
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Finding a Shortest Non-Zero Path
in Group-Labeled Graphs

Yusuke KOBAYASHI and Sho TOYOOKA

(Communicated by Hiroshi HIRAI)

METR 2015–19 May 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Finding a Shortest Non-Zero Path in Group-Labeled Graphs∗

Yusuke KOBAYASHI† Sho TOYOOKA‡

May 2015

Abstract: A group-labeled graph is a directed graph with each arc labeled by a group
element, and the label of a path is defined as the sum of the labels of the traversed arcs.
In this paper, we propose a polynomial time randomized algorithm for the problem
of finding a shortest s-t path with a non-zero label in a given group-labeled graph
(which we call the Shortest Non-Zero Path Problem). This problem generalizes the
problem of finding a shortest path with an odd number of edges, which is known to
be solvable in polynomial time by using matching algorithms. In our algorithm for the
Shortest Non-Zero Path Problem, we reduce it to the computation of the permanent of
a polynomial matrix modulo two. Furthermore, by devising an algorithm for computing
the permanent of a polynomial matrix modulo 2r, we extend our result to the problem
of packing internally-disjoint s-t paths.

Keywords: Group-labeled graphs, non-zero shortest path, permanent.

1 Introduction

The shortest path problem is one of the most well-studied problems in combinatorial optimization.
In the problem, the objective is to find a shortest path connecting two specified vertices s and t in
a given graph, and it can be done easily by the breadth first search if each edge has a unit length.
For the shortest path problem in undirected (or directed) graphs with non-negative edge lengths,
many polynomial time algorithms are proposed, such as Dijkstra’s algorithm [3] and Bellman-Ford
algorithm [1]. As an extension of the shortest path problem, we can consider the problem with
a parity constraint: given an undirected graph G = (V,E), two specified vertices s and t, and a
non-negative length l(e) of each edge e ∈ E, find a shortest odd (or even) s-t path. Here, a path is
said to be odd (resp. even) if it contains odd (resp. even) number of edges. Actually, this problem
can be reduced to the weighted matching problem (see e.g. [10, Section 29.11e] and [6]), and hence
it can be solved in polynomial time with the aid of weighted matching algorithms. Note that the
directed variant is much harder than the undirected case, namely, it is NP-hard to test whether a
given directed graph contains an odd (or even) directed path from s to t [8]. We also note that we
can easily find a shortest odd (or even) s-t walk in a given (directed) graph by a standard dynamic
programming.

∗Research is supported by JST, ERATO, Kawarabayashi Large Graph Project, and by KAKENHI Grant Number
24106002, 24700004.

†University of Tsukuba, Japan. E-mail: kobayashi@sk.tsukuba.ac.jp
‡University of Tokyo, Japan. E-mail: sho toyooka@mist.i.u-tokyo.ac.jp

1

As a generalization of the parity constraints, group-labeled graphs have been investigated [7],
where a group-labeled graph is a directed graph with each arc labeled by a group element. In a
group-labeled graph, the label of a path is defined as the sum of the labels of the traversed arcs,
where each arc can be traversed in the converse direction and then the label is inversed. Group
labeled graphs are also called gain graphs or voltage graphs, and they were originally introduced in
the field of topological graph theory with an application to construct graph embeddings in surfaces
(see [4, 5, 12]). In this paper, we consider only abelian groups, and hence the group operation
is denoted by addition and the identity is denoted by 0. We now introduce the Shortest Non-
Zero Path Problem, which is described as follows: given a group-labeled graph with two specified
vertices s and t, find an s-t path with a non-zero label that contains minimum number of arcs. This
generalizes the shortest odd s-t path problem in undirected graphs with unit length edges, because
odd s-t paths in an undirected graph G are corresponding to non-zero s-t paths in the Z2-labeled
graph obtained from G by orienting each edge arbitrarily and by setting the label of each arc as 1.
In this paper, we propose a polynomial time randomized algorithm for the Shortest Non-Zero Path
Problem.

