
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

An Objective General Index for Multivariate
Ordered Data

Tomonari SEI

METR 2015-22 July 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



An objective general index for multivariate ordered data

Tomonari SEI∗

Abstract

A multivariate quantitative data is often summarized into a general index as a
weighted sum when each variate has a prescribed order. Although the sum of stan-
dardized scores is a sensible choice of index, it may have negative correlation with
some of the variates. In this paper, a general index that has positive correlation with
all the variates is constructed. The index is applied to study the fairness of decathlon
scoring. Quantification of ordered categorical data is also discussed. The limit of
quantification characterizes the Gaussian distribution.

Keywords: convex minimization, correlation, general index, ordered data, quantifica-

tion, ranking.

1 Introduction

Consider a data matrix of n individuals with p variates. For example, the data may be

scores on p academic subjects of n students in a school, stock prices of p companies at n

time points, decathlon data of n athletes about p = 10 events, and so on.

Our purpose is to construct a general index, that combines the p variates into a uni-

variate index in order to rank the n individuals. The task is unsupervised in the sense

that no one knows the correct index or ranking. This is a fairly classical and fundamental

problem. For example, in the study of animal breeding programs, index selection is used

to combine several traits without economic weights (e.g. [1], [7]). In sports data analysis,

it is discussed how to score the combined events like decathlon and heptathlon (e.g. [5]). A

number of university ranking systems are based on weighted average of relevant measures

(e.g. [6]).

A natural index is the sum of standardized scores (Z-scores). This is a sensible choice

if all the variates are uncorrelated. For correlated data, the first principal component

is sometimes used as a general index since it maximizes the variance of the index under

weight constraints. However, these indices can have negative correlation with some of the
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variates. This property will be undesirable since a general index has to reflect all of the

traits.

In this paper, we show that there is a general index that always has positive correlation

to each variate. We will call it the objective general index. A mathematical property of

positive definite matrices plays an important role in the construction. The weight is

numerically obtained by a simple convex programming. As an example, we study the

fairness of the scoring rule of decathlon.

Our index is extended to the case of ordered categorical variates. This is related to but

distinct from the optimal scaling method for ordered categories (e.g. [2], [15]). Remarkably,

it is shown that the limit of the quantified data is a Gaussian random variable.

The paper is organized as follows. In Section 2, we introduce two conditions on general

indices. Then recall a key property of positive definite matrices in Section 3. The objective

general index is defined in Section 4. Two examples are given in Section 5. We take into

account multicollinearity and subjective importance in Section 6 as well as ordered cate-

gorical data in Section 7. Section 8 is devoted to a functional version of the index, which

characterizes the Gaussian distribution. Finally, we give some discussions in Section 9.

2 Two conditions on general indices

Let X = (x1, . . . ,xp) ∈ Rn×p be a p-variate data matrix, where each xi is a column vector

representing scores of n individuals. Assume that each variate is centered:

1′
nxi = 0,

where 1n is the vector (1, . . . , 1)′ ∈ Rn and the symbol ′ denotes the vector/matrix trans-

pose. We further assume that each variate has a prescribed order in that a large value

means good. For example, in decathlon data, the sign of the 100m time has to be changed

before analysis.

Let the covariance matrix of X be

S = (Sij)
p
i,j=1, Sij =

1
n

x′
ixj .

Suppose that S is positive definite. This assumption will be relaxed in Section 6. We

often, but not always, standardize the data in advance such that Sii = 1 for any i. For

standard data, S is equal to the correlation matrix.
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A general index of X is a linear combination of p variates:

g =
p∑

i=1

wixi = Xw,

where w = w(S) = (w1, . . . , wp)′ ∈ Rp is a weight vector depending on S. The map

S 7→ w(S) is called a weight map. A weight map determines a general index.

The most fundamental general index is the simple sum
p∑

i=1

xi,

whose weight map is w(S) = 1p = (1, . . . , 1)′, independent of S. The sum of Z-scores
p∑

i=1

xi√
Sii

is more sensible if the columns of X have different units.

Another example is the first principal component, where the weight map w is an

eigenvector of the covariance matrix S with respect to the largest eigenvalue. This makes

the variance of Xw maximum under given w′w.

