Let M := {1, . . . ,m}, M+ := {i ∈ M | yi = +1}, and M− := {i ∈ M | yi = −1}. Let
m+ = |M+| and m− = |M−|.

We compute (w, b) for a decision function h(x) = w>x + b using these samples and
use h(x) to predict the label for a new input point x̂ ∈ X . If h(x̂) is positive (resp.
negative), then the label of x̂ is predicted to be +1 (resp. −1). Here we focus on linear
learning models using linear functions h(x), but the discussions in this paper can be
directly applied to non-linear kernel models [Schölkopf and Smola, 2002] using nonlinear
maps φ(x) mapping x from the original space to a high dimensional space.

2.1 Unified Classification Model

There are various of binary classification models to compute (w, b) such as the support
vector machines (SVMs), e.g. [Cortes and Vapnik, 1995, Schölkopf et al., 2000, Schölkopf
and Smola, 2002], margin maximized minimax probability machine (MM-MPM) [Nath
and Bhattacharyya, 2007], and a model based on Fisher’s discriminant analysis (MM-
FDA) [Bhattacharyya, 2004, Takeda et al., 2013]. In this paper, we deal with a unified
classification model (UCM) proposed by Takeda et al. [2013], which provides a unified
formulation for these classification models. UCM is formulated as the following robust
optimization problem:

min
‖w‖2=1

max
x∈U
−w>x, (2)

where U ⊆ Rn is a closed convex set which is called as an uncertainty set. The uncertainty
set U , for example, is typically represented as the Minkowski difference of two closed
convex sets U+ and U−:

U+ 	 U− = {x+ − x− | x+ ∈ U+, x− ∈ U−},

where the sets U+ and U− typically represent uncertainty of mean vectors x̄+ and x̄−
of the classes +1 and −1, respectively. See Figure 2 for examples of uncertainty sets. It
is known that if 0 6∈ U (i.e., U+ ∩ U− = φ), the non-convex constraint ‖w‖ = 1 can be
replaced by the convex one ‖w‖ ≤ 1 without changing the optimal solutions. On the
other hand, if 0 ∈ U (i.e., U+ ∩U− 6= φ), this replacement leads UCM to an obvious and
worthless optimal solution w∗ = 0.

In this paper, we assume 0 6∈ U (i.e., U+ ∩ U− = φ) and focus on the convex model
although UCM (2) also includes non-convex models, e.g. Eν-SVM [Perez-Cruz et al.,
2003]. The convex UCM (2) can be equivalently formulated as follows:

max
x∈U

min
‖w‖≤1

−w>x = −min
x∈U
‖x‖. (3)

5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

U+

U-

U yi = +1

yi =−1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

U+

U-

U yi = +1

yi =−1

Figure 2: Examples of Uncertainty Sets U , U+, and U− for UCM. The left panel illus-
trates the case where 0 6∈ U (i.e., U+ ∩ U− = φ). In this case, the non-convex
constraint ‖w‖ = 1 can be replaced by ‖w‖ ≤ 1 without changing the optimal
solutions. On the other hand, if 0 ∈ U (i.e., U+ ∩U− 6= φ) as illustrated in the
right panel, UCM is essentially non-convex; the convex relaxation ‖w‖ ≤ 1 of
the non-convex constraint ‖w‖ = 1 leads UCM to a worthless solution w∗ = 0.
In this paper, we assume 0 6∈ U (as in the left panel) and focus on the convex
model.

Note that the optimal value of (3) is 0 if and only if 0 ∈ U (non-convex case). An optimal
solution w∗ of (2) can be obtained by the optimality condition for w, i.e. w∗ = x∗/‖x∗‖,
where x∗ is an optimal solution of (3). There are various ways to compute the bias term
b of the decision function h as illustrated in Takeda et al. [2013]; an example is to use
the value b∗ minimizing the empirical loss, i.e.,

b∗ = argmin
b

1

m

∑
i∈M

I
(
yi(x

>
i w
∗ + b) < 0

)
,

where

I(u) =

{
1 if u < 0

0 otherwise.

Various existing classification models can be reduced to (2) (and (3)) by defining an
appropriate U . Conversely, a properly chosen U would lead to a new classification
model.

The elements of U are often represented by using some parameter variables q ∈ Rd as
follows:

U := {x(q) | q ∈ U ′},
where U ′ ⊆ Rd is a convex set, and x(q) : Rd → Rn is a continuous map. Then, we can
equivalently formulate the UCM (3) as follows:

min
q∈U ′

f(q) :=
1

2

∥∥x(q)
∥∥2
. (4)

6

In the followings, we consider to solve UCM of the form (4) because it can keep the
feasible region U ′ simple so that the projection PU ′(q̄) of a point q̄ onto U ′ can be
computed efficiently as shown in Section 4. A few examples of U , x(q), U ′, and related
models to UCM (e.g., ν-SVM, MM-MPM, and MM-FDA) are given in the Appendix.

3 Accelerated Proximal Gradient Method

In this section, we provide a general optimization algorithm for the UCM of the form (4)
based on the accelerated proximal gradient (APG) method [Beck and Teboulle, 2009].
Our algorithm is applicable to various U ′, unlike specialized algorithms designed for a
particular classification model.

The APG method requires the following assumptions for its convergence.

Assumption 1. The following conditions hold:

1. f(q) is a proper, closed, convex and differentiable function.

2. The gradient ∇f(q) is Lipschitz continuous, i.e. there exists a constant L > 0
such that

‖∇f(q)−∇f(p)‖ ≤ L‖q − p‖ ∀q,p ∈ Rd.∗

We refer to the minimum value of such L as the Lipschitz constant Lf of the
gradient ∇f(q).

3. The feasible region U ′ is closed and convex.

Indeed, the models in Examples 1–5 in the Appendix satisfy Assumption 1. In addition
to this, we make the following assumption for the purpose of computational tractability.

Assumption 2. The projection PU ′(q̄) of a point q̄ onto the feasible region U ′ (see (1)
for the definition) can be computed efficiently.

Simple projection algorithms for some U ′ are developed in Section 4. We will later
discuss the situation where Assumption 2 does not hold.

3.1 Accelerated Proximal Gradient Method

Let L be an estimation of the Lipschitz constant Lf of the gradient ∇f(q). We define
an approximate function gL : Rd → R of f(q) around p and a mapping TL(q) : Rd → U ′
as follows:

gL(q;p) = f(p) + 〈∇f(p), q − p〉+
L

2
‖q − p‖2

TL(p) = argmin
q∈U ′

gL(q;p).

∗It is not sufficient to consider the Lipschitz constant over U ′ because the APG method generates a
point (pk+1 at Step 3 shown later) which may not be in U ′.

7

The basic proximal gradient (PG) method generates a sequence {qk}∞k=0 by

qk+1 = TL(qk) = argmin
q∈U ′

{L
2

∥∥∥q − (qk − 1

L
∇f(qk)

)∥∥∥2}
= PU ′

(
qk − 1

L
∇f(qk)

)
.

The above PG method coincides with the gradient projection method in this case. It is
known that the PG method has the iteration complexity that f(qk)− f(q∗) = O(1/k),
where q∗ is an optimal solution of (4).

The recently proposed APG method [Beck and Teboulle, 2009] is an acceleration of
the PG method. It generates two sequences {pk}∞k=1 and {qk}∞k=0. For an arbitrary
initial point p1 = q0 ∈ U and t1 = 1, the APG method solves (4) through the following
steps (k = 1, 2, . . .):

Accelerated Proximal Gradient Method

Step 1. Compute

qk = TL(pk) = PU ′
(
pk − 1

L
∇f(pk)

)
.

Step 2. Compute

tk+1 =
1 +

√
1 + 4t2k

2
.

Step 3. Compute

pk+1 = qk +
tk − 1

tk+1
(qk − qk−1).

Note that pk+1 ∈ U ′ is not always true while qk ∈ U ′ holds for all k = 1, 2, For the
APG method, the following convergence result is known.

Theorem 1 (Theorem 4.4 of [Beck and Teboulle, 2009]). Suppose that L is the Lipschitz
constant Lf of the gradient ∇f(q). Let the sequence {qk}∞k=0 be generated by the APG
method, and let q∗ be an optimal solution of (4). For any k ≥ 0, we have

f(qk)− f(q∗) ≤ 2L‖q0 − q∗‖2
(k + 1)2

.

As the optimal solution q∗ and the optimal value f(q∗) are not known a priori, the
iteration complexity in Theorem 1 does not provide us with a good stopping condition
for the APG method. As the upper bound on the right-hand side is only a worst-case
bound, estimating the number of iterations needed to ensure that it is less than a certain
desired accuracy is often exceedingly conservative, even if one is able to find an upper
bound on

∥∥q0 − q∗
∥∥2

, say in the case when U ′ is a bounded set. The next lemma provides
a possible way to check the optimality of the generated iterate qk.

Lemma 1. A point q∗ is an optimal solution of (4) if and only if TL(q∗) = q∗.

8

Proof. From Proposition 4.7.2 of [Bertsekas et al., 2003], q∗ is an optimal solution of (4)
if and only if

〈∇f(q∗), q − q∗〉 ≥ 0, ∀q ∈ U ′. (5)

Recall that

TL(q∗) = argmin
q∈U ′

{
f(q∗) + 〈∇f(q∗), q − q∗〉+

L

2
‖q − q∗‖2

}
. (6)

If q∗ satisfies (5), it is obvious that TL(q∗) = q∗. Next, we show the if part. Since TL(q∗)
is an optimal solution of (6), we have

0 ≤ 〈∇gL(TL(q∗); q∗), q − TL(q∗)〉
= 〈∇f(q∗) + L(TL(q∗)− q∗), q − TL(q∗)〉, ∀q ∈ U ′. (7)

If q∗ = TL(q∗) holds, then (7) leads to (5).

Note that Lemma 1 holds for any convex set U ′. The term L(TL(q∗)− q∗) of (7) can
be seen as a violation of the optimality condition (5). Thus, it is natural to employ the
following stopping criteria:

• If
‖L(qk − pk)‖ < ε or ‖L(TL(qk)− qk)‖ < ε

for sufficiently small ε > 0, then terminate the algorithm.

Note that qk = TL(pk). While the condition ‖L(qk − pk)‖ < ε is easy to check at each
iteration, it measures the necessary and sufficient optimality for pk but not qk. On the
other hand, the condition ‖L(TL(qk) − qk)‖ < ε check for the necessary and sufficient
optimality of qk, but computing TL(qk) involves the extra computation of the gradient
∇f(qk) for which the cost can be high (see Tables 3 and 7 in Section 6). Thus we
check the condition, ‖L(TL(qk) − qk)‖ < ε, only in every 100 iterations. Despite the
difference, as one can see from Figure 6 in Section 6, the two quantities

∥∥L(qk − pk)
∥∥

and
∥∥L(TL(qk)− qk)

∥∥ do not differ much in practice. Hence it is safe to use the first
condition as the surrogate termination criterion, and the second condition is used as an
extra check only after the first condition is satisfied.

Remark 1. It is sometimes difficult to compute the projection PU ′ in Step 1 exactly.
Jiang et al. [2012] showed that the APG method still has the iteration complexity O(1/k2)
if the projection PU ′ is computed approximately with a sufficiently small tolerance εk at
the k-th iteration, where

∑∞
k=1 εk < ∞. Hence, we can use a numerical method, such

as a bisection method in Section 4, to compute the projection PU ′ without losing the
iteration complexity of O(1/k2).

3.2 Strategies to Speed-up Convergence

In order to make our APG method practically efficient, we employ several strategies to
speed-up the APG method.

9

Backtracking Strategy. In Theorem 1, we assumed that L is the Lipschitz constant
Lf of ∇f(q). In order to speed up the convergence of the APG method, however, it is
advantageous to use a smaller value for L whenever possible since the constant L plays
the role of a step size as in a gradient descent method; fixing L to be the Lipschitz
constant Lf of ∇f(q) is usually too conservative (see Table 6 in Section 6). Thus
we adopt the following backtracking strategy at the beginning of each iteration with
arbitrary constants η > 1 and L > 0 shown in [Beck and Teboulle, 2009].

Step 0. Find the smallest integer ik ∈ {0, 1, . . .} such that

f(TL̄(pk)) ≤ gL̄(TL̄(pk);pk), (8)

with L̄ = ηikL. Then update L← L̄.

The inequality (8) in Step 0 ensures that the complexity result in Theorem 1 still holds.
We note that if L̄ ≥ Lf , then the inequality in Step 0 is satisfied. We computes the
Step 0 in every 10 iterations because Step 0 involves extra computations of the function
value f(TL̄(pk)) whose cost can be significant (see Tables 3 and 7 in Section 6).

Decreasing Strategy for L. Beck and Teboulle [2009] designed the backtracking algo-
rithm (Step 0) so that the values of L is non-decreasing, i.e. L̄ = ηikL (≥ L) would be
the next L. However, smaller L̄ than L may satisfy (8) at some pk, k ∈ {1, 2, . . .}. As
noted above, it is advantageous to use a smaller value for L whenever possible since the
constant 1

L gives a larger step size. Thus, we re-design Step 0 so that ik can take a value
in {−1, 0, 1, . . .} to decrease the value of L if the condition (8) permits.

Restarting Strategy. The value tk−1
tk+1

∈ [0, 1) in Step 3 determines the amount of mo-

mentum tk−1
tk+1

(qk − qk−1). The sequence of the values { tk−1
tk+1
}∞k=1 is monotonically in-

creasing and is bounded by 1. When the value tk−1
tk+1

is close to 1, i.e., the momentum is

high, the sequences of the solutions {qk}∞k=0 and {pk}∞k=1 would overshoot and oscillate
around the optimal solution while Theorem 1 ensures their convergence. In order to
avoid the oscillation and further speed up the convergence, we introduce an adaptive
restarting strategy shown in [O’Donoghue and Candés, 2013].

Step 4. If ∇f(pk)>(qk − qk−1) > 0, then restart the APG method (Algorithm 1) with
p1 = q0 = qk−1.

Roughly, the APG method restarts to reset the momentum back to zero if the direction
of motion qk − qk−1 seems to cause the value of f to increase, which may be a sign of
oscillation. Note that the computational cost of Step 4 is inexpensive since ∇f(pk) is
already computed at Step 1.