In order to state our result formally, we now give some notations. For an abelian group Γ, a
Γ-labeled graph is a pair (G,ψ) of a directed graph G = (V,E) and a mapping ψ : E → Γ (called a
label function). A walk in a Γ-labeled graph (G,ψ) is a sequence W = (v0, e1, v1, e2, v2, . . . , el, vl) of
vertices vi and arcs ei in G such that either ei = vi−1vi or ei = vivi−1 for i = 1, . . . , l. A path is a
walk whose vertices are distinct from one another. The label of a walk W = (v0, e1, v1, . . . , el, vl) is
defined as ψ(W) = ψ̃(e1)+ψ̃(e2)+· · ·+ψ̃(el), where ψ̃(ei) = ψ(ei) if ei = vi−1vi and ψ̃(ei) = −ψ(ei)
if ei = vivi−1. The arc set of a walk W is denoted by E(W). With these notations, the Shortest
Non-Zero Path Problem and our result are described as follows.� �
Shortest Non-Zero Path Problem in Γ-labeled Graphs

Input: a Γ-labeled graph (G,ψ) with two specified vertices s, t ∈ V .

Find: an s-t path P with ψ(P) ̸= 0 that contains a minimum number of arcs (if exists).� �
Theorem 1. Let Γ be a fixed finite abelian group. There is a polynomial time randomized algorithm
for the Shortest Non-Zero Path Problem in Γ-labeled Graphs.

In what follows, by subdividing all arcs and assigning appropriate labels if necessary, we assume
that the input graph contains neither self-loops nor parallel arcs without loss of generality.

Note that we can easily find a shortest s-t walk with a non-zero label in polynomial time by a
standard dynamic programming. However, the same argument cannot be applied to the Shortest
Non-Zero Path problem.

The rest of this paper is organized as follows. In Section 2, we give an algebraic algorithm for
the Shortest Non-Zero Path Problem and prove Theorem 1. In Section 3, we extend our result to
a kind of path packing problem, which we call the Shortest Non-Zero k Disjoint Paths Problem.
In the algorithm for the Shortest Non-Zero k Disjoint Paths Problem, we use an algorithm for
computing the permanent of a polynomial matrix modulo 2r, which is given in Section 4.

2 Algebraic Approach to the Problem

In this section, we give a proof of Theorem 1, namely, we propose an algebraic approach to the
Shortest Non-Zero Path Problem, in which we use the permanent of a polynomial matrix. The

2

permanent of an n× n matrix A = (aij) is defined as

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the set of all permutations on n elements. By the definition, the permanent of the
adjacency matrix of a directed graph is corresponding to the number of cycle covers in this directed
graph, where a cycle cover is a set of arcs in which each vertex has exactly one incoming arc and
exactly one outgoing arc. More generally, we can easily see the following.

Lemma 2. Let G = (V,E) be a directed graph which has no multiple arcs and may have self-loops.
Let A = (aij) be a matrix whose rows and columns are indexed by V such that aij = 0 holds for
any i, j ∈ V with ij ̸∈ E. Then, we have

perA =
∑

F∈C(G)

∏
ij∈F

aij ,

where C(G) is the set of all cycle covers in G.

To prove Theorem 1, we first deal with the case of Γ = Zp(:= Z/pZ) for some p. We extend
this case to the general case by using the fundamental theorem of finite abelian groups.

Suppose that we are given an instance of the Shortest Non-Zero Path Problem, that is, we are
given a Zp-labeled graph (G = (V,E), ψ) with two specified vertices s, t ∈ V . By identifying Zp
with {0, 1, 2, . . . , p− 1} ⊆ Z, for each ij ∈ E, we regard ψ(ij) as an integer with 0 ≤ ψ(ij) ≤ p− 1.
We define a matrix A = (aij) over Z[x, y] whose rows and columns are indexed by V as follows:

aij =

xyψ(ij) if ij ∈ E, i ̸= t, and j ̸= s;

xyp−ψ(ji) if ji ∈ E, i ̸= t, and j ̸= s;

1 if i = j ∈ V \ {s, t};
1 if (i, j) = (t, s);

0 otherwise.

(1)

Note that since G has neither self-loops nor parallel arcs, ij ∈ E implies that i ̸= j and ji ̸∈ E,
which ensures that aij is well-defined. Since the maximum degree of y in perA is at most |V |p,
perA can be uniquely expressed as

perA =

|V |p∑
l=0

ql(x)y
l,

where ql(x) is a polynomial in x with integer coefficients. With these polynomials, we define Q(x)
as the polynomial with coefficients in {0, 1} such that

Q(x) ≡
∑

l ̸≡0 (mod p)

ql(x) (mod 2), (2)

where we denote
∑

i bix
i ≡

∑
i cix

i (mod 2) if bi ≡ ci (mod 2) for every i.

Lemma 3. For a Zp-labeled graph (G,ψ) with two vertices s and t, Q(x) defined above can be
computed in polynomial time.