Our purpose is to construct a general index as fair as possible. Consider the following

two conditions. For a vector a = (ai)
p
i=1, denote a > 0 if ai > 0 for every i.

Definition 1. A weight map w = w(S) is said to be consistent if w > 0 for any S. It

is said to be covariance consistent if the covariance between each variate and the general

index is positive, or equivalently Sw > 0, for any S.

Consistency is a natural condition for the sake of general index: if an individual A is

better than B in all the variates, then the general index of A should be better than B. In

contrast, the meaning of covariance consistency is not trivial, but the positive-covariance

property between each variate and the general index will be an acceptable condition. The

two conditions have a duality relation (see Appendix A.2).

The weight map w = 1p is obviously consistent, but does not have covariance consis-

tency if p ≥ 3. For example, consider a positive definite matrix

S =

 1 −7/12 −7/12
−7/12 1 0
−7/12 0 1

 , (1)

whose eigenvalues are 1 and 1± (7/12)
√

2. Then the covariance consistency fails:

S 13 =

−1/6
5/12
5/12

 .
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The first principal component has neither consistency nor covariance consistency. For

example, consider

S =
(

1 −1/2
−1/2 1

)
.

Then the eigenvector w corresponding to the largest eigenvalue λ1 = 3/2 is a scalar

multiple of (1,−1)′, which implies both w and Sw(= λ1w) are not positive vectors. The

lack of consistency is also pointed out in [1].

An example satisfying covariance consistency is w = S−11p. Indeed, we have Sw =

1p > 0. However, it is not consistent. For example, consider a positive definite matrix

S =

 1 7/12 7/12
7/12 1 0
7/12 0 1

 .

Then

w = S−113 =

−12/23
30/23
30/23


has a negative component.

The last example also shows that a weight map w is not consistent if the covariance

between xi and g = Xw does not depend on i. Indeed, such a general index should satisfy

x′
ig = c for some c ∈ R, which is equivalent to w = cS−11p. In contrast, the covariance

between wixi and g can be made independent of i. This is the objective general index we

propose in Section 4.

Table 1 summarizes the properties of the indices.

Table 1: Consistency and covariance consistency of weight maps. The symbol • indicates
that the weight map satisfies the condition.

Consistency Covariance consistency
The sum of Z-scores • —

The first principal component — —
w = S−11p — •

OGI (defined in Section 4) • •

3 The bi-unit canonical form of positive definite matrices

Let p be a positive integer and 1p = (1, . . . , 1)′ ∈ Rp. We define terminology.

Definition 2. Let B be a p × p matrix. Then we call B bi-unit if it is positive definite

and satisfies B1p = 1p.
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Note that a bi-unit matrix is not necessarily doubly stochastic since it may have neg-

ative elements. Mathematical facts on bi-unit matrices are summarized in Appendix A.1.

For example, if p = 2, every bi-unit matrix is represented by

B =
(

1− z z
z 1− z

)
, −∞ < z < 1/2. (2)

The following theorem will play an essential role in the construction of our index later.

Theorem 1 ([11], Corollary 2). For any positive definite matrix S ∈ Rp×p, there is a

unique positive diagonal matrix D such that DSD is bi-unit, that is,

DSD1p = 1p. (3)

We recall a sketch of the proof since some equations will be referred to later.

Proof. Denote the elements of S by Sij . Put D = diag(w), where w = (w1, . . . , wp)′

and wi > 0. Then the equation (3) is

p∑
j=1

Sijwiwj = 1, i = 1, . . . , p.

Dividing both sides by wi, we obtain

p∑
j=1

Sijwj −
1
wi

= 0, i = 1, . . . , p. (4)

The left hand side is the gradient map of a strictly convex function

ψ(w) =
1
2

p∑
i,j=1

Sijwiwj −
p∑

i=1

logwi (5)

of w > 0. Therefore, if there is a solution of (4), it is unique. The existence follows
from the fact that ψ diverges as wi → 0 and as ‖w‖ → ∞, respectively (see [14],
Theorem 27.2, for details).