Decreasing Strategy for η. Since a smaller value of L (larger step size) tends to enlarge
the distance of qk−qk−1 as illustrated in Figure 3, the decreasing strategy for L induces
high momentum inherently. Hence, it sometimes triggers the restart step (at Step 4)

10

ç√ qk�1

qk

qk+1

pk+1

pk+2

ç√ qk�1

qk

qk+1

pk+1

pk+2

Figure 3: Effects of the value of L to the momentum tk−1
tk+1

(qk − qk−1) (left: L is large,

right: L is small). A smaller value of L gives a larger step size at Step 1 as
illustrated by the solid lines. This results in high momentum at Step 3 as
illustrated by the dashed lines.

frequently and/or makes the APG method unstable. In order to avoid the instability, it
would be necessary to reduce the rate of decreasing L. Here we take a strategy to reduce
the value of η as η ← δ · η + (1− δ) · 1 for arbitrary δ ∈ (0, 1) when the restart occurs.

As a consequence, our practical APG method is described as Algorithm 1.

3.3 Remedy for Difficult Projection

For the situation where Assumption 2 does not hold, we can apply an augmented La-
grangian method to (4) in order to replace (4) with a sequence of subproblems that
satisfy Assumption 2. Suppose that U ′ = S ∩ T , where S is a simple closed convex set
for which projection onto such a set can be computed efficiently, T = {q | gi(q) ≤ 0, i ∈
{1, . . . , lg}, hj(q) = 0, j ∈ {1, . . . , lh}}, where gi : Rd → R is a proper closed convex
function, and hj : Rd → R is an affine function. We consider the following augmented
Lagrangian (see e.g. [Rockafellar, 1978]):

Lσ(q,λ,µ) := f(q) +
σ

2

lg∑
i=1

{[
gi(q) +

λi
σ

]2

+
−
(λi
σ

)2}

+
σ

2

lh∑
j=1

{(
hj(q) +

µj
σ

)2
−
(µj
σ

)2}
︸ ︷︷ ︸∑lh

j=1

(
µjhj(q)+σ

2
(hj(q))2

)
,

where λi ≥ 0 (and µi ∈ R) is the Lagrange multiplier associated with the constraint
gi(q) ≤ 0 (and hj(q) = 0, respectively), and σ > 0 is a penalty parameter to penalize

any constraint violation [gi(q)]2+ and (hj(q))2. Let Rlg+ be the positive orthant. We then
apply the augmented Lagrangian method to solve (4).

11

Algorithm 1 A Practical Accelerate Proximal Gradient Method for (4)

INPUT: U ′, ε > 0, L > 0, η > 1, δ ∈ (0, 1), kmax > 0, p1 = q0, t1 = 1 OUTPUT: qk

for k = 1, . . . , kmax do
if k mod 10 == 1 then # Do Steps 0 and 1
L = L/η; qk = TL(pk) = PU ′

(
pk − 1

L∇f(pk)
)

while f(qk) > gL(qk;pk) do
L = ηL; qk = TL(pk) = PU ′

(
pk − 1

L∇f(pk)
)

end while
else # Do Step 1
qk = TL(pk) = PU ′

(
pk − 1

L∇f(pk)
)

end if
if ‖L(qk − pk)‖ < ε or ((k mod 100 == 1) and (‖L(TL(qk)− qk)‖ < ε)) then

break
end if

tk+1 =
1+
√

1+4t2k
2 # Step 2

pk+1 = qk + tk−1
tk+1

(qk − qk−1) # Step 3

if 〈∇f(pk), qk − qk−1〉 > 0 then # Step 4
restart Algorithm 1 with p1 = q0 = qk−1, η ← δ · η + (1− δ) · 1.

end if
end for

Augmented Lagrangian Method

Step 1. Compute
qk+1 = argmin

q∈S
Lσ(q,λk,µk). (9)

Step 2. Update

λk+1 = PRlg+

(
λk + σ∇λLσ(qk+1,λk,µk)

)
µk+1 = µk + σ∇µLσ(qk+1,λk,µk).

The APG method can be applied to the subproblem (9) since the projection onto S
is easy to compute, i.e. Assumption 2 holds. Although the APG method is executed
at each iteration of the augmented Lagrangian method, the computational cost could
be reduced by setting qk to the initial point of the APG method (i.e., using hot start
strategy); it can be expected that the optimal solution of (9) may not change too much
at each iteration since the structure of the problem (9) does not change except for the
values of multipliers λ and µ.

4 Vector Projection Computation

In the APG method (Algorithm 1), the projection PU ′ onto U ′ appears at Step 1. We
need to change the computation of the projection PU ′ depending on the definition of

12

U ′. In this section, we introduce some examples of U ′ where PU ′ is easy to compute, i.e.
Assumption 2 holds, and provide efficient projection computations for them.

4.1 Projection onto Balls

Let x̄o and Σo, o ∈ {+,−}, be the mean vectors and the positive definite covariance
matrices, respectively, of xi, i ∈ Mo. Let the parameter variable q = (u+,u−), where
uo ∈ Rn, o ∈ {+,−}. As shown in Example 1 (in the Appendix), MM-MPM [Nath and
Bhattacharyya, 2007] can be formulated in the form (4) of UCM as follows:

min
q:=(u+,u−)∈U ′

1

2

∥∥(x̄+ + Σ
1/2
+ u+

)
−
(
x̄− + Σ

1/2
− u−

)∥∥2
, (10)

where U ′ :=
{

(u+,u−) | ‖uo‖ ≤ κ, o ∈ {+,−}
}
⊆ R2n with a parameter κ ∈ [0,∞).

There exists the supremum κmax ∈ [0,∞) of κ such that the optimal value of (10) is not
0 (see Example 1 in the Appendix). Then, the projection PU ′(q̄) of a point q̄ onto the
feasible set U ′ is clearly easy to compute. Letting q̄ = (ū+, ū−) and q̂ = (û+, û−) =
PU ′(q̄), we have

ûo = min
{

1,
κ

‖ūo‖
}
ūo, o ∈ {+,−}.

Hence, the APG method would work for MM-MPM (10), efficiently.
Similarly, the following problem is known to be equivalent to MM-FDA [Bhattacharyya,

2004, Takeda et al., 2013]:

min
q:=u∈U ′

1

2

∥∥(x̄+ − x̄−
)

+
(
Σ+ + Σ−

)1/2
u
∥∥2
, (11)

where U ′ :=
{
u | ‖u‖ ≤ κ

}
⊆ Rn with a parameter κ ∈ [0,∞). There exists the

supremum κmax ∈ [0,∞) of κ such that the optimal value of (11) is not 0. In applying
the APG method to MM-FDA (11), we can compute the projection PU ′(q̄) as follows:

PU ′(q̄) = min
{

1,
κ

‖q̄‖
}
q̄.

4.2 Projection onto a Simplex with Upper Bounds

Let us consider a vector q ∈ Rm. We denote by q+ and q− the subvectors of q corre-
sponding to the label +1 and −1, respectively. e+ and e− are subvectors of e with size
m+ and m−. ν-SVM [Schölkopf et al., 2000] can be formulated in the form (4) of UCM
as follows (see Example 2 in the Appendix):

min
q∈U ′

1

2

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥2
, (12)

where U ′ :=
{
q | q>o eo = 1

2 , o ∈ {+,−}, 0 ≤ q ≤ 1
mνe

}
⊆ Rm with a parameter

ν ∈ (0, 1]. There exists the infimum νmin (and the maximum νmax = 2 min{m+,m−}
m) of

13

ν ∈ (0, 1] such that the optimal value of (12) is not 0 (and the problem (12) is feasible,
respectively).

In applying the APG method to ν-SVM (12), we shall be concerned with the projection
PU ′ :

min
q

{1

2
‖q − q̄‖2

∣∣ q>o eo =
1

2
, o ∈ {+,−}, 0 ≤ q ≤ 1

mν
e
}
. (13)

The problem (13) can be decomposed into the following two problems:

min
qo

{1

2
‖qo − q̄o‖2

∣∣ q>o eo =
1

2
, 0 ≤ qo ≤

1

mν
eo

}
, o ∈ {+,−}. (14)

We should mention that there are several algorithms, e.g. in [Kiwiel, 2008, Pardalos
and Kovoor, 1990] and references therein, that can be applied to (14). If we employ
the breakpoint search algorithm [Kiwiel, 2008, Algorithm 3.1], for example, the exact
solution q∗o of (14) can be obtained with the computational complexity of O(mo), o ∈
{+,−}. According to our observation, however, the bisection algorithm which we will
describe later requires less computation time to compute a solution q̂o such that |q̂i−q∗i |,
i ∈ Mo, are less than the machine epsilon ε′ ≈ 2.22 × 10−16 (i.e., IEEE 754 double
precision).

For the problems (14), the following properties are well-known.

Lemma 2 (e.g. [Helgason et al., 1980]). Suppose that the problems (14) are feasible,

i.e. ν ∈
(
0, 2 min{m+,m−}

m

]
. Let

qi(θo) = min
{

[q̄i − θo]+,
1

mν

}
, i ∈Mo, o ∈ {+,−},

and let
ho(θo) =

∑
i∈Mo

qi(θo), o ∈ {+,−}.

The following statements hold for o ∈ {+,−}:

1. ho(θo) is a continuous and non-increasing function.

2. There exists θ∗o ∈ (q̄mino − 1
2mo

, q̄maxo − 1
2mo

) such that ho(θ
∗
o) = 1

2 , where q̄maxo =

max{q̄i | i ∈Mo} and q̄mino = min{q̄i | i ∈Mo}.

3. Let q̂i = qi(θ
∗
o), i ∈Mo. q̂o is an optimal solution of (14).

Therefore, the problem (14) can be reduced to the problem finding θ∗o such that
ho(θ

∗
o) = 1

2 , o ∈ {+,−}. Since ho(θo) is non-increasing (as illustrated in Figure 4),
the bisection algorithm can be applied to solving the equation ho(θo) = 1

2 numerically
with any desired accuracy ε′ > 0. The steps are as follows.

Bisection Algorithm for Projection

Step 1. Set θuo = q̄maxo − 1
2mo

and θlo = q̄mino − 1
2mo

.

14

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

θo

h
o

−1 −0.5 0 0.5
0

0.2

0.4

0.6

0.8

θo

h
o

Figure 4: Illustration of the function ho(θo) :=
∑

i∈Mo
qi(θo), o ∈ {+,−}. The left

panel illustrates the case where qi(θo) := min
{

[q̄i − θo]+,
1
mν

}
(as in Sec-

tion 4.2). In this case, the function ho is piecewise linear. The right panel

illustrates the case where qi(θo) = min
{

1, κ/(
∑

i∈Mo
[q̄i − θ̄]2+)

1
2

}
[q̄i − θ̄]+ (as

in Section 4.3). In both cases, ho(θo) is a non-increasing function.

Step 2. Set θ̂o = (θuo + θlo)/2

Step 3. Compute ho(θ̂o).

Step 4. If ho(θ̂o) = 1
2 , then terminate with θ̂∗o = θ̂o.

Else if ho(θ̂o) <
1
2 , then set θuo = θ̂o.

Else if ho(θ̂o) >
1
2 , then set θlo = θ̂o.

Step 5. If |θuo − θlo| < ε′, then terminate with θ̂∗o = θ̂o. Else, go to Step 2.

All steps require at most O(mo) operations. Thus, the computational complexity of the

bisection algorithm is at most O
(
mo log(q̄

max
o −q̄mino

ε′)
)
.

As the bisection method narrows the interval (θlo, θ
u
o), some of the terms qi(θo), i ∈Mo,

can be fixed to 0, q̄i−θo, or 1
mν for θo ∈ (θlo, θ

u
o). Thus we can refine the computation of

ho(θ̂o) at Step 3 by avoiding recalculating certain sums. We divide Mo into the following
three disjoint sets for given θlo and θuo satisfying θlo < θuo :

IEo :=
{
i ∈Mo | q̄i ≥ θuo +

1

mν

}
,

ILo := {i ∈Mo | q̄i < θlo},
Uo := Mo\(IEo ∪ ILo).

Then we have

ho(θo) =
∑
i∈Mo

qi(θo) =
1

mν
ρ′o +

∑
i∈Uo

qi(θo), θo ∈ (θlo, θ
u
o),

15

where ρ′o = |IEo |. When θ̂o ∈ (θlo, θ
u
o) is fixed at Step 2, we also partition the set Uo into

the following two disjoint sets:

Eo :=
{
i ∈ Uo | q̄i ≥ θ̂o +

1

mν

}
,

Go := {i ∈ Uo | θ̂o +
1

mν
> q̄i ≥ θ̂o},

Lo := {i ∈ Uo | θ̂o > q̄i}.

Then we have ∑
i∈Uo

qi(θ̂o) =
∑
i∈Eo

qi(θ̂o) +
∑
i∈Go

qi(θ̂o)

=
1

mν
∆ρ′o + (∆so −∆ρoθ̂o), θ̂o ∈ (θlo, θ

u
o),

where ∆ρ′o = |Eo|, ∆so =
∑

i∈Go q̄i and ∆ρo = |Go|. Hence, we have

ho(θ̂o) = (ρ′o + ∆ρ′o)
1

mν
+ (∆so −∆ρoθ̂o), θ̂o ∈ (θlo, θ

u
o).

By leveraging on the structure of ho, the bisection method for (14) can be described as
Algorithm 2.

Algorithm 2 Bisection Algorithm for (14)

INPUT: q̄o, ε
′ > 0 OUTPUT: qo

INITIALIZE: Uo = Mo, so = 0, ρo = 0, ρ′o = 0, θuo = q̄maxo − 1
2mo

, θlo = q̄mino − 1
2mo

while |θuo − θlo| > ε′ do

θ̂o = θuo+θlo
2 # Step 2

Lo = {i ∈ Uo | q̄i < θ̂o}, Ĝo = {i ∈ Uo | q̄i ≥ θ̂o} # Step 3
Eo = {i ∈ Ĝo | q̄i − θ̂o ≥ 1

mν }, Go = Ĝo\Eo
∆ρ′o = |Eo|, ∆ρo = |Go|
∆so =

∑
i∈Go q̄i

val = (ρ′o + ∆ρ′o)
1
mν + (∆so −∆ρoθ̂o)

if val < 1
2 then # Step 4

ρ′o = ρ′o + ∆ρ′o
θuo = θ̂o, Uo = Lo

else if val > 1
2 then

θlo = θ̂o, Uo = Go
else

break
end if

end while
qi = [min{q̄i − θ̂o, 1

mν }]+, ∀i ∈Mo # Step 5

16

4.3 Projection onto a Simplex with Separable Norm Constraints

As in the former section, we denote by q+ and q− the subvectors of q ∈ Rm corresponding
to the label +1 and −1, respectively. e+ and e− are similarly defined subvectors of e.
Let us consider the projection PU ′ onto the following set:

U ′ :=
{
q

∣∣∣∣ q>o eo =
1

2
, ‖qo‖2 ≤ κ2

o, o ∈ {+,−}, q ≥ 0

}
,

where κo ∈
(
0,
√

1
2

]
, o ∈ {+,−}, are positive parameters. Such U ′ appears in a biased

variant of `2-loss ν-SVM (see the equation (43) in Example 3 in the Appendix).
We can construct an efficient algorithm based on the bisection method for the projec-

tion PU ′ :

min
q

{
1

2
‖q − q̄‖2

∣∣∣∣ q>o eo =
1

2
, ‖qo‖2 ≤ κ2

o, o ∈ {+,−}, q ≥ 0

}
. (15)

The problem (15) can be decomposed into the following two problems.

min
qo

{1

2
‖qo − q̄o‖2

∣∣∣ q>o eo =
1

2
, ‖qo‖2 ≤ κ2

o, qo ≥ 0
}
, o ∈ {+,−}. (16)

Here we assume that κo ∈ (κmino ,
√

1
2), where κmino = 1

2
√
mo

. Note that if κmino > κo,

then the problem (16) is infeasible; if κmino = κo, then 1
2mo

e is the unique feasible (and

optimal) solution; and if κo ≥
√

1
2 , then the constraint ‖qo‖2 ≤ κ2

o is redundant. We

have the following lemma by invoking the KKT conditions for (16) as in [Helgason et al.,
1980].