3

Proof. In order to compute Q(x), we only need the value of perA modulo two, which can be
computed as follows:

1. replace y with xN to obtain an one-variable polynomial matrix A′, where N is greater than
the maximum degree of x in perA (e.g., N := n+ 1),

2. compute perA′ modulo two, and

3. replace xaN+b with xbya in perA′ to obtain perA modulo two.

Since we can compute the permanent of one-variable polynomial matrix modulo two in polynomial
time (see [2] or Section 4), this algorithm runs in polynomial time.

The following proposition shows a relationship between Q(x) and the Shortest Non-Zero Path
Problem.

Proposition 4. Suppose that we are given a Zp-labeled graph (G,ψ) with two vertices s and t,
which is an instance of the Shortest Non-Zero Path Problem. Assume that it has a unique optimal
solution. Then, the optimal value of this instance is equal to the minimum degree of Q(x) defined
as above.

Proof. For an instance (G = (V,E), ψ, s, t) of the Shortest Non-Zero Path Problem, we construct
a new directed graph G′ = (V ′, E′) with labels from G as follows.

• For each arc ij ∈ E, add a new arc ji with the label −ψ(ij).

• For each vertex v ∈ V \ {s, t}, add a self-loop incident to v with the label 0.

• Remove all arcs entering s and leaving t.

• Add a new arc ts with the label 0.

By abusing notation, the label function of G′ is also denoted by ψ. Since G′ and the matrix A
defined as (1) satisfy the condition in Lemma 2, i.e., ij ̸∈ E′ implies that aij = 0, we obtain

perA =
∑

F∈C(G′)

∏
ij∈F

aij , (3)

where C(G′) is the set of all cycle covers in G′. We observe that a cycle cover F ∈ C(G′) must
contain the arc ts, and hence F also contains a path P from s to t. We now divide C(G′) into two
parts: one is the set C1 of all cycle covers containing an s-t path P with ψ(P) ̸= 0, and the other is
the set C2 of all cycle covers containing an s-t path P with ψ(P) = 0. By (3), for each cycle cover
F ∈ C(G′), we can naturally define the contribution of F to Q(x), say QF (x). That is, QF (x) = 0 if∑

e∈F ψ(e) ≡ 0 (mod p), and QF (x) = xcF otherwise, where cF is the number of arcs ij in F such
that i ̸= j and (i, j) ̸= (t, s). Then, we have Q(x) ≡

∑
F∈C(G′)QF (x) (mod 2) by the definition. In

what follows, we consider
∑

F∈C1 QF (x) and
∑

F∈C2 QF (x), separately.
First, we consider

∑
F∈C1 QF (x). For an s-t path P , let AP be the matrix obtained from A

by eliminating the rows and the columns corresponding to the vertices in P . Since each F ∈ C1
contains a non-zero s-t path, we have∑

F∈C1

∏
ij∈F

aij =
∑

P : non-zero s-t path

(∏
ij∈E(P)

aij

)
perAP

=
∑

P : non-zero s-t path

x|E(P)|yψ
′(P) perAP , (4)

4

where ψ′(P) is some integer with ψ′(P) ≡ ψ(P) (mod p). Consider the cycle cover F0 ∈ C1
consisting of the unique optimal solution (the shortest non-zero path) P0 of the original problem,
arc ts, and self-loops incident to vertices in G′ −P . Then, QF0(x) = x|E(P0)|. By the uniqueness of
the optimal solution and (4), we can see that x|E(P0)| is the minimum degree term in

∑
F∈C1 QF (x)

and its coefficient is 1.
Next, we show

∑
F∈C2 QF (x) ≡ 0 (mod 2). Let F ∈ C2 be a cycle cover satisfying that QF (x) ̸=

0. By the definition of QF (x),
∑

e∈F ψ(e) ̸≡ 0 (mod p) and QF (x) = xcF , where cF is the number
of arcs ij in F such that i ̸= j and (i, j) ̸= (t, s). Let P be the s-t path with the label zero in F .
We consider the cycle cover F ′ ∈ C2 obtained from F by reversing all arcs in F −E(P)− ts. Since∑

e∈F ′ ψ(e) ≡ −
∑

e∈F ψ(e) ̸≡ 0 (mod p), we have QF ′(x) = xcF , and hence QF (x) + QF ′(x) ≡ 0
(mod 2). Note that F ̸= F ′, because F − E(P) − ts contains at least one arc that is not a self-
loop. In this way, all cycle covers F in C2 with QF (x) ̸= 0 can be put into pairs so that the total
contribution of each pair to Q(x) is zero modulo two. Therefore, we obtain

∑
F∈C2 QF (x) ≡ 0

(mod 2).
By the above analyses of

∑
F∈C1 QF (x) and

∑
F∈C2 QF (x), the minimum degree of Q(x) is equal

to the minimum length of the non-zero s-t path.