Note that the minimization problem of the function (5) is equivalent to a program that

minimizes w′Sw under given
∑p

i=1 logwi. Compare to the principal component analysis

that maximizes w′Sw under given
∑p

i=1w
2
i .

Definition 3. For any positive definite matrix S, the bi-unit matrix B = DSD induced

by Theorem 1 is called the bi-unit canonical form of S.

The bi-unit canonical form of a 2× 2 positive definite matrix

S =
(
a b
b a

)
, a > |b|,
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is

DSD =
1

a+ b

(
a b
b a

)
, D =

(
1√
a+b

0
0 1√

a+b

)
.

For another example, if S is given by the equation (1), its bi-unit canonical form is

DSD =

 8 −3.5 −3.5
−3.5 4.5 0
−3.5 0 4.5

 , D = diag

(
2
√

2,
3
√

2
2
,
3
√

2
2

)
. (6)

The equation (4) is a set of algebraic equations over the region w > 0. We can

numerically solve it by a coordinate descent algorithm of the convex function (5). The

algorithm is described in Table 2. Note that (4) is a quadratic equation for each i given

(wj)j 6=i.

Table 2: An algorithm computing the bi-unit canonical form.

Input A positive definite matrix S, initial value w0(= 1p), tolerance ε > 0.

Output A vector w > 0 such that DSD is bi-unit, where D = diag(w).

1. w ← w0

2. For i = 1, . . . , p, in order, solve the quadratic equation (4) with respect to wi.

3. If ‖w −w0‖ < ε, output w. Otherwise w0 ← w and go to step 2.

In the rest of the section, we briefly discuss relations between bi-unit matrices and

correlation matrices, where the correlation matrix of a given positive definite matrix S is

determined by R = (Sij/
√
SiiSjj). Both of bi-unit and correlation matrices are considered

as coordinate-wise scaling of S. An interesting property of the set of bi-unit matrices is

closedness under powers as well as inversion, that is, if B is bi-unit, then Bn is also bi-unit

for any integer n. The set of correlation matrices does not have this property.

In contrast, the set of bi-unit matrices is not closed under sign change of row/columns,

unlike correlation matrices. More precisely, if B is bi-unit and E = diag(e1, . . . , ep) with

ei ∈ {−1, 1}, then EBE is not necessarily bi-unit. Indeed, the equation (2) for p = 2 is

not closed under the sign change E = diag(1,−1). Another distinction from correlation

matrices is that a principal minor of a bi-unit matrix is not bi-unit in general.

See Appendix A.1 for other relations between correlation and bi-unit matrices.
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4 An objective general index (OGI)

Recall that X = (x1, . . . ,xp) is a centered data matrix and S is its covariance matrix.

Definition 4. Let DSD be the bi-unit canonical form of S determined by Theorem 1,

and denote the diagonal components of D by w = w(S) > 0. Then define the objective

general index (OGI) by

gOGI =
p∑

i=1

wixi

We call w the objective weight.

Theorem 2. The objective weight has consistency and covariance consistency.

Proof. The weight wi is positive from the definition. The covariance between

xi and g = gOGI is

1
n

x′
ig =

p∑
j=1

Sijwj =
1
wi

> 0, (7)

where the last equality follows from DSD1p = 1p.

For example, if the covariance matrix is given by (1), then OGI is

gOGI = 2
√

2x1 +
3
√

2
2

x2 +
3
√

2
2

x3

since the bi-unit canonical form is (6). Examples of real data sets are given in Section 5.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Let w > 0 and g =
∑p

i=1wixi. Then the following three conditions are

equivalent to each other.

(i) w is the objective weight.

(ii) For each i, the covariance between g and wixi is 1.

(iii) g is orthogonal to an affine hyperplane L = {
∑

i aiwixi |
∑

i ai = 1}, and g′g/n = p.

Proof. Equivalence of (i) and (ii) is obvious from (7). Assume (iii) holds. Since
both g/p and wixi are in L, we have g′(g/p − wixi) = 0. By g′g/n = p, we ob-
tain g′(wixi)/n = 1. Conversely, assume (ii). Take any two vectors

∑
i aiwixi and∑

i biwixi in L. Then

1
n

g′

(∑
i

aiwixi −
∑

i

biwixi

)
=
∑

i

(ai − bi) = 1− 1 = 0.