Lemma 3. Suppose that κo ∈ (κmino ,
√

1
2). Let

qi(θ) = min
{

1,
κo

(
∑

i∈Mo
[q̄i − θo]2+)1/2

}
[q̄i − θo]+, ∀i ∈Mo, o ∈ {+,−}

and
ho(θo) =

∑
i∈Mo

qi(θo), o ∈ {+,−}.

For o ∈ {+,−}, the following statements hold.

1. ho(θo) is continuous and non-increasing.

2. There exists θ∗o ∈ (q̄mino − 0.5
mo
, q̄maxo −max{ 0.5

mo
, κo√

mo
}) such that ho(θ

∗) = 1
2 , where

q̄maxo = max{q̄i | i ∈Mo} and q̄mino = min{q̄i | i ∈Mo}.

3. Let q̂i = qi(θ
∗
o), ∀i ∈Mo. q̂o is an optimal solution of (16).

17

Proof. If 1 < κo/(
∑

i∈Mo
[q̄i − θo]

2
+)

1
2 , it is obvious that ho(θo) =

∑
i∈Mo

[q̄i − θo]+ is

non-increasing. Consider the case where 1 ≥ κo/(
∑

i∈Mo
[q̄i−θ]2+)

1
2 . Let Eθo = {i ∈Mo |

q̄i > θo}. Let us denote by q̄Eθo the subvectors of q̄o corresponding to the index i ∈ Eθo .
Then, we have

ho(θo) =
κo
∑

i∈Mo
[q̄i − θo]+

(
∑

i∈Mo
[q̄i − θo]2+)1/2

=
κo
∑

i∈Eθo
(q̄i − θo)

(
∑

i∈Eθo
(q̄i − θo)2)1/2

=
κoe
>
Eθo

(q̄Eθo − θoeEθo)

‖q̄Eθo − θoeEθo‖
.

For notational simplicity, we omit the subscript Eθo in the following. Then, we have the
derivative h′o(θo) as

h′o(θo)/κo =
−‖e‖2‖q̄ − θoe‖+

{
e>(q̄ − θoe)

}2
/‖q̄ − θoe‖

‖q̄ − θoe‖2
=
−‖e‖2‖q̄‖2 + (q̄>e)2

‖q̄ − θoe‖3
.

From the Cauchy-Schwarz inequality:

(q̄>e)2 ≤ ‖q̄‖2‖e‖2,

we have h′o(θo) ≤ 0. The second part of the lemma holds since ho(q̄
min
o − 1

2mo
) ≥ 1

2 ,

ho(q̄
max
o − 1

2mo
) ≤ 1

2 , and ho(θ) is continuous. Next, we show the third part of the lemma.

If κo >
1

2
√
mo

, the problem (16) satisfies the Slater condition, i.e. there exists a feasible

relative interior point 1
2mo

eo. Under the Slater condition, q̂o is an optimal solution of
(16) if and only if q̂o satisfies the KKT conditions, i.e., there exists (θo, ζo, λo) such that

(1 + λo)q̂o − q̄o + θoeo − ζo = 0,

ζ>o q̂o = 0, λo(‖q̂o‖2 − κ2
o) = 0,

q̂o ≥ 0, q̂>o eo =
1

2
, ‖q̂o‖2 ≤ κ2

o,

ζo ≥ 0, λo ≥ 0.

q̂i = qi(θ
∗
o) satisfies the KKT conditions by

θ = θ∗o , ζi = [θ∗o − q̄i]+, (i ∈Mo)

λo = min
{

1,
κo

(
∑

i∈Mo
[q̄i − θ∗o]2+)1/2

}−1
− 1.

This completes the proof.

Therefore, the problem (16) can be reduced to the problem of finding a solution θ∗o of
the equation ho(θ

∗
o) = 1

2 . It can be computed numerically by the bisection method since
ho(θo) is non-increasing (as illustrated in Figure 4). Algorithm 3 shows the bisection

algorithm for (16). It requires O(mo) operations at each iteration. Since κo ≤
√

1
2 ,

Algorithm 3 iterates at most dlog2(dε′)e steps, where d = q̄maxo − q̄mino +
√

1
2 . Thus the

computational complexity of Algorithm 3 is at most O
(
mo log

(
d
ε′

))
.

18

Algorithm 3 Bisection Algorithm for (16)

INPUT: q̄o, ε
′ > 0 OUTPUT: qo

INITIALIZE: Uo = Mo, θ
u
o = qmax − 1

2mo
, θlo = qmin −max{ 1

2mo
, κo√

mo
}

while |θuo − θlo| > ε′ do

θ̂o = θuo+θlo
2 # Step 2

Go = {i ∈ Uo | q̄i ≥ θ̂o}, Lo = {i ∈ Uo | q̄i < θ̂o} # Step 3
val = ho(θ̂o)
if val < 1

2 then # Step 4

Uo = Lo, θ
u
o = θ̂o

else if val > 1
2 then

Uo = Go, θ
l
o = θ̂o

else
break

end if
end while
qi = min

{
1, κo/(

∑
i∈Mo

[q̄i − θ̄]2+)
1
2

}
[q̄i − θ̄]+, ∀i ∈Mo # Step 5

4.4 Complex Uncertainty Sets

For the problem (3) or (4) with complex uncertainty sets which may not satisfy Assump-
tion 2, we can replace (3) or (4) with a sequence of subproblems that meet Assumption 2
by applying the augmented Lagrangian method. For instance, let us consider the uncer-
tainty set

U ′ = {q | q>o eo =
1

2
, o ∈ {+,−}, ‖q‖2 ≤ κ2, q ≥ 0}.

Such U ′ appears in `2-loss ν-SVM (see the equation (39) in Example 3 in the Appendix).
Letting S = {q | q>o eo = 1

2 , o ∈ {+,−}, q ≥ 0} and T = {q | ‖q‖2 ≤ κ2}, we have
U ′ = S ∩ T . As shown in Section 4.2, the projection PS onto S can be computed by the
bisection method. Hence, the subproblem (9) in Step 1 of the augmented Lagrangian
method in Section 3 can be solved efficiently by the APG method.

5 Relation to Existing Unified Classification Models

Besides UCM (2), there are several unified formulations of binary classification models.
In this section, we show that UCM (2) includes three unified formulations: the model
minimizing coherent risk measure [Bertsimas and Takeda, 2014], the generalized ν-SVM
[Kanamori et al., 2013], and the model of minimizing coherent classification loss function
(CCLF)† [Yang et al., 2014].

†Note that coherent risk and coherent loss are derived from different ideas although their names are
similar.

19

5.1 Classification Models based on Coherent Risk Measure Minimization

Define

v =

(
w
b

)
, zi =

(
yixi
yi

)
, i ∈M.

Then v>zi = yi(w
>xi + b) ≥ 0 means that the label yi of the sample xi is correctly

predicted. Assume that the samples xi, i ∈M, are distributed with an unknown distri-
bution. The purpose here is to compute v such that the values v>zi, i ∈M, are large,
and the resulting decision function h(x) can correctly predict the label for a new input
point x̂ ∈ X which is distributed with the same unknown distribution. The possibility of
misclassification (i.e., v>z < 0) can be regarded as a risk. Bertsimas and Takeda [2014]
measured the risk of v by the coherent risk measure [Artzner et al., 1999], which is a
class of measure functions and extensively studied in the field of financial engineering.

5.1.1 Coherent Risk Measure

Let V be a linear space of random variables defined on an appropriate probability space.
The coherent risk measure is a class of measure functions defined as follows.

Definition 1. [Artzner et al., 1999] A function µ : V → R that satisfies the following
four conditions for all random variables ṽ, w̃ ∈ V is called a coherent risk measure.

• Monotonicity: If ṽ ≥ w̃, then µ(ṽ) ≤ µ(w̃).

• Translation invariance: µ(ṽ + a) = µ(ṽ)− a, ∀a ∈ R.

• Subadditivity: µ(ṽ + w̃) ≤ µ(ṽ) + µ(w̃).

• Positive homogeneity: µ(λṽ) = λµ(ṽ), ∀λ ≥ 0.

Note that subadditivity and positive homogeneity imply convexity. For a coherent
risk measure µ and a Rn-valued random variable z̃, we consider minimizing coherent
risk measures:

inf
v∈V

µ(v>z̃), (17)

where V is a closed convex set.
It is well-known that any coherent risk measure can be equivalently described in terms

of the worst-case expectation over a family of distributions Q, and any family of distri-
butions Q defines a coherent risk measure. Therefore, the coherent risk minimization
problem (17) can be written as follows (see, e.g., representation theorem for coherent
risk measures in [Artzner et al., 1999]):

inf
v∈V

sup
q∈Q

Eq(−v>z̃), (18)

where Eq(ṽ) denotes the expectation of the random variable ṽ under a distribution q.

20

Here we assume finite probability space for z̃ by following [Bertsimas and Brown,
2009]. Denote the support of z̃ by Z = {z1, . . . ,zm} and let Z = [z1, . . . ,zm]. Then
(18) is equivalent to

inf
v∈V

max
q∈Q

−v>Zq. (19)

Note that Q ⊆ ∆ := {q ∈ Rm | q>e = 1, q ≥ 0}.

5.1.2 Binary Classification Model

Now we consider a machine learning model which minimizes a coherent risk measure by
assuming an appropriate Q ⊆ ∆. Suppose that V = {v = (w, b) | ‖w‖ ≤ 1}. Then (19)
is equivalent to

min
b,‖w‖≤1

max
q∈Q

−w>Z̃q − by>q
(

= −v>Zq
)
, (20)

where Z̃ := [y1x1, . . . , ymxm]. The problem (20) is investigated in [Gotoh et al., 2014] as
a relaxed counterpart of the coherent risk based-classification. We further reformulate
it as follows:

max
q∈Q

min
b,‖w‖≤1

−w>Z̃q − by>q

=−min
{∥∥Z̃q∥∥ ∣∣ q ∈ Q̃}, (21)

where Q̃ = {q ∈ Q | y>q = 0}. Note that

Q̃ ⊆ ∆̃ :={q | e>q = 1, q ≥ 0, y>q = 0}

={q | q ≥ 0, e>o qo =
1

2
, o ∈ {+,−}}.

Here, q+ and q− denote the subvectors of q corresponding to the label +1 and −1,
respectively. e+ and e− are similarly defined subvectors of e. The second form of ∆̃
comes from the fact that y>q = 0 is equivalent to q>+e+ = q>−e−. An optimal solution

w∗ of (20) can be obtained by the optimality condition for w: w∗ = Z̃q∗/‖Z̃q∗‖, where
q∗ is an optimal solution of (21). b is derived from the Lagrange multiplier corresponding
to y>q = 0.

Let C be the Minkovski difference of the convex hulls:

C : =
1

2

{
conv

(
{xi | i ∈M+}

)
	 conv

(
{xi | i ∈M−}

)}
=
{ ∑
i∈M+

qixi | q>+e+ =
1

2
, q+ ≥ 0

}
	
{ ∑
i∈M−

qixi | q>−e− =
1

2
, q− ≥ 0

}
=
{
Z̃q | q ∈ ∆̃

}
.

Now we have the next proposition.

21

Proposition 1. For any Q̃, the coherent risk minimization problem (21) is equivalent
to UCM (3) with U = {Z̃q | q ∈ Q̃}. Conversely, for any U ⊆ C, UCM (3) is equivalent
to the coherent risk minimization problem (21) with Q̃ = {q ∈ ∆̃ | Z̃q ∈ U}.

Proof. The proposition can be proven by mimicking the proof of [Bertsimas and Brown,
2009, Theorem 3.1]. For any Q̃, we have

min
q

{
‖Z̃q‖ | q ∈ Q̃

}
= min

x,q

{
‖x‖ | x = Z̃q, q ∈ Q̃

}
= min

x

{
‖x‖ | x ∈ {Z̃q | q ∈ Q̃}

}
= min

x

{
‖x‖ | x ∈ U

}
.

Conversely, for any U ⊆ C, we have

min
x

{
‖x‖ | x ∈ U

}
= min

q,x

{
‖x‖ | q ∈ ∆̃, Z̃q = x ∈ U

}
= min

q

{
‖Z̃q‖ | q ∈ {q ∈ ∆̃ | Z̃q ∈ U}

}
= min

q

{
‖Z̃q‖ | q ∈ Q̃

}
.

Proposition 1 states that any coherent risk minimization problem can be reduced to
UCM, and UCM minimizes a coherent risk measure if U ⊆ C. The models in Examples 2–
4 actually satisfy U ⊆ C and minimize coherent risk measures. For instance, Takeda and
Sugiyama [2008] showed that ν-SVM (Example 2) minimizes the coherent risk measure
known as conditional value-at-risk (CVaR).

On the other hand, UCM with U 6⊆ C does not minimize the coherent risk measure.
For such a situation, we can make a coherent version of the UCM by restricting U to a
subset of C. See Example 5 in the Appendix.

5.2 Generalized ν-SVM

Let l : R → R be a closed, convex and proper loss function. The generalized ν-SVM
[Kanamori et al., 2013] is formulated as follows:

inf
‖w‖2≤λ2,b,ρ

{
− ρ+

1

m

m∑
i=1

l(ρ− yi(w>xi + b))
}
, (22)

where λ > 0 is a parameter. Note that (22) is equivalent to ν-SVM if l(u) = [u/ν]+,
where ν ∈ (νmin, νmax] is a parameter. The consistent estimator of the conditional
probability P (y | x) of the label y is available for the model (22). See [Kanamori et al.,
2013] for details.