By combining Lemma 3 and Proposition 4, we obtain a deterministic polynomial time algorithm
for the Shortest Non-Zero Path Problem under the assumption that the instance has a unique
optimal solution. Even when a given instance has more than one optimal solutions, we can convert
it to the case with a unique optimal solution by perturbing the lengths of the arcs.

Proposition 5. Suppose that we are given a Γ-labeled graph (G,ψ) with two vertices s and t, which
is an instance of the Shortest Non-Zero Path Problem. We construct a new instance by replacing
each arc e with a path of length w(e), where w(e) is chosen independently and uniformly at random
from W := {2|V ||E|, 2|V ||E| + 1, . . . , 2|V ||E| + 2|E| − 1}. Here, the labels of the new arcs are
chosen so that the label of the path is equal to ψ(e). Then, the obtained instance has a unique
optimal solution with probability at least 1

2 (if the original instance has a feasible solution).

Proof. The validity of this proposition is based on the following isolation lemma [9]:

Lemma 6. Let S be a finite set, F be a family of subsets of S, and W be a set of integers different
from each other. Suppose that the weight of each element in S is chosen from W independently and
uniformly at random, then with probability at least 1− |S|

|W | , there is a unique set in F of minimum
total weight.

We apply this lemma, in which S = E, W = {2|V ||E|, 2|V ||E|+1, . . . , 2|V ||E|+2|E| − 1}, and
F is the family of all subsets of E belonging to each s-t non-zero path in G. Then, with probability
at least 1 − |E|

2|E| = 1
2 , there is a unique s-t non-zero path of minimum weight in G. Since the

weight of an s-t path in G is equal to the length of the corresponding path in the new instance, the
obtained instance has a unique optimal solution with probability at least 1

2 .

Since an optimal solution in the instance obtained in Proposition 5 is corresponding to an opti-
mal solution in the original instance, by Lemma 3 and Propositions 4 and 5, we obtain Theorem 1
under the assumption that Γ = Zp for some integer p.

We now consider the case when Γ is a finite abelian group. In this case, we apply the fundamental
theorem of finite abelian groups and decompose Γ as Γ = Zp1 ⊕Zp2 ⊕· · ·⊕Zpr where p1, . . . , pr are
some integers. By using this decomposition, for an instance (G,ψ, s, t) of the Shortest Non-Zero
Path Problem in Γ-labeled Graphs, define a new label function ψi : E → Zpi for i = 1, 2, . . . , r such
that ψ(e) = ψ1(e)⊕ ψ2(e)⊕ · · · ⊕ ψr(e) for e ∈ E. For i = 1, 2, . . . , r, let Pi be a shortest non-zero

5

s-t path in (G,ψi). Then, a shorest one among {P1, P2, . . . , Pr} is a shortest non-zero s-t path in
(G,ψ), because a path P satisfies that ψ(P) ̸= 0 if and only if ψi(P) ̸= 0 for some i ∈ {1, 2, . . . , r}.
Therefore, by solving the Shortest Non-Zero Path Problem in Zpi-labeled Graphs for i = 1, 2, . . . , r,
we obtain an optimal solution of the original problem in (G,ψ), which shows Theorem 1.

3 Extension to Packing Disjoint s-t Paths

In this section, we generalize the Shortest Non-Zero Path Problem to the problem of finding k
internally-disjoint s-t paths of shortest total length under the condition that the sum of their labels
is not zero. The problem is formally described as follows, where k is a positive integer and Γ is a
finite abelian group.� �
Shortest Non-Zero k Disjoint Paths Problem in Γ-labeled Graphs

Input: a Γ-labeled graph (G,ψ) with two specified vertices s, t ∈ V .

Find: k internally-disjoint s-t paths P1, . . . , Pk minimizing the total number of arcs contained
in them subject to

∑k
i=1 ψ(Pi) ̸= 0 (if exist).� �

We can easily see that the case of k = 1 is corresponding to the Shortest Non-Zero Path
Problem. The objective of this section is to extend Theorem 1 to the following theorem.