We also have g′g/n =
∑

i g′(wixi)/n = p.
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Figure 1: A geometric interpretation of OGI (p = 3), where yi = wixi, 1 ≤ i ≤ p. In the
space Rn, the barycenter g/p of yi’s has a common inner product with each yi. The half
lines out of the origin indicate the direction of xi’s.

From the condition (iii), we have a geometric interpretation of OGI as in Figure 1.

We also define the population OGI for a p-dimensional random vector

(X1, . . . , Xp)′ : Ω→ Rp

on a probability space (Ω, P ). The expectation is denoted by E. We assume that the vari-

ables are centered: E[Xi] = 0. Denote the population covariance matrix of (X1, . . . , Xp)′

by S = (Sij) = (E[XiXj ]). Let DSD be the bi-unit canonical form of S (Theorem 1)

and denote the diagonal components of D by w > 0. Then define the population OGI by

G =
p∑

i=1

wiXi.

It satisfies E[GwiXi] = 1 for each i.

5 Examples

We compute the objective weights of two real datasets.

Example 1. The first example is the data for decathlon collected at the International

Association of Athletics Federations (IAAF) World Athletics Championships held in 1991

to 2013. The data is available on the web site of IAAF. The data consists of n = 235
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athletes on p = 10 events, after the data with missing values and an obvious outlier in

2007 were removed. We transformed the data nonlinearly according to IAAF scoring

tables ([9], p.24). Figure 2 (a) shows the weight of the scaled sum, that is the reciprocal of

the standard deviation. The confidence interval showing ±1 standard error was computed

by the bootstrap method. The three highest weights are 400m, 100m, and 110mH. As

was reported in [5], it may be concluded that the present scoring rule could favor the

athletes who are good in the field events. However, the objective weight shown in Figure 2

(b) has a different property. Only the weight of 1500m is quite larger than the other

events. It suggests that the IAAF scoring method could be modified to weight 1500m

more. Conservatively speaking, the fact that the correlation coefficient of the OGI and

original total scores is 0.986 will support the fairness of the IAAF scoring method. Figure 3

shows the scatter plot of the two quantities.
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(a) The weight of the scaled sum. (b) The objective weight.

Figure 2: The weights of the decathlon data.

Example 2. Consider the USJudgeRatings data provided in R [13], that represents the

lawyers’ ratings of state judges in the US Superior Court. The data consists of n = 43

observations on p = 12 numeric variates. Figure 4 shows the relative objective weight, that

means the objective weight of the standardized data. The standard error is computed

by the bootstrap method. From the figure, the weight of the variate CONT (number

of contacts of lawyer with judge) is about three times that of the other variates. This

result is due to the high correlation between the variates other than CONT. In general, if

x′
1x2 = 0 and x2 = · · · = xp, then the relative objective weight in an extended sense (see

the following section) is given by w = (1, 1/
√
p− 1, . . . , 1/

√
p− 1)′.
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Figure 3: A scatter plot of the OGI against the total score for the decathlon data.

6 Extension of OGI

We extend the definition of OGI in two ways. First we show that even if there is multi-

collinearity in the data matrix X, OGI is defined unless a positive combination of some

columns is zero. Secondly, we incorporate subjective importance a priori in the definition

of OGI.

6.1 Multicollinearity

The data matrix X is said to have multicollinearity if it is not column full-rank, or

equivalently the covariance matrix is singular. Even for such data, a general index with

the same property as OGI is constructed under a condition.

For example, consider 2-dimensional data X = (x1,x2) ∈ Rn×2. If x1 = x2 and the

variance of x1 is 1, then the covariance between g = (x1 +x2)/
√

2 and xi/
√

2 is 1 for each

i. However, if x1 = −x2, then there is no weight w such that the covariance between Xw

and xi is positive for each i. Difference of the two examples is described by the following

condition of the covariance matrix. Denote the set of non-negative real numbers by R≥0.