22

The Lagrangian function L associated with (22) is given by:

L(w, b, ρ, ξ,α, µ)

= −ρ+
1

m

∑
i∈M

l(ξi) +
∑
i∈M

αi
(
ρ− yi(w>xi + b)− ξi

)
+ µ(‖w‖2 − λ2),

(α ≥ 0, µ ≥ 0).

Then, (22) is equivalent to

min
w,b,ρ,ξ

max
α≥0,µ≥0

L(w, b, ρ, ξ,α, µ),

and its dual problem is given by

max
α≥0,µ≥0

min
w,b,ρ,ξ

L(w, b, ρ, ξ,α, µ)

= max
α≥0,µ≥0

min
w,b,ρ,ξ

{(∑
i∈M

αi − 1
)
ρ+

1

m

∑
i∈M

(
l(ξi)−mαiξi

)
−
∑
i∈M

αiyi(w
>xi + b) + µ(‖w‖2 − λ2)

}
. (23)

Let µ∗ be the optimal solution of (23) with respect to µ. Here we detect whether µ∗ = 0
or µ∗ > 0. Fix µ = 0. Then, the dual problem (23) is reduced to

max
α≥0

min
w,b,ρ,ξ

L(w, b, ρ, ξ,α, 0)

= −min
α∈∆̃

{ 1

m

∑
i∈M

l∗(mαi)
∣∣∣ ∑
i∈M

αiyixi = 0
}

= −min
α∈∆̃

{ 1

m

∑
i∈M

l∗(mαi) + λ
∥∥∥∑
i∈M

αiyixi

∥∥∥ ∣∣∣ ∑
i∈M

αiyixi = 0
}
,

(24)

where l∗(q) be the convex conjugate of l(u), i.e. l∗(q) = supu{uq−l(u)}. On the contrary,
assuming that µ > 0, the dual problem (23) is reduced to

max
α≥0,µ>0

min
w,b,ρ,ξ

L(w, b, ρ, ξ,α, µ)

= max
α≥0,µ>0

{
− 1

m

∑
i∈M

l∗(mαi)−
1

4µ

∥∥∥∑
i∈M

αiyixi

∥∥∥2
− µλ2

∣∣∣ ∑
i∈M

αi = 1,
∑
i∈M

αiyi = 0
}

= −min
α∈∆̃

{ 1

m

∑
i∈M

l∗(mαi) + λ
∥∥∥∑
i∈M

αiyixi

∥∥∥}.
(25)

Since (25) has a less constraint than (24), the value of (25) is larger than or equals to (24).
Hence, we can assume µ∗ > 0, and (25) is actually the dual problem of the generalized
ν-SVM. An optimal solution w∗ of (20) can be obtained by the optimality condition:
w∗ = λ

∑
i∈M α∗i yixi/‖

∑
i∈M α∗i yixi‖, where α∗ is an optimal solution of (25). The

optimal b can be derived from the Lagrange multiplier corresponding to y>α = 0.
From these results, we have the following proposition.

23

Proposition 2. Let α∗ be an optimal solution of the dual (25) of generalized ν-SVM.
Assume that we have

Q̃ =
{
q ∈ ∆̃

∣∣∣ 1

mλ

∑
i∈M

l∗(mqi) ≤ κ∗
}
,

a priori, where κ∗ = 1
mλ

∑
i∈M l∗(mα∗i). Then, q = α∗ is also an optimal solution of the

coherent risk minimization problem (21), i.e. (21) and (25) lead to the same decision
function.

Proof. For any λ > 0, the dual problem (25) of the generalized ν-SVM is equivalent to
the following problem:

min
α∈∆̃

{ 1

mλ

∑
i∈M

l∗(mαi) +
∥∥∥∑
i∈M

αiyixi

∥∥∥}.
Then, the statement holds from Lemma 5 in the Appendix by letting

f(α) =
∥∥∥∑
i∈M

αiyixi

∥∥∥, g(α) =
1

mλ

∑
i∈M

l∗(mαi).

In the sense of Proposition 2, the coherent risk minimization model can cover the
generalized ν-SVM.

5.3 Coherent Classification Loss Function

Define the 0–1 loss function:

I(u) =

{
1 if u < 0

0 otherwise.

Here we consider the following classification model:

min
v∈V

L(Z>v) :=
1

m

m∑
i=1

I(z>i v). (26)

The problem (26) finds the decision hyperplane which minimizes the number of misclas-
sifications for the training data. However, minimizing the non-convex loss function L(u)
is typically computationally intractable. Recently, Yang et al. [2014] proposed the clas-
sification model that replaces L(u) by the coherent classification loss function (CCLF)
having five salient properties derived from L(u).

Definition 2 (Yang et al. [2014]). Let ρ : Rm → R be a quasi-convex and lower semi-
continuous function. The function ρ which satisfies the following five conditions for all
u ∈ Rm is called a CCLF.

24

• Complete classification: ρ(u) = 0 if and only if u ≥ 0.

• Misclassification avoidance: If u < 0, then ρ(u) = 1.

• Monotonicity: If u1 ≥ u2, then ρ(u1) ≤ ρ(u2).

• Order invariance: ρ(u) = ρ(Pu) for all permutation matrices P .

• Scale invariance: ρ(u) = ρ(au) for all a > 0.

Here, quasi-convexity is introduced for computational tractability. Note that L(u)
itself is not CCLF because it does not satisfy quasi-convexity. Definition 1 (coherent
risk measure) and Definition 2 (CCLF) have clearly different conditions, e.g. the coherent
risk measure is convex, but CCLF is quasi-convex. However, a vector v = (w, b) that
minimizes a CCLF ρ(Z>v) also minimizes a coherent risk measure. To show this, we
use the following characterization of the CCLF.

Lemma 4. Suppose that ρ(u) is a CCLF. Then there exists a set of probability measures
Qk ⊆ ∆ parameterized by k ∈ [0, 1] such that

ρ(u) = 1− sup
{
k ∈ [0, 1] | sup

q∈Qk
(−u>q) ≤ 0

}
,

where Q0 = { 1
me}, Q1 = ∆, and Qk ⊆ Qk′ if 0 ≤ k ≤ k′ ≤ 1.

The lemma can be verified by the proof of Lemma A-1 in the supplementary material
of [Yang et al., 2014]. Now we have the following result.

Proposition 3. Consider the CCLF minimization problem:

min
v∈V

ρ(Z>v). (27)

The problem (27) can be reduced to the coherent risk minimization problem (20). More-
over, if the interior of {Z̃q | q ∈ ∆̃} contains the origin 0, which implies that the
datasets {xi | i ∈ M+} and {xj | j ∈ M−} are linearly non-separable, then (27) and
(20) are equivalent.

Proof. From Lemma 4, (27) is equivalent to

sup
{
k ∈ [0, 1]

∣∣ min
v∈V

sup
q∈Qk

(−v>Zq) ≤ 0
}
. (28)

Let k∗ be an optimal solution of (28). Clearly, (28) can be reduced to the coherent risk
minimization problem (20) by setting Q = Qk∗ . If {Z̃q | q ∈ ∆̃} contains the origin 0
in its interior, then we have supq∈∆(−v>Zq) = sup

q∈∆̃
(−w>Z̃q) > 0. Thus (20) can

be reduced to (28) by setting

Qk =

{
Q if k ≤ k∗
∆ otherwise

.

25

Yang et al. [2014] showed that the CCLF:

ρ̄(u) = max
{
t ∈ {0, 1, . . . ,m} |∑t

i=1 u(i) < 0
}
/m,

where {u(i)}mi=1 is the permutation of {ui}mi=1 in ascending order u(1) ≤ . . . ≤ u(m), is the
tightest upper bound of L(u) in the CCLF. The classifier that minimizes the tightest
CCLF ρ̄(Z>v) is computationally tractable and shows a good prediction performance.
It can be verified that the classifier minimizing the tightest CCLF ρ̄(Z>v) is equivalent
to ν-SVM with a specific parameter ν.

Proposition 4. Suppose that

ρ̄(Z>v) = max
{
t ∈ {0, 1, . . . ,m} |∑t

i=1 z
>
(i)v < 0

}
/m,

where {z(i)}mi=1 is the permutation of {zi}mi=1 such that z>(1)v ≤ . . . ≤ z>(m)v. Let Qk
satisfy the property that Q0 = {q | q>e = 1, 0 ≤ qi ≤ 1

m} if k = 0; and

Qk =

{
q | q>e = 1, 0 ≤ qi ≤

1

m− (dmke − 1)

}
if 0 < k ≤ 1. Then we have

ρ̄(Z>v) = 1− sup{k ∈ [0, 1] | sup
q∈Qk

(−v>Zq) ≤ 0}. (29)

Proof. Fix v ∈ V . If Z>v ≥ 0, then we have ρ̄(Z>v) = 0, as well as supq∈Q1
(−v>Zq) ≤

0. Hence the equivalence (29) holds. Next, we suppose Z>v 6≥ 0, and let t0 := max{t |∑t
i=1 z

>
(i)v < 0} (i.e., ρ̄(Z>v) = t0

m). For k0 = 1− t0

m ,

Qk0 = {q | q>e = 1, 0 ≤ qi ≤ 1
t0+1

, ∀i ∈M}.

Noting that
∑t0+1

i=1 z
>
(i)v ≥ 0 holds from the definition of t0, we obtain

sup
q∈Qk0

−v>Zq = sup
q∈Qk0

−
m∑
i=1

qiz
>
(i)v = − 1

t0 + 1

t0+1∑
i=1

z>(i)v ≤ 0.

On the other hand for arbitrarily small ε ∈
(
0, 1

m

)
,

Qk0+ε = {q | q>e = 1, 0 ≤ qi ≤ 1
t0
, ∀i ∈M}.

Then we have

sup
q∈Qk0+ε

−v>Zq = sup
q∈Qk0+ε

−
m∑
i=1

qiz
>
(i)v = − 1

t0

t0∑
i=1

z>(i)v > 0.

This implies the right hand side of (29) is t0

m . This completes the proof.

Let k∗ be an optimal solution of (29). The classifier minimizing the tightest CCLF

ρ̄(Z>v) is equivalent to ν-SVM with ν = 1− (dmk∗e−1)
m .

26

6 Numerical Experiment

In this section we demonstrate the performance of our algorithm. We run the numerical
experiments on a Red Hat Enterprise Linux Server release 6.4 (Santiago) with Intel
Xeon Processor E5-2680 (2.7GHz) and 64 GB of physical memory. We implemented the
practical APG method (Algorithm 1) by MATLAB R2013a and the bisection methods
by C++. The C++ code was called from MATLAB via MEX files.

We conducted the experiments using artificial datasets and benchmark datasets from
LIBSVM Data [Chang and Lin, 2011]. The artificial datasets were generated as fol-
lows. Positive samples {xi ∈ Rn | i ∈ M+} and negative samples {xi ∈ Rn | i ∈
M−} were distributed with n-dimensional standard normal distributions Nn(0, In) and
Nn(10√

n
e, SS>), respectively, where the elements of the n by n matrix S are i.i.d. random

variables following the standard normal distribution N (0, 1). The marginal probability
of the label was assumed to be same, i.e. P (y = +1) = P (y = −1) = 1

2 . After generating
samples, we scaled them so that each input vector xi (∀i ∈ M) was in [−1, 1]n for the
purpose of computational stability, following LIBSVM [Chang and Lin, 2011]. On the
other hand, we scaled the benchmark datasets, that are not scaled by Chang and Lin
[2011], so that xi ∈ [0, 1]n, (∀i ∈ [m]) in order to leverage their sparsity. The details of
benchmark datasets are shown in Table 1.

6.1 Projection Algorithms

Before we present the performance of our practical APG, we compare the performance
of our projection algorithm (Algorithm 2) based on bisection in Section 4.2 against the
breakpoint search algorithm [Kiwiel, 2008, Algorithm 3.1] with random pivoting. Both
algorithms are implemented by C++. We generated Rn-valued random vectors q̃ with
uniformly distributed elements and computed the projections PU ′(q̃) of q̃ onto U ′, where
U ′ :=

{
q | q>o eo = 1

2 , o ∈ {+,−}, 0 ≤ q ≤ 1
mνe

}
with ν = 0.5. The bisection algorithm

used the accuracy of ε′ ≈ 2.22× 10−16 (i.e., IEEE 754 double precision). Table 2 reports
the average and standard deviation of computation times over 20 trials. As we can
see from Table 2, the bisection method is faster and more stable (in the sense that the
variance in the computation time is smaller) than the breakpoint search algorithm. This
explains why we have chosen to use the bisection methods in Section 4.2 to perform the
projection steps in Algorithm 1.

6.2 APG for ν-SVM

We solved the ν-SVM (12) in the form of UCM via the APG method, SeDuMi [Sturm,
1999], and LIBSVM [Chang and Lin, 2011]. SeDuMi is a general purpose optimization
solver implementing the interior point method for large-scale second-order cone problems
such as (12). LIBSVM implements the sequential minimal optimization (SMO) [Platt,
1998] which is specialized for learning ν-SVM. For reference, we also compared the APG
method with LIBLINEAR [Fan et al., 2008] which implements a coordinate descent

27

Table 1: Details of Datasets. We have scaled the datasets that are highlighted in boldface
type.

data m (m+, m−) n range density

a8a 22,696 (5,506, 17,190) 123 [0, 1]n 0.113
a9a 32,561 (7,841, 24,720) 123 [0, 1]n 0.113

australian 690 (307, 383) 14 [−1, 1]n 0.874
breast-cancer 683 (444, 239) 10 [−1, 1]n 1.000

cod-rna 59,535 (39,690, 19,845) 8 [0, 1]n 0.999
colon-cancer 62 (40, 22) 2,000 [0, 1]n 0.984

covtype 581,012 (297,711, 283,301) 54 [0, 1]n 0.221
diabetes 768 (500, 268) 8 [−1, 1]n 0.999
duke 44 (21, 23) 7,129 [0, 1]n 0.977

epsilon-normalized 400,000 (199,823, 200,177) 2,000 [−0.15, 0.16]n 1.000
fourclass 862 (307, 555) 2 [−1, 1]n 0.996

german.numer 1,000 (300, 700) 24 [−1, 1]n 0.958
gisette 6,000 (3,000, 3,000) 5,000 [−1, 1]n 0.991
heart 270 (120, 150) 13 [−1, 1]n 0.962
ijcnn1 35,000 (3,415, 31,585) 22 [−0.93, 1]n 0.591

ionosphere 351 (225, 126) 34 [−1, 1]n 0.884
leu 38 (11, 27) 7,129 [0, 1]n 0.974

liver-disorders 345 (145, 200) 6 [−1, 1]n 0.991
madelon 2,000 (1,000, 1,000) 500 [0, 1]n 0.999

mushrooms 8,124 (3,916, 4,208) 112 [0, 1]n 0.188
news20.binary 19,996 (9,999, 9,997) 1,355,191 [0, 1]n 3.36E-04

rcv1-origin 20,242 (10,491, 9,751) 47,236 [0, 0.87]n 0.002
real-sim 72,309 (22,238, 50,071) 20,958 [0, 1]n 0.002

skin-nonskin 245,057 (50,859, 194,198) 3 [0, 1]n 0.983
sonar 208 (97, 111) 60 [−1, 1]n 1.000
splice 1,000 (517, 483) 60 [−1, 1]n 1.000

svmguide1 3,089 (1,089, 2,000) 4 [0, 1]n 0.997
svmguide3 1,243 (947, 296) 22 [0, 1]n 0.805

url-combined 2,396,130 (1,603,985, 792,145) 3,231,961 [0, 1]n 3.54E-05
w7a 24,692 (740, 23,952) 300 [0, 1]n 0.039
w8a 49,749 (1,479, 48,270) 300 [0, 1]n 0.039

Table 2: Runtime of Projection Algorithms (msec.)

vector Breakpoint Bisection
dim. n range ave. std. ave. std.