Theorem 7. Let k be a fixed positive integer and Γ be a fixed finite abelian group. There is
a polynomial time randomized algorithm for the Shortest Non-Zero k Disjoint Paths Problem in
Γ-labeled Graphs.

Proof. By subdividing all arcs and assigning appropriate labels if necessary, we may assume that
the input graph contains neither self-loops nor parallel arcs and there is no arc connecting s and t
without loss of generality. By using the same argument as the previous section, if suffices to discuss
the case of Γ = Zp. Suppose that we are given an instance of the Shortest Non-Zero k Disjoint
Paths Problem. We construct a new graph G′ = (V ′, E′) from G by replacing s with its k copies
s1, s2, . . . , sk and by replacing t with its k copies t1, t2, . . . , tk. Note that each arc incident to s
(resp. t) is also replaced with its k copies incident to si (resp. ti), and the label function ψ on E is
naturally extended to E′. Define S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk}.

Recall that, for each ij ∈ E′, we can regard ψ(ij) as an integer with 0 ≤ ψ(ij) ≤ p − 1. We
define a matrix A′ = (a′ij) over Z[x, y] whose rows and columns are indexed by V ′ as follows:

a′ij =

xyψ(ij) if ij ∈ E′, i ̸∈ T, and j ̸∈ S;

xyp−ψ(ji) if ji ∈ E′, i ̸∈ T, and j ̸∈ S;

1 if i = j ∈ V ′ \ (S ∪ T);
1 if (i, j) = (tl, sl) for some l ∈ {1, 2, . . . , k};
0 otherwise.

(5)

In a similar way to (2), we express perA′ as

perA′ =

|V ′|p∑
l=0

q′l(x)y
l

6

and define Q′(x) as the polynomial with coefficients in {0, 1, 2, . . . , 2r − 1} such that

Q′(x) ≡
∑

l ̸≡0 (mod p)

q′l(x) (mod 2r).

Here, r is the minimal integer such that (k!)2/2r is not an integer. In a similar way to Proposition 4,
we can obtain the following proposition.

Proposition 8. Let k be a positive integer. Suppose that we are given a Zp-labeled graph G = (V,E)
with two vertices s and t, which is an instance of the Shortest Non-Zero k Disjoint Paths Problem.
Assume that it has a unique optimal solution. Then, the optimal value of this instance is equal to
the minimum degree of Q′(x) defined as above.

Proof of Proposition 8. We construct a new graph G′′ = (V ′′, E′′) with labels from G′ = (V ′, E′)
as follows.

• For each arc ij ∈ E, add a new arc ji with the label −ψ(ij).

• For each vertex v ∈ V \ (S ∪ T), add a self-loop incident to v with the label 0.

• Remove all arcs entering S and leaving T .

• Add a new arc tlsl with the label 0 for l = 1, 2, . . . , k.

By abusing notation, the label function of G′′ is also denoted by ψ.
Since G′′ and the matrix A′ defined as (5) satisfy the condition in Lemma 2, i.e., ij ̸∈ E′′ implies

that a′ij = 0, we obtain

perA′ =
∑

F∈C(G′′)

∏
ij∈F

a′ij ,

where C(G′′) is the set of all cycle covers in G′′. We observe that a cycle cover F ∈ C(G′′) must
contain the arc tlsl for l = 1, 2, . . . , k, and hence F also contains k (fully) disjoint paths from S to
T , which we call S-T paths. We now divide C(G′′) into two parts: one is the set C′

1 of all cycle covers
containing S-T paths whose sum of the labels is non-zero (non-zero S-T paths), and the other is
the set C′

2 of all cycle covers containing S-T paths whose sum of the labels is zero (zero S-T paths).
In the same way as the proof of Proposition 4, for each cycle cover F ∈ C(G′′), we can naturally
define the contribution of F to Q′(x), say Q′

F (x). In what follows, we consider
∑

F∈C′
1
Q′
F (x) and∑

F∈C′
2
Q′
F (x), separately.