Definition 5. Let S be a positive semi-definite matrix. Then S is called strictly copositive

if λ′Sλ > 0 for any λ ∈ Rp
≥0 \ {0}.
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Figure 4: The relative objective weight of the lawyers’ ratings data.

Theorem 1 is extended as follows. For later use, we also generalize the equation (3).

The proof is similar and omitted.

Theorem 3 ([11], Theorem 1). Let S be a p × p positive semi-definite matrix and ν be

a positive vector in Rp. Then the equation

DSD1p = ν, D = diag(w), w > 0,

has a unique solution if and only if S is strictly copositive.

If the covariance matrix of X satisfies the strict copositivity condition, then g = Xw

is well-defined, and called OGI when ν = 1p.

For general square matrices, it is known that the copositivity condition is hard to

confirm (see [12]). However, for positive semi-definite matrices, one can use methods of

linear programming. We prepare a lemma.

Lemma 1. Let S be a positive semi-definite matrix such that S = X ′X/n and X =

(x1, . . . ,xp) ∈ Rn×p. Then the following conditions are equivalent to each other.

(i) S is strictly copositive.

(ii) (kerS) ∩ Rp
≥0 = {0}.

(iii) (kerS) ∩ {λ ∈ Rp
≥0 | 1′

pλ = 1} = ∅.
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(iv) (kerX) ∩ Rp
≥0 = {0}, where X is considered as a linear map from Rp to Rn.

(v) The convex cone C = {
∑p

i=1 λixi | λ1, . . . , λp ≥ 0} is proper, that is, C contains no

whole line.

Proof. Equivalence of (i) and (ii) follows from the identity {λ | λ′Sλ = 0} = kerS
for positive semi-definite S. Equivalence of (ii) and (iii) is obvious. Equivalence of (ii)
and (iv) follows from kerS = ker X. To show (v) implies (iv), assume that there exists
0p 6= λ ∈ (kerX) ∩ Rp

≥0. There is i such that λi > 0. Then xi =
∑

k 6=i(−λk/λi)xk

and therefore both xi and −xi are contained in C. Thus C is not proper. Conversely,
if C is not proper, then there exists a vector 0p 6= y ∈ C such that −y ∈ C. From the
definition of C, there is λ,µ ∈ Rp

≥0 \ {0p} such that y = Xλ and −y = Xµ. Then
0p = y + (−y) = X(λ + µ) and therefore (kerX) ∩ Rp

≥0 6= {0}.

The condition (iii) is written as a feasibility problem in linear programming, and

examined by standard methods (see e.g. Theorem 9.2 of [4] and its proof).

The condition (v) has geometric meaning as in Figure 1. It means that the p vectors

never balance.

Example 3. Imagine a data set of baseball players with 11 attributes: the plate appear-

ance (PA), at bat (AB), hit (H), double (DO), triple (TR), home run (HR), total base

(TB), base on balls (BB), hit by a pitch (HBP), sacrifice hit (SH), and sacrifice fly (SF).

This data set has the following structural multicollinearity as

(PA)− (AB) + (BB) + (HBP) + (SH) + (SF) = 0

and

(TB)− (H)− (DO)− 2 · (TR)− 3 · (HR) = 0.

However, the strict copositivity condition is fulfilled unless incidental multicollinearity

occurs. Indeed, one can show that

ker(X) = {(λ,−λ,−µ,−µ,−2µ,−3µ, µ, λ, λ, λ, λ)′ | λ, µ ∈ R}

and therefore ker(X) ∩ Rp
≥0 = {0}.

6.2 Subjective importance

We call the parameter ν in Theorem 3 the subjective importance. The OGI with the sub-

jective importance ν is defined by g =
∑p

i=1wixi, where w is determined by Theorem 3.

It makes a specific variate more significant. It is also used to deal with ordered categorical

data in Section 7.
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7 Quantification of ordered categorical data

In this section, we define the OGI of ordered categorical variates. For ease of description,

we consider random vectors instead of data matrix. Denote the probability space and

expectation by (Ω, P ) and E, respectively.