100,000 [0,10]n 8.3 2.0 4.9 0.6
100,000 [0,1000]n 9.0 1.4 5.5 1.2

1,000,000 [0,10]n 94.2 16.2 49.9 3.4
1,000,000 [0,1000]n 99.1 15.6 53.4 4.4

28

method for C-SVM† [Cortes and Vapnik, 1995] and is known to be a quite efficient
method; we note that it may not be a fair comparison because LIBLINEAR omits the
bias term b of C-SVM from the calculations, i.e. solves a different model which is
less complex than the ν-SVM (12), in order to speed up the computation. Although
LIBLINEAR can virtually deal with the bias term b by augmenting the dimension of the
samples, the best performance of the resulting model tends to be lower than the one of
ν-SVM as reported in [Kitamura et al., 2014].

We used the error tolerance ε̃ = 10−8 (default) in SeDuMi. LIBSVM, LIBLINEAR,
and the APG method share the same stopping criteria: they terminate if the violation of
the KKT optimality condition is less than ε. In this experiments, the tolerance ε = 10−6

was chosen so that the objective value of the APG method will be lower than the one
of SeDuMi. The heuristic option in LIBSVM was set to “off” in order to speed up its
convergence for large datasets. In the APG method, η and δ were set to 1.1 and 0.8,
respectively. L was initially set to the maximum value in the diagonal elements of Z̃>Z̃
(i.e., the coefficient matrix of the quadratic form), where Z̃ = [y1x1, . . . , ymxm]. The
initial point q0 was set to the center qc of U ′, i.e. qci = 1

2mo
, i ∈Mo, o ∈ {+,−}.

6.2.1 Artificial Datasets

101 102 103 104

Number of features n

10-3

10-2

10-1

100

101

102

103

104

105

T
im

e
 (

se
c.

)

m=10000, ν=0.5

SeDuMi

LIBSVM

APG

LIBLINEAR

103 104 105

Number of samples m

10-1

100

101

102

103

104

105

T
im

e
 (

se
c.

)

n=1000, ν=0.5

SeDuMi

LIBSVM

APG

LIBLINEAR

0.0 0.2 0.4 0.6 0.8 1.0
ν

10−1

100

101

Ti
m

e
(s

ec
.)

m=10000, n=100

SeDuMi
LIBSVM
APG
LIBLINEAR

Figure 5: Computation Time for ν-SVM

Computation Time First, we measured the computation time with respect to the size
of the datasets and parameter using artificial datasets. The results (for the linear kernel)
are shown in Figure 5. The left panel shows the computation time with respect to the
dimension n of the features for m = 10000 and ν = 0.5. The APG method has a
clear advantage when the dimension n is high, say n ≥ 103. The middle panel shows the
computation time with respect to the number m of the samples for n = 1000 and ν = 0.5.
LIBSVM did not converge within a week for m = 63000. SeDuMi, LIBLINEAR, and
the APG method were scalable for the increased number of samples m. The right panel
illustrates the computation time with respect to the parameter ν for m = 10000 and
n = 100. We may observe that the APG method (and LIBLINEAR) is very efficient
when ν is larger than 0.1, but converges more slowly when ν is small. The latter can be

†C-SVM (with the bias term b) is known to lead to the same decision function as ν-SVM if ν and C
are set properly [Schölkopf et al., 2000]. The value of C corresponding to ν can be computed by
LIBSVM.

29

attributed to the fact that smaller ν enlarges the feasible region U ′ and lengthens the
distance between the initial point q0 = qc and the optimal solution q∗.

Table 3: Runtime Breakdown of the APG Method (sec.)

Function % Time Time # Evals. Time/Eval.

∇f(q) 78.1% 14.909 1375 0.0108
f(q) 10.8% 2.053 369 0.0056
PU (q) 6.9% 1.307 1453 0.0009

Total Runtime: 19.080

Runtime Breakdown Table 3 shows the runtime breakdown of the APG method for
(m,n, ν) = (10000, 1000, 0.5). The computation of the gradient ∇f(q) and the function
f(q) was the most time-consuming parts in the APG method. Since the computations
of Step 0 and ‖L(TL(qk) − qk)‖ involve the extra evaluation of f(q) and/or ∇f(qk),
computing them only every 100 and 10 iteration, respectively, as in Algorithm 1 would
be effective to reduce the total runtime. Our projection algorithm was efficient enough
in the sense that its runtime was marginal compared to the runtime of the other parts.

Running History Figure 6 shows the runtime history of the APG method for (m,n, ν) =
(10000, 1000, 0.5). The left panel depicts the violations of the optimality, i.e. the values of

100 102 104

10−5

100

Iteration

Violations of Optimality

||L(TL(qk) − qk)|| .
||L(pk

− qk)||

100 102 104

10−15

10−10

10−5

Iteration

Gap in Optimal Objective Value

f (qk) − f (q̂)
2L ||q0

−q̂||2.
(k+1)2

100 102 104102

103

104

105

Iteration

Value of Constants

L (APG).
Lf

Figure 6: Running History of the APG Method for ν-SVM

‖L(TL(qk)−qk)‖ (necessary and sufficient optimality condition for qk) and ‖L(qk−pk)‖
(sufficient optimality condition for qk), at each iteration. One can observe that their
values do not differ much. Thus, it would not matter if we check the value of ‖L(TL(qk)−
qk)‖ in only every 100 iteration as done in Algorithm 1. The middle panel illustrated

the objective value of f(qk) − f(q̂) and its theoretical upper bound 2L‖q0−q̂‖2
(k+1)2

which

is derived from Theorem 1, where we regarded q̂ = q10000 as an optimal solution. At
k = 1000, the objective value f(qk) reached f(q̂) within a relative error 0.0003% though
the violation of optimality was greater than ε = 10−6. Thus, a larger tolerance, say
ε = 10−5, may also lead to a reasonable solution in practice. The right panel illustrated
the value of constant L of the APG at each iteration and the value of Lipschitz constant

30

Lf ; Lf is known to be the largest eigenvalue of Z̃>Z̃, where Z̃ = [y1x1, . . . , ymxm].
While Lf = 3.61×104, Step 0 of the APG method leads to a much smaller average value
of 3.68× 102 for L, while the maximum value for L is 1.95× 103.

100 102 104

10−5

100

Iteration

||
L
(T

L
(q

k
)
−

q
k
)|
|

Violations of Optimality

bt
bt+re
bt+re+decL
bt+re+decL+decη

100 102 10410−20

10−15

10−10

10−5

100

Iteration

f
(q

k
)
−

f
(q̂

)

Gap from Optimal Objective Value

bt
bt+re
bt+re+decL
bt+re+decL+decη

100 102 104102

103

104

Iteration

Value of Constants L

bt
bt+re
bt+re+decL
bt+re+decL+decη

Figure 7: Effect of various acceleration strategies for the APG Method. ‘bt’ refers to
the backtracking strategy of [Beck and Teboulle, 2009], ‘re’ to the restarting
strategy, ‘decL’ to decreasing strategy for L, and ‘decη’ to decreasing strategy
for η.

Effect of Each Acceleration Strategy Figure 7 illustrates the effect of various heuristic
acceleration strategies described in Section 3.2 for the APG method. ‘bt’ refers to
the backtracking strategy of [Beck and Teboulle, 2009], ‘re’ to the restarting strategy,
‘decL’ to decreasing strategy for L, and ‘decη’ to decreasing strategy for η. The APG
method with ‘bt+re’ restarted at k = 2594, where the sharp decrease in the values of
‖L(TL(qk)− qk)‖ (the left panel) and f(qk)− f(q̂) (the middle panel) occurred. ‘decL’
was effective to reduce L‖TL(qk) − qk‖ and f(qk) − f(q̂) in the early iterations. The
APG method with ‘bt+re+decL’ seems to be unstable near the optimum, but the one
with ‘bt+re+decL+decη’ converged stably.

Computation Time for RBF Kernel The kernel method [Schölkopf and Smola, 2002]
can be applied to ν-SVM by setting the objective function as f(q) = 1

2q
>Y KY q, where

K is a square kernel matrix defined as Kij = k(xi,xj) using a kernel function k :
X × X → R, and Y is a diagonal matrix whose diagonal is the label vector y. Figure 8

101 102 103 104

Number of features n

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

m=10000, ν=0.5

SeDuMi
LIBSVM
APG

102 103 104

Number of samples m

10−2

10−1

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

n=1000, ν=0.5

SeDuMi
LIBSVM
APG

0.0 0.2 0.4 0.6 0.8 1.0
ν

10−2

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=1000, n=100

SeDuMi
LIBSVM
APG

Figure 8: Computation Time for ν-SVM with RBF Kernel

31

shows the results for the RBF kernel k(x,y) = exp(−‖x− y‖2/2γ2). The parameter γ
was set to

√
n/2 which is the default parameter of LIBSVM. Since both K and Y are

m by m matrices, the dimension n of features had little effect on the problem size and
the computation time of SeDuMi and the APG method as shown in the left panel of
Figure 8. LIBSVM computes only elements of K that are necessary for updating the
solution. This might result in the increase in the computation time of LIBSVM with
respect to n. On the other hand, the number m of samples affects the computation
time significantly because some computational cost involving K grow quadratically with
respect to the number m of samples. This detracts the scalability of SeDuMi with respect
to m, as shown in the middle panel of Figure 8, because SeDuMi solves an linear equation
Ax = b at each iteration where the coefficient matrix A contains K as a submatrix. On
the other hand, the APG method did not lose its scalability so much; the most time-
consuming part of the APG method is the computation of ∇f(q), but it requires just
matrix-vector multiplications. These results show the advantage of the APG method for
large datasets. The right panel of Figure 8 is the computation time with respect to ν for
m = 1000 and n = 100. It shows similar trends observed in the results for linear kernel
(Figure 5).

6.2.2 Benchmark Datasets

We also conducted experiments using the benchmark datasets. Practically, ν is often
set to a small value because a smaller ν tends to show a better performance empirically
(see Table 9). Thus, we set ν to 0.9νmin + 0.1νmax, where the values of νmin and νmax
for each dataset are shown in Table 4, except the large datasets ‘epsilon-normalized’,
‘news20.binary’, and ‘url-combined’; for them, ν was set to 0.5νmax since we could not
compute νmin within 36000 seconds using SeDuMi.

Computation Time The experimental results are shown in Table 5. When using linear
kernel, the APG method outperformed LIBSVM and SeDuMi for large datasets such
that m ≥ 50000. LIBLINEAR generally showed quite better performance than others.
(Again, note that it solves a different type of SVM, i.e. C-SVM without the bias term
b.) However, the APG method had an advantage over LIBLINEAR for many datasets
such that n ≥ 2000.

When using the RBF kernel, SeDuMi broke down for datasets such that m ≥ 10000
as in the case of the artificial datasets. The APG method had run out of memory
for m ≥ 50000 since it requires the m by m dense kernel matrix K to compute the
gradient ∇f(q). In order to decrease the memory usage and the computation time, a
little ingenuity is required such as a coordinate-wise update of q or an approximation of
K using random sample of the training set. However, our practical APG method was
still competitive with LIBSVM and had stable and good performance for datasets when
n is large.

We should remark that the number of iterations taken by the APG method with the
RBF kernel tends to be smaller than the one with the linear kernel. However, when
using the RBF kernel, the computational complexity of ∇f(q) changes from O(mn) to

32

Table 4: Details of Each Dataset with Respect to ν-SVM.
data νmin νmax
a8a 0.355 0.485
a9a 0.352 0.482

australian 0.288 0.890
breast-cancer 0.064 0.700

cod-rna 0.174 0.667
colon-cancer 0.008 0.710

covtype 0.580 0.975
diabetes 0.515 0.698

duke 0.012 0.955
epsilon-normalized – 0.999

fourclass 0.524 0.712
german.numer 0.517 0.600

gisette 0 1.000
heart 0.333 0.889
ijcnn1 0.185 0.195

ionosphere 0.145 0.718
leu 0.013 0.579

liver-disorders 0.718 0.841
madelon 0.559 1.000

mushrooms 0 0.964
news20.binary – 1.000

rcv1-origin 0.001 0.963
real-sim 0.004 0.615

skin-nonskin 0.213 0.415
sonar 0.026 0.933
splice 0.373 0.966

svmguide1 0.122 0.705
svmguide3 0.401 0.476

url-combined – 0.661
w7a 0.028 0.060
w8a 0.028 0.059

33

Table 5: Computation Time for Benchmark Datasets (sec.). ‘–’ means that the algorithm
did not converge with in 36000 seconds. ‘**’ means that it had run out of
memory. The best results are indicated by boldface. The underlined results are
better than LIBLINEAR.