First, we consider
∑

F∈C′
1
Q′
F (x). For a set P of paths, let E(P) be the set of the arcs contained

in the paths in P, define ψ(P) :=
∑

e∈E(P) ψ(e), and let A′
P be the matrix obtained from A′ by

eliminating the rows and the columns corresponding to the vertices in the paths in P. Since each
F ∈ C′

1 contains non-zero S-T paths, we have∑
F∈C′

1

∏
ij∈F

a′ij =
∑

P: non-zero S-T paths

x|E(P)|yψ
′(P) perA′

P , (6)

where ψ′(P) is some integer with ψ′(P) ≡ ψ(P) (mod p). Let P0 be the unique optimal solution of
the Shortest Non-Zero k Disjoint Paths Problem. Consider a cycle cover F0 ∈ C′

1 in G
′′ that consists

of non-zero S-T paths P corresponding to P0, arcs tlsl (l = 1, . . . , k), and self-loops incident to
vertices not contained in P. Then, Q′

F0
(x) = x|E(P0)|. Since we have (k!)2 choices of F0 with this

7

condition, by the uniqueness of the optimal solution and (6), (k!)2x|E(P0)| is the minimum degree
term in

∑
F∈C′

1
Q′
F (x). Note that (k!)2 ̸≡ 0 (mod 2r) by the definition of r.

Next, we show
∑

F∈C′
2
Q′
F (x) ≡ 0 (mod 2r). Let F ∈ C′

2 be a cycle cover satisfying that

Q′
F (x) ̸= 0. Then,

∑
e∈F ψ(e) ̸≡ 0 (mod p) andQ′

F (x) = xcF , where cF is the number of arcs ij in F
such that i ̸= j and (i, j) ̸= (tl, sl). By changing the indices of {s1, . . . , sk} and {t1, . . . , tk} in F , we
obtain (k!)2 cycle covers F1(= F), F2, . . . , F(k!)2 ∈ C′

2 such that Q′
Fi
(x) = xcF for i = 1, 2, . . . , (k!)2.

Note that these cycle covers are distinct since the original graph has no arc connecting s and t. Let
P be the zero S-T paths in F , and consider the cycle cover F ′ ∈ C′

2 obtained from F by reversing
all arcs in F − E(P) − {t1s1, . . . , tksk}. Since

∑
e∈F ′ ψ(e) ≡ −

∑
e∈F ψ(e) ̸≡ 0 (mod p), we have

QF ′(x) = xcF . Again, by changing the indices of {s1, . . . , sk} and {t1, . . . , tk} in F ′, we have (k!)2

cycle covers F ′
1(= F ′), F ′

2, . . . , F
′
(k!)2 ∈ C′

2 such that Q′
F ′
i
(x) = xcF for i = 1, 2, . . . , (k!)2. Therefore,∑(k!)2

i=1 (QFi(x) +QF ′
i
(x)) ≡ 0 (mod 2r) by the definition of r. In this way, all cycle covers F in C′

2

with Q′
F (x) ̸= 0 can be divided into sets of 2(k!)2 cycle covers so that the total contribution of each

set to Q′(x) is zero modulo 2r. Therefore, we obtain
∑

F∈C′
2
Q′
F (x) ≡ 0 (mod 2r).

By the above analyses of
∑

F∈C′
1
Q′
F (x) and

∑
F∈C′

2
Q′
F (x), the minimum degree of Q′(x) is

equal to the optimal value of the Shortest Non-Zero k Disjoint Paths Problem.

We can compute Q′(x) modulo 2r in polynomial time as we will see in the next section. There-
fore, by Proposition 8 and the perturbation technique used in Section 2, we obtain Theorem 7.

4 Computing the Permanent Modulo 2r

For the computation of Q′(x), we propose an algorithm for computing the permanent of polynomial
matrices modulo 2r, which we believe is of independent interest.

Although computing the permanent of integer matrices is NP-hard [11], Valiant [11] gave a
polynomial time algorithm for computing the permanent of matrices whose entries are in Z2r ,
where r is a fixed constant. By using a similar technique to [11], Björklund [2] gave a polynomial
time algorithm for computing the permanent of matrices whose entries are in Z4[x], that is, each
entry is a polynomial in x with coefficients in Z4. Our contribution is to generalize this result to
the case of Z2r [x], where r is a fixed constant. For a matrix A whose entries are in Z[x] and for a
positive integer r, let per2rA be the permanent of A modulo 2r, i.e., the polynomial with coefficients
in {0, 1, 2, . . . , 2r − 1} such that

per2rA ≡ perA (mod 2r).

Our result is stated as follows.

Theorem 9. Let r be a fixed nonnegative integer and A be an n × n matrix whose entries are in
Z[x]. Suppose that we are given an integer N which is greater than the maximum degree of per2rA.
Then, per2rA can be computed in polynomial time in n and N .