7.1 Univariate case

Consider a random variable X that takes values in a finite set {0, 1, . . . ,K}. The set

has the usual order 0 < 1 < · · · < K. For each k ∈ {1, . . . ,K}, define a non-decreasing

function hk by

hk(x) = 1{x≥k} − P (X ≥ k), x ∈ {0, 1, . . . ,K}.

Note that E[hk(X)] = 0.

We obtain the population OGI of the K random variables h1(X), . . . , hK(X). Specifi-

cally, let

Skl = E[hk(X)hl(X)]

= P (X ≥ max(k, l))− P (X ≥ k)P (X ≥ l).

Then the objective weight (w1, . . . , wK) is defined by Theorem 3, where the subjective

importance is set to

ν =
(

1
K
, . . . ,

1
K

)′
=

1
K

1K .

By using the objective weight, the score of a realization x of X is defined by

y(x) =
K∑

k=1

wkhk(x), x ∈ {0, 1, . . . ,K}. (8)

The function preserves the order, that is, y(x) < y(x̃) if x < x̃. We call the procedure

finding y(x) the univariate OGI quantification. Note that E[y(X)2] = 1 since

E[y(X)2] = w′Sw = 1′
Kν = 1.

Our quantification method is different from the optimal scaling ([2]). In the optimal

scaling, the weight w is determined in such a way that the variance of y(X) is maximized

under some conditions. In our method, the variance is minimized under given
∑K

k=1 logwk

(see the remark after Theorem 1).
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Example 4. Table 3 shows an exam data ([8], Table 4.4), a result of exams on geometry

and probability for 26 students. In this example, we use the set of marks {1−, 2, . . . , 5}

instead of the set {0, 1, . . . , 4} for ease of explanation. The marginal distribution of the

geometry exam is

(p1−, p2, p3, p4, p5) =
(

1
26
,

2
26
,

5
26
,
14
26
,

4
26

)
= (0.038, 0.077, 0.192, 0.538, 0.154).

The objective weight is

(w2, w3, w4, w5) = (1.905, 1.012, 0.731, 1.162)

and the score (8) is

(y(1−), y(2), y(3), y(4), y(5)) = (−3.412,−1.506,−0.495, 0.236, 1.398).

Table 3: Result of examinations of geometry and probability ([8], Table 4.4).

Geometry \ Probability 5 4 3 2 1− Total
5 2 1 1 0 0 4
4 8 3 3 0 0 14
3 0 2 1 1 1 5
2 0 0 0 1 1 2
1− 0 0 0 0 1 1
Total 10 6 5 2 3 26

7.2 Multivariate case

Consider a random vector (X1, . . . , Xp). Each variable Xi is either ordered categorical or

continuous. For ordered categorical variable Xi, assume its range is {0, 1, . . . ,Ki} without

loss of generality, and define hik(xi) = 1{xi≥k}−P (Xi ≥ k) for 1 ≤ k ≤ Ki. For continuous

variable Xi, let Ki = 1 and hi1(x) = x.

The objective weight of the whole random variables

hik(Xi), 1 ≤ i ≤ p, 1 ≤ k ≤ Ki,

is defined by Theorem 3, where the subjective importance is set to νik = 1/Ki. Let (wik)

be the objective weight. The score of a realization xi of Xi is defined by

yi(xi) =
Ki∑
k=1

wikhik(xi).
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The OGI is written as

g(x1, . . . , xp) =
p∑

i=1

yi(xi) =
p∑

i=1

Ki∑
k=1

wikhik(xi).

We call the procedure the simultaneous OGI quantification.

Again, our method is distinct from the multivariate version of the optimal scaling

method proposed by [15]. In their method, the weight w is determined in such a way that

the variance of the first principal component of {yi(Xi)} is maximized.

We also define a two-stage version of the OGI quantification. Namely, first compute

the univariate OGI quantification of each categorical variable Xi as described in the last

subsection. Denote it by g̃i(xi). For continuous variables, put g̃i(xi) = xi. Let (v1, . . . , vp)

be the objective weight of the quantified vector (g̃1(X1), . . . , g̃p(Xp)). Then define the

score of xi by ỹi(xi) = vig̃i(xi), and finally

g̃(x1, . . . , xp) =
p∑

i=1

ỹi(xi) =
p∑

i=1

vig̃i(xi).