Linear RBF
data m n ν SeDuMi LIBSVM APG (iter) LIBLINEAR SeDuMi LIBSVM APG(iter)

a8a 22,696 123 0.368 16.82 32.31 1.70 (563) 0.059 – 68.24 72.88(343)
a9a 32,561 123 0.365 25.42 66.11 4.84 (665) 0.071 – 138.89 170.63(390)

australian 690 14 0.348 0.34 0.12 0.86 (4056) 0.003 8.03 0.049 0.076(243)
breast-cancer 683 10 0.128 0.21 0.004 0.05 (253) 0.001 6.72 0.015 0.050(144)

cod-rna 59,535 8 0.223 6.71 53.73 3.39 (588) 0.170 ** 267.56 **(**)
colon-cancer 62 2,000 0.078 0.18 0.01 0.09 (210) 0.153 0.17 0.013 0.013(109)

covtype 581,012 54 0.620 288.71 16164.88 60.75 (701) 1.547 ** – **(**)
diabetes 768 8 0.533 0.14 0.02 0.06 (306) 0.003 8.53 0.060 0.093(296)

duke 44 7,129 0.106 0.38 0.04 0.11 (317) 0.302 0.09 0.041 0.017(120)
epsilon-normalized 400,000 2,000 0.500 – – 1685.33 (2643) – ** – **(**)

fourclass 862 2 0.543 0.12 0.01 0.07 (356) 0.000 12.34 0.069 0.068(150)
german.numer 1,000 24 0.525 0.26 0.26 0.29 (1107) 0.035 17.13 0.14 0.10(236)

gisette 6,000 5,000 0.100 4572.24 57.48 9.31 (590) 0.411 5586.74 59.07 4.93(235)
heart 270 13 0.388 0.14 0.005 0.04 (232) 0.001 0.47 0.008 0.040(196)
ijcnn1 35,000 22 0.186 7.31 53.57 5.67 (2000) 0.286 – 73.83 236.15(511)

ionosphere 351 34 0.202 0.25 0.02 0.22 (1064) 0.339 0.85 0.012 0.051(234)
leu 38 7,129 0.070 0.40 0.03 0.13 (175) 0.168 0.08 0.034 0.013(103)

liver-disorders 345 6 0.731 0.11 0.01 0.11 (736) 0.007 0.81 0.015 0.037(168)
madelon 2,000 500 0.603 29.15 11.57 0.32 (510) 87.431 133.85 3.77 0.24(108)

mushrooms 8,124 112 0.096 8.74 1.34 0.56 (435) 0.060 28505.46 5.74 19.02(661)
news20.binary 19,996 1,355,191 0.100 – 1333.26 22.29 (321) 1.572 – 929.85 51.86(11)

rcv1-origin 20,242 47,236 0.097 – 587.10 7.82 (485) 8.963 – 192.16 97.68(189)
real-sim 72,309 20,958 0.065 – 6351.62 12.71 (384) 4.333 ** 1879.90 **(**)

skin-nonskin 245,057 3 0.233 62.70 726.20 8.02 (609) 0.092 ** 4425.59 **(**)
sonar 208 60 0.117 0.29 0.12 0.33 (1922) 3.809 0.27 0.009 0.060(279)
splice 1,000 60 0.432 0.56 0.25 0.11 (331) 0.022 15.27 0.18 0.067(120)

svmguide1 3,089 4 0.180 0.35 0.08 0.15 (394) 0.003 1188.65 0.42 1.45(323)
svmguide3 1,243 22 0.408 0.36 1.07 0.93 (3248) 1.695 30.17 0.23 0.21(430)

url-combined 2,396,130 3,231,961 0.500 – – 4853.91 (2521) – ** ** **(**)
w7a 24,692 300 0.031 69.90 135.91 14.13 (4280) 0.806 – 17.89 286.27(1208)
w8a 49,749 300 0.031 189.40 143.42 38.69 (5960) 0.465 – 124.55 1423.42(2100)

34

Table 6: Constants for Benchmark Datasets
Linear RBF

L(APG) L(APG)
ave. max. Lf ave. max. Lf

a8a 2.99.E+03 1.54.E+04 1.43.E+05 7.00.E+01 2.27.E+02 2.00.E+04
a9a 5.59.E+03 3.38.E+04 2.05.E+05 1.37.E+02 4.99.E+02 2.88.E+04

australian 1.97.E+02 1.21.E+03 2.91.E+03 1.92.E+01 4.69.E+01 3.56.E+02
breast-cancer 9.05.E+01 2.27.E+02 1.68.E+04 1.21.E+01 2.13.E+01 4.52.E+02

cod-rna 1.05.E+03 5.65.E+03 1.24.E+05 – – –
colon-cancer 4.02.E+02 6.60.E+02 3.80.E+04 5.91.E-01 9.09.E-01 5.65.E+01

covtype 3.71.E+04 2.37.E+05 4.58.E+06 – – –
diabetes 5.21.E+01 1.53.E+02 1.76.E+03 1.64.E+01 4.69.E+01 6.34.E+02

duke 2.82.E+03 4.55.E+03 6.00.E+04 6.89.E-01 9.09.E-01 4.09.E+01
epsilon-normalized 2.09.E+04 1.85.E+05 1.40.E+05 – – –

fourclass 5.61.E+01 1.87.E+02 2.80.E+02 5.72.E+01 1.03.E+02 5.36.E+02
german.numer 2.16.E+02 1.03.E+03 8.44.E+03 1.95.E+01 4.69.E+01 4.50.E+02

gisette 1.84.E+04 5.71.E+04 2.02.E+07 9.17.E+00 2.13.E+01 3.61.E+03
heart 1.07.E+02 2.53.E+02 7.49.E+02 1.01.E+01 2.13.E+01 1.19.E+02
ijcnn1 1.20.E+03 1.05.E+04 5.89.E+03 1.93.E+02 8.84.E+02 3.12.E+04

ionosphere 2.46.E+02 9.83.E+02 2.14.E+03 1.19.E+01 2.83.E+01 2.24.E+02
leu 1.70.E+03 2.75.E+03 6.05.E+04 6.07.E-01 9.09.E-01 3.46.E+01

liver-disorders 1.27.E+01 3.85.E+01 1.84.E+03 5.04.E+00 9.68.E+00 8.23.E+02
madelon 9.54.E+01 2.87.E+02 2.44.E+05 6.54.E-01 1.00.E+00 1.92.E+03

mushrooms 1.84.E+03 6.34.E+03 2.30.E+05 2.31.E+01 1.03.E+02 1.74.E+04
news20.binary 4.63.E+01 1.03.E+02 1.17.E+03 9.09.E-01 9.09.E-01 2.00.E+04

rcv1-origin 3.20.E+01 8.30.E+01 4.49.E+02 4.42.E-01 9.09.E-01 2.02.E+04
real-sim 6.75.E+01 2.27.E+02 9.21.E+02 – – –

skin-nonskin 5.08.E+03 2.82.E+04 2.19.E+05 – – –
sonar 2.27.E+02 1.12.E+03 2.68.E+03 4.88.E+00 9.68.E+00 1.51.E+02
splice 3.59.E+02 1.11.E+03 1.74.E+03 6.63.E+00 1.06.E+01 3.57.E+02

svmguide1 3.07.E+01 1.13.E+02 2.47.E+03 1.52.E+01 4.69.E+01 2.92.E+03
svmguide3 1.53.E+02 6.68.E+02 4.92.E+03 1.22.E+01 4.69.E+01 1.15.E+03

url-combined 9.94.E+05 1.10.E+07 1.57.E+08 – – –
w7a 5.53.E+03 4.62.E+04 6.52.E+04 4.80.E+01 1.83.E+02 2.31.E+04
w8a 1.04.E+04 1.06.E+05 1.32.E+05 1.14.E+02 4.51.E+02 4.65.E+04

O(m2). Hence the total runtime tended to increase except for “gisette” whose n and m
have the same order of magnitude.

In summary, the APG method showed better performance than specialized algorithms
designed for learning SVM, such as LIBSVM and LIBLINEAR, in many datasets. Taking
into account the generality (i.e., applicability to other models) of APG, one could argue
that it is a very efficient method.

Value of Constant Table 6 shows the values taken by the parameter L. We can see
that our practical APG method (with backtracking strategy and decreasing strategy for
L) keep the values of L to be much smaller than the Lipschitz constant Lf .

35

6.3 APG for MM-MPM

Next, we conducted experiments on MM-MPM (10) in the form of UCM. To the best
of our knowledge, there are no specialized method for MM-MPM. Thus, we compared
the APG method only to SeDuMi [Sturm, 1999] which implements the interior point
method for the large-scale second-order cone problems such as (10). We used the error
tolerance ε = 10−8 (default) in SeDuMi and the setting ε = 10−6 in the APG method
so that their objective values of the solutions are within a relative error of 0.001%. In
the APG method, η and δ were set to 1.1 and 0.8. The value of L was initially set to
the maximum value in the diagonal elements of Σ̃>Σ̃ (i.e., the coefficient matrix of the

quadratic form), where Σ̃ = [Σ
1/2
+ ,−Σ

1/2
−]. The initial point q0 = (u0

+,u
0
−) was set to

the origin 0 (i.e., the center of U ′).

6.3.1 Artificial Datasets

101 102 103 104

Number of features n

10−2

10−1

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

m=10000, κ=1

SeDuMi
APG

103 104

Number of samples m

10−2

10−1

100

101

102

Ti
m

e
(s

ec
.)

n=1000, κ=1

SeDuMi
APG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

10−2

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=10000, n=1000

SeDuMi
APG

Figure 9: Computation Time for MM-MPM

Computation Time The computation time for the artificial datasets are shown in Fig-
ure 9. The left panel shows the results with respect to the number n of features for
m = 10000 and κ = 1. The APG method has a clear advantage over SeDuMi for large
n, say n ≥ 103. The middle panel illustrates the computation time with respect to the
number m of samples for n = 2000 and κ = 1. The computation time is nearly indepen-

dent of the number m of samples because the sizes of matrices Σ
1/2
o (o ∈ {+,−}), which

are used for computing the function f(q) and the gradient ∇f(q), are n by n. The right
panel shows the computation time with respect to the parameter κ for m = 10000 and
n = 2000. We can observe that a larger value of κ leads to more computation time for
the APG method although it is still far more efficient than SeDuMi. The effect of a
larger κ on the APG method could be because it gives a larger feasible region U ′, which
in turns lead to a larger distance between the initial point q0 (the center 0 of U ′) and
the optimal solution q∗ as in the case of ν-SVM (the right panel of Figure 5).

Runtime Breakdown Table 7 shows the runtime breakdown of the APG method for
(m,n, κ) = (10000, 1000, 1). As in the case of ν-SVM (Table 3), the computations of the
gradient ∇f(q) and the function value f(q) are the most time-consuming parts. Thus,
computing Step 0 and L‖TL(qk) − qk‖ periodically, which involve the computations of

36

Table 7: Runtime Breakdown of APG Method for MM-MPM (sec.)

Function % Time Time # Evals. Time/Eval.

∇f(q) 75.9% 0.836 339 2.47.E-03
f(q) 14.2% 0.157 119 1.32.E-03
PU ′(q) 3.1% 0.034 383 8.88.E-05

Total Runtime: 1.102

f(qk) and/or ∇f(qk), is effective to reduce total runtime. The projection PU ′(q) for
MM-MPM shown in Section 4.1 can be computed highly efficiently.

10
0

10
2

10
4

10
−15

10
−10

10
−5

Iteration

Violations of Optimality

||L(TL(q
k) − qk)|| .

||L(qk
− pk)||

10
0

10
2

10
4

10
−20

10
−10

Iteration

Gap in Optimal Objective Value

f (qk) − f (q̂)
2L ||q0

−q̂||2.
(k+1)2

10
0

10
2

10
4

10
−0.8

10
−0.7

10
−0.6

10
−0.5

Iteration

Value of Constants

L (APG).
Lf

Figure 10: Running History of APG Method for MM-MPM with (m,n, κ) =
(10000, 1000, 1)

Running History Figure 10 shows the running history of the APG method for (m,n, κ) =
(10000, 1000, 1). In the left panel, ‖L(TL(qk)−qk)‖ (violation of necessary and sufficient
optimality condition for qk) and L‖qk−pk‖ (violation of sufficient optimality condition
for qk) take almost the same values. Thus, it would not matter if we check the value
of L‖TL(qk) − qk‖ in only every 100 iteration as is done in Algorithm 1. The middle
panel shows the values f(qk) − f(q̂) and its theoretical upper bound, which is derived
from Theorem 1, where we regarded q̂ = q10000 is an optimal solution. Though the
strategies described in Section 3.2 are heuristic, the value of f(qk)−f(q̂) did not exceed
the theoretical upper bound and decreased much faster than the bound. In the right
panel, we can see that the APG method uses values smaller than Lf for L in most it-

erations, where the Lipschitz constant Lf of the gradient ∇f(q) = Σ̃>(x̄+ − x̄− + Σ̃q)

is known to be the largest eigenvalue of the matrix Σ̃>Σ̃ (recall that Σ̃ = [Σ
1/2
+ ,−Σ

1/2
−]

and q = (u+,u−)).

37

100 102 104

10−15

10−10

10−5

Iteration

||
L
(T

L
(u

k
)
−

u
k
)|
|

Violations of Optimality

bt
bt+re
bt+re+decL
bt+re+decL+decη

100 102 104

10−15

10−10

10−5

Iteration

f
(u

k
)
−

f
(û

)

Gap from Optimal Objective Value

bt
bt+re
bt+re+decL
bt+re+decL+decη

100 102 104
10−0.9

10−0.7

10−0.5

Iteration

Value of Constants L

bt
bt+re
bt+re+decL
bt+re+decL+decη

Figure 11: Effect of Each Strategy for the APG Method. ‘bt’ refers to the backtracking
strategy of [Beck and Teboulle, 2009], ‘re’ to the restarting strategy, ‘decL’
to decreasing strategy for L, and ‘decη’ to decreasing strategy for η.

Effect of Each Strategy Figure 11 illustrates the effect of each strategy in Section 3.2.
‘bt’ refers to the backtracking strategy of [Beck and Teboulle, 2009], ‘re’ to the restarting
strategy, ‘decL’ to decreasing strategy for L, and ‘decη’ to decreasing strategy for η. As in
the case of ν-SVM, ‘re’ is effective in reducing the violation of optimality L‖TL(qk)−qk‖
and the value of f(qk)−f(q̂). ‘decL’ seems to make the APG method to be unstable, but
‘decη’ can stabilize it. ‘bt+re+decL+decη’ decreased L‖TL(qk)− qk‖ and f(qk)− f(q̂)
slightly faster than ‘bt+re’.

Kernel Method The kernel method can be applied to MM-MPM as shown in [Nath and
Bhattacharyya, 2007]. When using a nonlinear kernel, however, the covariance matrix
Σo grows to an m by m matrix. SeDuMi would break down for such a large matrix (see
the column of ‘RBF’ in Table 5 for the results dealing with m by m matrix K). Hence,
we omit experiments for a nonlinear kernel.