Proof. Our proof is based on ideas in [2]. Let EN denote Z[x]/(xN), which is a quotient ring divided
by the ideal generated by xN . Roughly, EN is the set of polynomials obtained from Z[x] by ignoring
the terms whose degrees are at least N . Since the maximum degree of per2rA is at most N − 1, to
compute per2rA, we may identify Z[x] with EN by ignoring the terms whose degrees are at least
N . Let Mn(EN) be the set of all n×n matrices whose entries are in EN . We say that a polynomial
a ∈ EN is even if all coefficients of a are even and odd if a is not even. For an odd polynomial a,
let m(a) be the index of the lowest order term of a whose coefficient is odd.

8

For a given matrix A = (aij) ∈ Mn(EN), our algorithm for computing per2rA is described as
follows. Note that all the computation in the algorithm is done on EN , that is, we remove all terms
whose degrees are at least N .
Algorithm Permanent(r,A)

A1. If n = 1, return a11 modulo 2r. If r = 0, return 0.

A2. Choose i ∈ {1, 2, . . . , n} such that ai1 is odd andm(ai1) is minimum (if exists). Then, exchange
rows 1 and i.

A3. If ai1 is even for i = 2, 3 . . . , n, then compute per2rA by Lemma 10 and return it. Otherwise,
take an index i ∈ {2, 3, . . . , n} such that ai1 is odd, and compute a polynomial c ∈ EN such
that ai1 + ca11 ∈ EN is even by Lemma 11.

A4. Let A[i, 1] be the matrix obtained from A by replacing the ith row with the first row. Compute
per2r(A+ cA[i, 1]) by using Algorithm Permanent(r,A+ cA[i, 1]) recursively and compute
cper2rA[i, 1] by Lemma 12. Then, compute per2rA by

per2rA ≡ per2r(A+ cA[i, 1])− cper2rA[i, 1] (mod 2r),

and return it.

For integers n ≥ 1, r ≥ 0, and k ≥ 0, let TN (n, r, k) be the worst case running time of the
algorithm for computing per2rA for a matrix A = (aij) ∈ Mn(EN) such that |{i ∈ {1, 2, . . . n} |
ai1 is odd}| is at most k. Note that TN is monotone, that is, TN (n, r, k) ≥ TN (n

′, r′, k′) if n ≥ n′,
r ≥ r′, and k ≥ k′. For each n and each r, let T ∗

N (n, r) := maxk TN (n, r, k)(= TN (n, r, n)). In what
follows, we prove that T ∗

N (n, r) is bounded by a polynomial in n and N for fixed r. Let poly(n,N)
denote some polynomial in n and N . Note that when poly(n,N) appears more than once, they
might denote distinct polynomials.

The following lemmas are used in Algorithm Permanent(r,A).

Lemma 10. Let n ≥ 2 and r ≥ 1 be integers and A = (aij) be a matrix in Mn(EN). If ai1 is even
for i = 2, 3 . . . , n, then we can compute per2rA in T ∗

N (n−1, r)+(n−1)T ∗
N (n−1, r−1)+poly(n,N)

time. That is, TN (n, r, 1) ≤ T ∗
N (n−1, r)+(n−1)T ∗

N (n−1, r−1)+poly(n,N) for n ≥ 2 and r ≥ 1.

Proof. By expanding perA along the first column, we have

per2rA ≡ a11per2rA11 +

n∑
i=2

ai1per2rAi1 (mod 2r), (7)

where Ai1 is the matrix obtained from A by removing row i and column 1. For i = 2, 3, . . . , n, since
ai1 is even, we have

ai1per2rAi1 ≡ ai1per2r−1Ai1 (mod 2r).

This shows that we can compute (7) in T ∗
N (n−1, r)+(n−1)T ∗

N (n−1, r−1)+poly(n,N) time.

Lemma 11. For odd polynomials a ∈ EN and b ∈ EN with m(a) ≤ m(b), we can compute a
polynomial c ∈ EN such that b+ ca ∈ EN is even in polynomial time in N .

Proof. Such a c can be computed by the following algorithm.

B1. Set l = 0 and c(0) = 0 ∈ EN .

9

B2. While b+ c(l)a is not even, set c(l+1) = c(l) + xm(b+c(l)a)−m(a) and increment l.

B3. Return c(l).

Since each iteration in Step B2 increases m(b+c(l)a) by at least one and this value is at most N−1,
this algorithm runs in polynomial time in N .