We call the procedure the two-stage OGI quantification. In general, the two-stage version

is easier to compute than the simultaneous one since the former needs only covariance

matrices of size K1, . . . ,Kp, and p, while the latter needs a covariance matrix of size∑p
i=1Ki.

Example 5. Consider the exam data in Table 3 again. The data is bivariate. The

results of OGI quantification and two-stage OGI quantification are shown in Table 4,

Table 5, and Figure 5. In the figure, the diagonal axis denotes the OGI divided by 2,

that is,
∑2

i=1 yi(xi)/2 for the simultaneous one and
∑2

i=1 ỹi(xi)/2 for the two-stage one,

respectively. The results of the two methods are almost the same.

8 Functional OGI

The (population) general index considered so far was a linear combination
∑p

i=1wiXi of

variables Xi. In this section, we define the functional OGI by a combination
∑p

i=1 yi(Xi)

of increasing functions yi(Xi). The set of functions yi will be determined by a nonlinear

integral equation involving pairwise bivariate copulas.
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Table 4: The simultaneous OGI quantification of the exam data

Geometry
x 1− 2 3 4 5
weight w1x 1.533 0.728 0.489 1.068
score y1(x) −2.621 −1.088 −0.360 0.129 1.197

Probability
x 1− 2 3 4 5
weight w2x 0.728 0.535 0.511 0.595
score y2(x) −1.619 −0.891 −0.357 0.155 0.750

Table 5: The two-stage OGI quantification of the exam data

Geometry (v1 = 0.770)
x 1− 2 3 4 5
marginal weight w̃1x 1.905 1.012 0.731 1.162
marginal OGI g̃1(x) −3.412 −1.506 −0.495 0.236 1.398
score ỹ1(x) −2.627 −1.160 −0.381 0.182 1.077

Probability (v2 = 0.770)
x 1− 2 3 4 5
marginal weight w̃2x 1.011 0.747 0.612 0.701
marginal OGI g̃2(x) −2.144 −1.133 −0.386 0.226 0.927
score ỹ2(x) −1.651 −0.873 −0.297 0.174 0.714
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(a) The simultaneous quantification. (b) The two-stage quantification.

Figure 5: The simultaneous and two-stage OGI quantification of exam data.
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8.1 Univariate functional OGI

Let X be a random variable with the uniform distribution on (0, 1). For each ξ ∈ (0, 1),

define a non-decreasing function hξ : (0, 1)→ R by

hξ(x) = 1{x≥ξ} − (1− ξ)

= −(1{x<ξ} − ξ).

Note that E[hξ(X)] = 0. Let Sξη be the covariance between hξ(X) and hη(X):

Sξη = E[hξ(X)hη(X)] = min(ξ, η)− ξη.

The functions hξ(x) are considered as a basis of the set of increasing functions in the

following sense. For any positive continuous function wξ of ξ ∈ (0, 1) with a constraint∫ 1
0 ξ(1− ξ)wξdξ <∞, the function

y(x) =
∫ 1

0
wξhξ(x)dξ (9)

is an increasing function satisfying y′(x) = wx and E[y(X)] = 0 (see Appendix A.3).

The objective weight of the infinite number of the random variables {hξ(X)}ξ∈(0,1) is

defined by the solution wξ of an integral equation∫ 1

0
Sξηwηdη =

1
wξ
, ξ ∈ (0, 1).

See subsection A.4 for more details. In terms of y(x) in (9), the equation is equivalent to

E[hξ(X)y(X)] =
1

y′(ξ)
, ξ ∈ (0, 1). (10)

Then a continuous version of OGI is defined by

G = y(X) =
∫ 1

0
wξhξ(X)dξ. (11)

We call G the univariate functional OGI for convenience even though there is no variety

of the distribution of X.

We obtain the following remarkable fact. Denote the cumulative distribution function

of the standard normal distribution by Φ(x) =
∫ x
−∞(2π)−1/2e−u2/2du.