6.3.2 Benchmark Datasets

Table 8 shows the computational results for the benchmark datasets. We did the experi-
ments by setting κ = κmax/2, but MM-MPM could not be solved for n ≥ 20000 because

the sizes of the n by n matrice Σ
1/2
o (o ∈ {+,−}) are extremely large.

The APG method was much faster than SeDuMi especially when the dimension is
high, say n ≥ 2000. Unlike for ν-SVM (Table 6), the APG method for MM-MPM
sometimes led larger values of L than the Lipschitz constant Lf . However, the average
of the values of L is still smaller than Lf .

6.4 Classification Ability

Using the benchmark datasets, we compared the classification ability of classification
models: ν-SVM, MM-MPM, and MM-FDA. Each dataset was randomly partitioned into
10 disjoint sets. We investigated the averages of the test accuracy using cross-validation

38

Table 8: Computational Results for MM-MPM with Linear Kernel. The best results are
indicated by boldface. ‘**’ means that the algorithm could not be computed
due to out of memory.

Computation Time Values
L(APG)

data m n κmax κ SeDuMi APG (iter) ave. max. Lf
a8a 22,696 123 9.52.E-01 4.76.E-01 0.664 0.034 (25) 1.12.E+00 1.21.E+00 1.34.E+00
a9a 32,561 123 9.60.E-01 4.80.E-01 0.166 0.010 (25) 1.12.E+00 1.21.E+00 1.34.E+00

australian 690 14 1.23.E+00 6.17.E-01 0.054 0.006 (25) 1.85.E+00 2.00.E+00 2.06.E+00
breast-cancer 683 10 2.32.E+00 1.16.E+00 0.038 0.005 (30) 1.01.E+00 1.10.E+00 1.17.E+00

cod-rna 59,535 8 1.41.E+00 7.05.E-01 0.068 0.015 (115) 1.69.E-01 2.29.E-01 2.34.E-01
colon-cancer 62 2,000 1.85.E+00 9.24.E-01 311.329 0.178 (157) 2.56.E+01 4.22.E+01 2.81.E+01

covtype 581,012 54 6.59.E-01 3.29.E-01 0.086 0.016 (107) 8.31.E-01 1.10.E+00 1.07.E+00
diabetes 768 8 6.88.E-01 3.44.E-01 0.061 0.003 (18) 3.70.E-01 3.86.E-01 4.79.E-01

duke 44 7,129 1.98.E+00 9.89.E-01 13459.0 0.660 (291) 1.55.E+02 2.15.E+02 1.97.E+02
epsilon-normalized 400,000 2,000 1.16.E+00 5.82.E-01 361.0 1.186 (217) 3.64.E-01 6.07.E-01 4.77.E-01

fourclass 862 2 7.22.E-01 3.61.E-01 0.069 0.003 (12) 4.68.E-01 5.47.E-01 6.04.E-01
german.numer 1,000 24 6.52.E-01 3.26.E-01 0.063 0.005 (33) 2.45.E+00 2.84.E+00 2.89.E+00

gisette 6,000 5,000 8.53.E+00 4.27.E+00 5438.2 56.292 (1640) 9.40.E+01 2.29.E+02 1.14.E+02
heart 270 13 1.10.E+00 5.48.E-01 0.049 0.004 (24) 1.85.E+00 1.98.E+00 2.08.E+00
ijcnn1 35,000 22 9.00.E-01 4.50.E-01 0.068 0.013 (114) 4.06.E-01 6.52.E-01 3.04.E-01

ionosphere 351 34 1.30.E+00 6.48.E-01 0.084 0.016 (110) 3.49.E+00 4.49.E+00 5.15.E+00
leu 38 7,129 2.11.E+00 1.05.E+00 12971.377 0.514 (220) 1.37.E+02 2.68.E+02 1.46.E+02

liver-disorders 345 6 4.09.E-01 2.04.E-01 0.075 0.009 (71) 3.05.E-01 4.08.E-01 3.78.E-01
madelon 2,000 500 6.50.E-01 3.25.E-01 1.964 0.017 (43) 2.81.E-01 3.28.E-01 3.31.E-01

mushrooms 8,124 112 1.53.E+01 7.66.E+00 0.170 0.166 (840) 2.38.E+00 3.63.E+00 2.92.E+00
news20.binary 19,996 1,355,191 ** ** ** ** (**) ** ** **

rcv1-origin 20,242 47,236 ** ** ** ** (**) ** ** **
real-sim 72,309 20,958 ** ** ** ** (**) ** ** **

skin-nonskin 245,057 3 1.63.E+00 8.14.E-01 0.066 0.006 (50) 1.65.E-01 1.98.E-01 2.25.E-01
sonar 208 60 1.29.E+00 6.44.E-01 0.096 0.020 (116) 3.47.E+00 4.60.E+00 5.07.E+00
splice 1,000 60 1.02.E+00 5.09.E-01 0.071 0.009 (39) 2.39.E+00 2.84.E+00 2.92.E+00

svmguide1 3,089 4 1.26.E+00 6.29.E-01 0.070 0.003 (28) 1.06.E-01 1.15.E-01 8.61.E-02
svmguide3 1,243 21 6.24.E-01 3.12.E-01 0.083 0.012 (105) 5.90.E-01 8.91.E-01 5.82.E-01

url-combined 2,396,130 3,231,961 ** ** ** ** (**) ** ** **
w7a 24,692 300 1.41.E+00 7.03.E-01 0.588 0.036 (112) 1.42.E+00 2.21.E+00 1.82.E+00
w8a 49,749 300 1.39.E+00 6.97.E-01 0.592 0.031 (108) 1.45.E+00 2.21.E+00 1.88.E+00

39

Table 9: Average Performance of Each Classification Model. The best results are indi-
cated by boldface. ‘–’ means that the cross-validation could not be done within
36000 sec. ‘**’ means that it had run out of memory.

dataset ν-SVM (ν) MM-MPM (κ) MM-FDA (κ)

a8a 84.4% (0.365) 80.7% (0.942) 84.4% (1.320)
a9a 84.7% (0.362) 80.7% (0.950) 84.7% (1.331)

australian 85.7% (0.830) 86.1% (0.245) 87.5% (1.390)
breast-cancer 97.1% (0.074) 97.5% (2.081) 97.4% (0.313)

cod-rna 93.9% (0.280) 93.5% (0.420) 93.7% (0.399)
colon-cancer 88.8% (0.294) 87.1% (0.184) 87.1% (1.218)

covtype 76.3% (0.592) 75.6% (0.649) 75.5% (0.918)
diabetes 77.3% (0.542) 74.9% (0.610) 76.8% (0.875)

duke 88.5% (0.022) 88.5% (0.984) 88.5% (1.364)
epsilon-normalized – 89.6% (1.038) 89.7% (1.481)

fourclass 77.7% (0.676) 72.7% (0.569) 78.6% (0.102)
german.numer 76.7% (0.541) 71.9% (0.385) 77.3% (0.552)

gisette 97.4% (0.109) 97.9% (3.409) 97.9% (4.825)
heart 84.1% (0.397) 84.1% (0.760) 84.1% (0.154)
ijcnn1 74.7% (0.194) 85.9% (0.891) 91.0% (0.636)

ionosphere 88.3% (0.211) 86.9% (0.386) 87.8% (0.846)
leu 94.2% (0.023) 94.2% (2.096) 94.2% (0.209)

liver-disorders 68.1% (0.762) 63.8% (0.199) 66.4% (0.516)
madelon 59.3% (0.913) 59.7% (0.128) 60.0% (0.09)

mushrooms 100.0% (0.010) 100.0% (9.192) 100.0% (6.208)
news20.binary 66.4% (0.999) ** **

rcv1-origin 97.0% (0.106) ** **
real-sim 97.5% (0.134) ** **

skin-nonskin 93.7% (0.319) 93.5% (1.612) 93.8% (2.095)
sonar 79.8% (0.395) 79.8% (0.639) 77.9% (0.909)
splice 80.9% (0.499) 80.6% (0.605) 81.0% (0.195)

svmguide1 95.4% (0.132) 94.4% (1.124) 91.6% (1.561)
svmguide3 82.5% (0.411) 74.3% (0.552) 81.9% (0.692)

url-combined – ** **
w7a 98.5% (0.038) 96.0% (1.256) 98.2% (1.756)
w8a 98.6% (0.038) 96.1% (1.246) 98.3% (1.725)

over the 10 disjoint sets. We found the best parameter of the each classification model
using grid search with cross-validation. The results are reported in Table 9. Though
ν-SVM tends to show the high prediction performance, the model that shows the best
performance varies with datasets. These results show the importance of finding a suitable
classification model to a dataset in order to achieve a high prediction performance. Our
algorithm is useful for the purpose; it will speed up the process of finding a suitable
model.

7 Conclusion

In this work, we provided a general algorithm for the unified classification model (UCM)
proposed by Takeda et al. [2013]. We applied the accelerated proximal gradient (APG)

40

method [Beck and Teboulle, 2009] to UCM by devising efficient projection computations
and effective heuristic acceleration strategies. Our unified algorithm makes it easy to
compare various models, because we can use the same algorithmic framework for the
models by only changing the computation of projections. Thus, it might be practical
and useful for practitioners who are looking for the best model for a given dataset.

We also showed that UCM is a versatile model which encompasses the coherent risk
minimization model [Gotoh et al., 2014, Bertsimas and Takeda, 2014], generalized ν-SVM
[Kanamori et al., 2013], and the coherent classification loss function (CCLF) minimiza-
tion model [Yang et al., 2014], as special cases. This illustrates the generality of the
unified model and our algorithm.

Numerical experiments demonstrate the efficiency of our algorithm for large datasets.
As a future work, we would like to investigate the efficiency of the APG method when
applied to the UCM having complicated uncertainty set U . We also would like to find
a better way of choosing an initial point for the APG method to further improve its
efficiency.

References

P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9(3):203–228, July 1999. doi: 10.1111/1467-9965.00068.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In
ICML, pages 57–64, 2000.

D. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Opti-
mization and Computation Series. Athena Scientific, 2003.

D. Bertsimas and D. B. Brown. Constructing uncertainty sets for robust linear optimiza-
tion. Operations Research, 57(6):1483–1495, Dec. 2009. doi: 10.1287/opre.1080.0646.

D. Bertsimas and A. Takeda. Optimizing over coherent risk measures and non-convexities
: A robust mixed integer optimization approach. Technical Report July, Department
of Mathematical Engineering, The University of Tokyo, Japan, 2014. URL http:

//www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-18.pdf.

C. Bhattacharyya. Second order cone programming formulations for feature selection.
The Journal of Machine Learning Research, 5:1417–1433, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010. doi: 10.1561/2200000016.

41

C. Chang and C. Lin. Libsvm : A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995. doi: 10.1007/BF00994018.

D. J. Crisp and C. J. C. Burges. A geometric interpretation of ν-SVM classifiers. In
NIPS 12, pages 244–250. MIT Press, 2000.

R. Fan, K. Chang, H. Cho-Jui, X. Wang, and C. Lin. Liblinear : A library for large linear
classification. Journal of Machine Learning Research, 9:1871–1874, 2008. Software
available at http://www.csie.ntu.edu.tw/ cjlin/liblinear.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956. doi: 10.1002/nav.3800030109.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers and Mathematics with Appli-
cations, 2(1):17–40, 1976. doi: 10.1016/0898-1221(76)90003-1.

T. Goldstein, B. O. Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction
optimization methods. Technical report, Group in Computational and Applied Mathe-
matics, Department of Mathematics, University of California, Los Angeles, California,
2012.

J. Gotoh, A. Takeda, and R. Yamamoto. Interaction between financial risk measures and
machine learning methods. Computational Management Science, 11:365–402, 2014.

K. Helgason, J. Kennington, and H. Lall. A polynomially bounded algorithm for a singly
constrained quadratic program. Mathematical Programming, 18:338–343, 1980.

S. Iwata, Y. Nakatsukasa, and A. Takeda. Global optimization methods for extended
fisher discriminant analysis. In The 7th international conference on Artificial In-
telligence and Statistics (AISTATS 2014), volume 33, pages 411—-419, Reykjavik,
Iceland, 2014.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In S. Das-
gupta and D. Mcallester, editors, Proceedings of the 30th International Conference on
Machine Learning (ICML-13), volume 28, pages 427–435. JMLR Workshop and Con-
ference Proceedings, 2013.

K. Jiang, D. Sun, and K. Toh. An inexact accelerated proximal gradient method for large
scale linearly constrained convex sdp. SIAM Journal on Optimization, 22:1042–1064,
2012.

T. Kanamori, A. Takeda, and T. Suzuki. Conjugate relation between loss functions and
uncertainty sets in classification problems. The Journal of Machine Learning Research,
14:1461–1504, 2013.

42

M. Kitamura, A. Takeda, and S. Iwata. Exact svm training by wolfe’s minimum norm
point algorithm. In Machine Learning for Signal Processing (MLSP), 2014 IEEE
International Workshop on, pages 1–6, Sept 2014.

K. Kiwiel. Breakpoint searching algorithms for the continuous quadratic knapsack prob-
lem. Mathematical Programming, 112:473–491, 2008.

K. Natarajan, D. Pachamanova, and M. Sim. Constructing risk measures from uncer-
tainty sets. Operations Research, 57(5):1129–1141, Oct. 2009. doi: 10.1287/opre.1080.
0683.

J. S. Nath and C. Bhattacharyya. Maximum margin classifiers with specified false
positive and false negative error rates. In Proceedings of the 2007 SIAM International
Conference on Data Mining, pages 35–46. SIAM, 2007. doi: 10.1137/1.9781611972771.
4.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley, New York, 1983.

Y. E. Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 152:127–152, 2005.

B. O’Donoghue and E. Candés. Adaptive restart for accelerated gradient schemes. Foun-
dations of Computational Mathematics, pages 1–18, 2013.

P. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Mathematical Programming, 46(1-3):
321–328, 1990. doi: 10.1007/BF01585748.

F. Perez-Cruz, J. Weston, D. J. L. Hermann, and B. Schölkopf. Extension of the ν-
SVM range for classification. In Advances in Learning Theory: Methods, Models and
Applications, pages 179–196. IOS Press, 2003.

J. C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In Advances in Kernel Methods - Support Vector Learning. MIT Press, January
1998.

R. T. Rockafellar. Monotone operators and augmented lagrangian methods in nonlinear
programming. Nonlinear programming 3, 1978.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, May 2000.