Lemma 12. Let n ≥ 2 and r ≥ 1 be integers and A = (aij) be a matrix in Mn(EN) whose first
and second rows are identical. Then,

per2rA ≡ 2
∑

1≤i<j≤n
a1ia2jper2r−1A1i,2j (mod 2r),

where A1i,2j is the matrix obtained from A by removing rows 1 and 2 and columns i and j. Further-
more, per2rA can be computed in 1

2n(n− 1)T ∗
N (n− 2, r − 1) + poly(n,N) time, where T ∗

N (0, r − 1)
is regarded as a constant.

Proof. By expanding perA along the first and second rows,

per2rA ≡
∑
i̸=j

a1ia2jper2rA1i,2j

≡ 2
∑

1≤i<j≤n
a1ia2jper2rA1i,2j

≡ 2
∑

1≤i<j≤n
a1ia2jper2r−1A1i,2j (mod 2r),

where the last equality is derived from the fact that 2a ≡ 2a′ (mod 2r) if and only if a ≡ a′

(mod 2r−1) for a, a′ ∈ EN . Since per2r−1A1i,2j can be computed in T ∗
N (n − 2, r − 1) time, per2rA

can be computed in 1
2n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N) time.

Now we are ready to evaluate TN (n, r, k) and prove Theorem 9. For k ≥ 2 and r ≥ 1, by Step
A4 of Algorithm Permanent(r,A) and Lemma 12, we obtain

TN (n, r, k) ≤ TN (n, r, k − 1) +
1

2
n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N).

By using this inequality repeatedly, it holds that

TN (n, r, k) ≤ TN (n, r, 1) +
k − 1

2
n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N)

≤ TN (n, r, 1) +
n3

2
T ∗
N (n− 2, r − 1) + poly(n,N). (8)

Note that this inequality holds also for k = 0, 1. By combining (8) with Lemma 10, we have

TN (n, r, k) ≤ T ∗
N (n− 1, r) + (n− 1)T ∗

N (n− 1, r − 1) +
n3

2
T ∗
N (n− 2, r − 1) + poly(n,N)

≤ T ∗
N (n− 1, r) + n3T ∗

N (n, r − 1) + poly(n,N),

where we use the monotonicity of T ∗
N in the second inequality. Since this inequality holds for any

k ≥ 0, we have
T ∗
N (n, r) ≤ T ∗

N (n− 1, r) + n3T ∗
N (n, r − 1) + poly(n,N) (9)

10

for any n and r. By using (9) repeatedly (by changing n), we obtain

T ∗
N (n, r) ≤ n4T ∗

N (n, r − 1) + poly(n,N). (10)

Furthremore, by using (10) repeatedly (by changing r), we obtain T ∗
N (n, r) = (poly(n,N))O(r).

This shows that Algorithm Permanent(r,A) runs in polynomial time in n and N for fixed r.
(End of the proof of Theorem 9)

References

[1] R.E. Bellman, On a routing problem, Quarterly of Applied Mathematics (1958) 16, pp.
87–90.

[2] A. Björklund and T. Husfeldt, Shortest two disjoint paths in polynomial time, Proceed-
ings of the 41st International Colloquium on Automata, Languages and Programming, Part I.
LNCS 8572 (2014), pp. 211–222.

[3] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik
(1959) 1, pp. 269–271.

[4] J.L Gross and T.W. Tucker, Generating all graph coverings by permutation voltage
assignments, Discrete Mathematics (1977) 18, pp. 273–283.

[5] J.L Gross and T.W. Tucker, Topological Graph Theory, Wiley Interscience, 1987.

[6] M. Grötschel and W.R. Pulleyblank, Weakly bipartite graphs and the max-cut prob-
lem, Operations Research Letters (1981) 1, pp. 23–27.

[7] T. Huynh, The Linkage Problem for Group-Labelled Graphs PhD. Thesis, Department of
Combinatorics and Optimization, University of Waterloo, Ontario, 2009.

[8] A.S. LaPaugh and C.H. Papadimitriou, The even-path problem for graphs and digraphs,
Networks (1984) 14, pp. 507–513.

[9] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, Matching is as easy as matrix inver-
sion, Combinatorica (1987) 7, pp. 105–113.

[10] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer-Verlag, 2003.

[11] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science
(1979) 8, pp. 189–201.

[12] T. Zaslavsky, Biased graph. I. bias, balance, and gains, Journal of Combinatorial Theory,
Series B (1989) 47, pp. 32–52.

11