J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11–12:625–653, 1999. Version 1.05 avail-
able from http://fewcal.kub.nl/sturm.

43

A. Takeda and M. Sugiyama. Nu-support vector machine as conditional value-at-risk
minimization. In Proceedings of International Conference on Machine Learning, pages
1056–1063, 2008.

A. Takeda, H. Mitsugi, and T. Kanamori. A unified classification model based on robust
optimization. Neural computation, 25(3):759–804, Mar. 2013. doi: 10.1162/NECO\
a\ 00412.

W. Yang, M. Sim, and H. Xu. The coherent loss function for classification. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), volume 32,
pages 37–45. JMLR Workshop and Conference Proceedings, 2014.

T. Zhou, D. Tao, and X. Wu. Nesvm: A fast gradient method for support vector
machines. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,
pages 679–688, Dec 2010. doi: 10.1109/ICDM.2010.135.

Appendix

Here we show a few examples of U (and U ′) for UCM and relate the resulting models to
UCM. The following lemma is helpful to show equivalences of UCM and existing models.

Lemma 5. Let q∗ be an optimal solution of the following problem:

min
q

{
f(q) + g(q) | q ∈ U ′

}
, (30)

where U ′ ⊂ Rd is a compact set and f : Rd → R and g : Rd → R are proper closed
functions. Then, the following problem:

min
q

{
f(q) | q ∈ U ′, g(q) ≤ g(q∗)

}
(31)

has q∗ as an optimal solution.

Proof. Fix q̄ ∈ U ′. If f(q̄) < f(q∗), then we have g(q̄) > g(q∗) since f(q̄) + g(q̄) ≥
f(q∗) + g(q∗). In other word, the value of f(q∗) cannot be decreased over U ′ anymore
without increasing the value of g(q∗). Hence, the problem (31) has an optimal solution
q∗.

Example 1 (Ellipsoidal uncertainty sets and related classifiers). Here we introduce two
examples of ellipsoidal uncertainty sets from [Takeda et al., 2013]. Let x̄o and Σo, o ∈
{+,−}, be the mean vectors and the positive definite covariance matrices, respectively,
of xi, i ∈Mo. First, let

U := U+ 	 U−, where Uo := {x̄o + Σ1/2
o uo | ‖uo‖ ≤ κ}, o ∈ {+,−} (32)

44

with a parameter κ ∈ [0, κmax) ⊆ [0,∞), where κmax is the supremum of κ such that
0 6∈ U . Then UCM of the form (4) can be formulated as follows:

min
q=(u+,u−)∈U ′

1

2

∥∥(x̄+ + Σ
1/2
+ u+

)
−
(
x̄− + Σ

1/2
− u−

)∥∥2
(10)

where U ′ :=
{

(u+,u−) | ‖uo‖ ≤ κ, o ∈ {+,−}
}

(⊆ R2n). Meanwhile, UCM (2) with
the uncertainty set (32) is equivalent to

min
‖w‖≤1

(
−w>(x̄+ − x̄−) + κ

∑
o∈{+,−}

√
w>Σow

)
. (33)

This classification model is known as the margin maximized minimax probability ma-
chine (MM-MPM) [Nath and Bhattacharyya, 2007], and it is proved that the MM-MPM
maximizes the margin for given acceptable false-positive and false-negative rates.

Another example is not represented as a Minkowski difference. Let us consider the
following uncertainty set:

U :=
{

(x̄+ − x̄−) + (Σ+ + Σ−)1/2u
∣∣ ‖u‖ ≤ κ}, (34)

with a parameter κ ∈ [0, κmax) ⊆ [0,∞), where κmax is the supremum of κ such that
0 6∈ U . Then the UCM of the form (4) can be formulated as follows:

min
q=u∈U ′

1

2

∥∥(x̄+ − x̄−
)

+
(
Σ+ + Σ−

)1/2
u
∥∥2

(11)

where U ′ := {u | ‖u‖ ≤ κ} (⊆ Rn). Meanwhile, UCM (2) with the uncertainty set (34)
is equivalent to

min
‖w‖≤1

−w>(x̄+ − x̄−) + κ
√
w>(Σ+ + Σ−)w. (35)

The model replacing the Euclidean norm ‖w‖ in (35) with the `1-norm ‖w‖1 is equivalent
to a sparse feature selection model [Bhattacharyya, 2004] based on Fisher’s discriminant
analysis (FDA). According to [Takeda et al., 2013], we refer to the model (35) as MM-
FDA.

Let us consider a vector q ∈ Rm. We denote by q+ and q− the subvectors of q
corresponding to the label +1 and −1, respectively. e+ and e− are subvectors of e with
size m+ and m−.

Example 2 (ν-SVM). Let U be the Minkowski difference of the reduced convex hulls
[Bennett and Bredensteiner, 2000, Crisp and Burges, 2000] of samples in each class, i.e.

U := U+ 	 U−,
where Uo :=

{∑
i∈Mo

qixi

∣∣∣ q>o eo =
1

2
, 0 ≤ qi ≤

1

mν
, i ∈Mo

}
, o ∈ {+,−}, (36)

45

where ν ∈ (νmin, νmax] ⊆ (0, 1] is a parameter, νmin is the infimum of ν > 0 such that

0 6∈ U , and νmax := 2 max{m+,m−}
m is the maximum of ν ≤ 1 such that U 6= φ. Then,

UCM of the form (4) can be formulated as follows:

min
q∈U ′

1

2

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥2
(12)

where U ′ = {q | q>o eo = 1
2 , o ∈ {+,−}, 0 ≤ q ≤ 1

mνe}. Meanwhile, UCM (2) is
equivalent to ν-SVM [Schölkopf et al., 2000]‡:

min
w,b,ρ,ξ

−ρ+
1

mν

∑
i∈M

ξi

s.t. ρ− yi(x>i w + b) ≤ ξi, i ∈M,
ξ ≥ 0, ‖w‖2 ≤ 1.

(37)

Indeed, the dual of the inner maximization problem in UCM (2) coincides with (37) (up
to a scaling of variables) and the resulting classifiers are the same.

We note that ν-SVM is known to be equivalent to the standard SVM [Cortes and
Vapnik, 1995] whose parameter is C ∈ (0,∞). Since the parameter ν of ν-SVM takes
a value in the finite range (0, 1], it is numerically advantageous to the standard SVM
formulation.

Example 3 (`2-loss ν-SVM). Let

U :=

∑
i∈M+

qixi −
∑
i∈M−

qixi

∣∣∣∣∣∣ q>o eo = 1
2 , o ∈ {+,−}, q ≥ 0,
‖q‖2 ≤ κ2

 , (38)

with a parameter κ ∈ [κmin, κmax) ⊆
[
0,
√

1
2

]
, where κmin := 1

2

√
1
m+

+ 1
m−

is the min-

imum of κ ≥ 0 such that U 6= φ, and κmax is the supremum of κ ≤
√

1
2 such that

0 6∈ U ; note that U is identical for all κ ≥
√

1
2 because the constraint ‖q‖2 ≤ κ2 is to be

redundant. Then, UCM of the form (4) can be formulated as follows:

min
q∈U ′

1

2

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥2
(39)

where U ′ = {q | q>o eo = 1
2 , o ∈ {+,−}, ‖q‖2 ≤ κ2, q ≥ 0}. Let us consider the

following `2-loss ν-SVM:

min
w,b,ξ,ρ

−ρ+
1

mν

∑
i∈M

ξ2
i

s.t. ρ− yi(x>i w + b) ≤ ξi, i ∈M
ξ ≥ 0, ‖w‖2 ≤ 1,

(40)

‡Schölkopf et al. [2000] defines the objective function of ν-SVM by 1
2
‖w‖2 − νρ+ 1

m

∑
i∈M ξi without

the constraint ‖w‖2 ≤ 1, but we can easily show that the both problems, (37) and the original
ν-SVM [Schölkopf et al., 2000], are equivalent because they have the same dual problem.

46

where ν ∈ (νmin,∞) ⊆ (0,∞) is a parameter value, and νmin is the minimum value of
ν > 0 such that w∗ 6= 0 is the optimal solution of (40). If κ and ν are set properly, UCM
leads to the same decision function as `2-loss ν-SVM (40). Indeed, for all ν ∈ (0,∞),
the dual problem of (40):

min
q

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥+
mν

4
‖q‖2

s.t. q>o eo = 1
2 , o ∈ {+,−}, q ≥ 0,

(41)

has an optimal solution q∗, and there exists κ = ‖q∗‖ ∈
[
0,
√

1
2

]
such that UCM (39)

has the same optimal solution q∗. The proof follows from Lemma 5 by letting

f(q) =
∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥, g(q) =
mν

4
‖q‖2.

There are advantages to deal with the formulation (39) of UCM rather than (41).
Since the parameter ν of (41) takes a value in the infinite range (0,∞), it may be hard
for practitioners to find the best ν, and more unfavorably, optimization algorithms would
be numerically unstable for very large ν. Such issues do not appear for UCM (39) since

the parameter κ takes a value in the finite range
[
0,
√

1
2

)
.

We also can construct a biased variant of `2-loss ν-SVM. Let

U :=

∑
i∈M+

qixi −
∑
i∈M−

qixi

∣∣∣∣∣∣ q>o eo =
1

2
, ‖qo‖2 ≤ κ2

o, o ∈ {+,−}, q ≥ 0

 , (42)

with different parameters κo ∈
[
0,
√

1
2

]
for o ∈ {+,−}. There exists the maximum range

[κmino , κmaxo) ⊆
[
0,
√

1
2

]
of κo such that 0 6∈ U and U 6= φ, where κmino = 1

2

√
1
mo

. Then,

UCM of the form (4) can be formulated as follows:

min
q∈U ′

1

2

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥2
(43)

where

U ′ =
{
q

∣∣∣∣ q>o eo =
1

2
, ‖qo‖2 ≤ κ2

o, o ∈ {+,−}, q ≥ 0

}
.

The biased variant of `2-loss ν-SVM is formulated as follows:

min
w,b,ξ,ρ

−ρ+
∑

o∈{+,−}

(1

mνo

∑
i∈Mo

ξ2
i

)
s.t. ρ− yi(x>i w + b) ≤ ξi, i ∈M

ξ ≥ 0, ‖w‖2 ≤ 1,

(44)

47

where νo ∈ (0,∞), o ∈ {+,−}, are parameters. The dual problem of (44):

min
q

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥+
∑

o∈{+,−}

(mνo
4
‖qo‖2

)
s.t. q>o eo = 1

2 , o ∈ {+,−}, q ≥ 0,

(45)

has an optimal solution q∗, and there exists κo = ‖q∗o‖ ∈
[
0,
√

1
2

]
such that UCM (43)

has the same optimal solution q∗.

Example 4. Let

U :=

∑
i∈M+

qixi −
∑
i∈M−

qixi

∣∣∣∣∣∣ q>o eo = 1
2 , o ∈ {+,−}, q ≥ 0∑

i∈M qi log(qi
1/m) ≤ − log(α)

 , (46)

where α ∈ (0, 1) is a parameter; there exists the maximum range (αmin, αmax) ⊆ (0, 1)
of α such that 0 6∈ U and U 6= φ. In U , the Kullback-Leibler divergence of 1

me from q is
bounded. Then, UCM of the form (4) can be formulated as follows:

min
q∈U ′

1

2

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥2
(47)

where

U ′ =
{
q

∣∣∣∣∣ q>o eo =
1

2
, o ∈ {+,−}, q ≥ 0,

∑
i∈M

qi log(
qi

1/m
) ≤ − log(α)

}
.

Let us consider the following generalized ν-SVM [Kanamori et al., 2013] whose loss
function is exp(ζ):

min
w,b,ζ,ρ

−ρ+
1

m

∑
i∈M

exp(ζi)

s.t. ρ− yi(x>i w + b) ≤ ζi, i ∈M
‖w‖2 ≤ λ2,

(48)

where λ ∈ (0,∞) is a parameter. There exists the supremum λmax ∈ (0,∞) of λ such
that w∗ 6= 0 is the optimal solution of (48). If α and λ are set properly, UCM leads
to the same decision function as the problem (48). Indeed, for all λ ∈ (0,∞), the dual
problem of (48):

min
q

∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥+
1

λ

(∑
i∈M

qi

(
log

qi
1/m

))
s.t. q>o eo = 1

2 , o ∈ {+,−}, q ≥ 0,

(49)

has an optimal solution q∗, and there exists α = exp
(
−∑i∈M q∗i

(
log

q∗i
1/m

))
∈ (0, 1)

such that UCM (47) has the same optimal solution q∗. The proof follows from Lemma 5

48

by letting

f(q) =
∥∥∥ ∑
i∈M+

qixi −
∑
i∈M−

qixi

∥∥∥, g(q) =
1

λ

(∑
i∈M

qi

(
log

qi
1/m

))
.

There are advantages to deal with the formulation (47) of UCM rather than (49).
Since the parameter λ of (49) takes a value in the infinite range (0,∞), it may be hard
for practitioners to find the best ν, and more unfavorably, optimization algorithms would
be numerically unstable for very large λ. Such issues do not appear for UCM (47) since
the parameter α takes a value in the finite range (0, 1).

Example 5 (Bertsimas and Takeda [2014]). Let us consider the MM-MPM (33) (Exam-
ple 1). The objective function of MM-MPM (33) is known as a classical mean-standard

deviation, where −w>x̄o and
√
w>Σow, o ∈ {+,−}, are the sample expected value and

the sample standard deviation of the values −yi(w>xi + b), i ∈ Mo, but the constant
term −yib is omitted. In general, the mean-standard deviation risk measure is not a
coherent risk measure (due to lack of monotonicity). Here we modify the uncertainty set
(32) as

U := U+ 	 U−,

where Uo :=

{
x̄o + Σ1/2

o uo

∣∣∣∣∣ ‖uo‖ ≤ κo, q>o eo = 1
2 , qo ≥ 0

x̄o + Σ
1/2
o uo =

∑
i∈Mo

qixi

}
, o ∈ {+,−},

so that U ⊆ C. This modification makes the mean-standard deviation coherent (see
[Natarajan et al., 2009]). Similarly, while the objective function of MM-FDA (35) is not
a coherent risk measure, the following modification of the uncertainty set (34):

U :=

{
(x̄+ − x̄−)

+ (Σ+ + Σ−)1/2u

∣∣∣∣∣ ‖u‖ ≤ κ, q>+e+ = 1
2 , q

>
−e− = 1

2 , q ≥ 0

(x̄+ − x̄−) + (Σ+ + Σ−)1/2u = Z̃q

}
(50)

leads UCM (2) to a coherent risk measure minimization problem.

49