Theorem 4. Let y : (0, 1) → R denote an increasing and continuously differentiable

function such that
∫ 1
0 x(1 − x)y

′(x)dx < ∞. Then the unique solution of (10) is y(x) =

Φ−1(x). In particular, G has the standard normal distribution.
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Proof. The equation (10) is written as∫ 1

ξ

y(x)dx =
1

y′(ξ)
. (12)

The derivative of (12) is −y(ξ) = −y′′(ξ)/y′(ξ)2, which is equivalent to

{Φ(y(ξ))}′′ = 0.

By integrating twice, we obtain Φ(y(ξ)) = Cξ +D, or

y(ξ) = Φ−1(Cξ +D).

By the condition (12), it is necessary to be y′(0+) =∞ and y′(1−) =∞. This implies
C = 1 and D = 0. Therefore y(ξ) = Φ−1(ξ). It certainly satisfies (12). Finally,
G = y(X) has the distribution Φ.

Remark 1. Consider other weights. If we simply use wξ = 1, then the general index

G =
∫ 1

0
hξ(X)dξ = X

is distributed according to the uniform distribution. Standardization corresponds to wξ =

1/
√
ξ(1− ξ) since E[hξ(X)2] = ξ(1− ξ). Then the general index

G =
∫ 1

0

hξ(X)√
ξ(1− ξ)

dξ = Sin−1(2X − 1)

has the distribution P (G ≤ g) = (1 + sin g)/2 for −π/2 ≤ g ≤ π/2. The first principal

component corresponds to the solution of∫ 1

0
Sξηwηdη = λwξ

associated with the largest eigenvalue λ. It is shown that λ = 1/π2 and w(x) = π cos(π(x−

1/2)). Thus

G =
∫ 1

0
wξhξ(X)dξ = sin(π(X − 1/2))

has the arcsine distribution.

8.2 Multivariate functional OGI

Let (X1, . . . , Xp) be a random vector with uniform marginals on (0, 1). Define the same

function hξ as the univariate case. Let Sξi,ηj be the covariance between random variables

hξ(Xi) and hη(Xj):

Sξi,ηj = E[hξ(Xi)hη(Xj)] = Cij(ξ, η)− ξη,
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where Cij(ξ, η) = P (Xi ≤ ξ,Xj ≤ η) is the bivariate copula of (Xi, Xj). Note that

Cii(ξ, η) = min(ξ, η) if i = j.

The objective weight wξi is the solution of∑
j

∫ 1

0
Sξi,ηjwηjdη =

1
wξi

, i = 1, . . . , p, ξ ∈ (0, 1).

In terms of yi(x) =
∫ 1
0 wξihξ(x)dξ, it is equivalent to∑

j

E[hξ(Xi)yj(Xj)] =
1

y′i(ξ)
. (13)

The multivariate functional OGI is defined by

G =
p∑

i=1

yi(Xi) =
p∑

i=1

∫ 1

0
wξihξ(Xi)dξ.

The following theorem is an extension of the univariate case. Denote the multivariate

normal distribution with the mean 0 and covariance matrix S by N(0,S). Recall that Φ

is the cumulative distribution function of the standard normal distribution.

Theorem 5. Let S be a p×p correlation matrix and assume that (Φ−1(X1), . . . ,Φ−1(Xp))

is distributed according to N(0,S). Let v be the objective weight of S. Then yi(x) =

viΦ−1(x) solves the equation (13).

Proof. Assume yi(x) = viΦ−1(x) and put Zi = Φ−1(Xi). Then we obtain

E[hξ(Xi)yj(Xj)] = E[1{Xi≥ξ}yj(Xj)]
= E[1{Zi≥Φ−1(ξ)}vjZj ]

= E[1{Zi≥Φ−1(ξ)}E[vjZj |Zi]]

= vjSijE[1{Zi≥Φ−1(ξ)}Zi]

= vjSijφ(Φ−1(ξ)),

where φ = Φ′. Then the equation (13) is written as∑
j

vjSijφ(Φ−1(ξ)) =
φ(Φ−1(ξ))

vi
,

which is satisfied if and only if v is the objective weight of S.

Remark 2. Uniqueness of the solution is obtained if one restricts the space of wξi to the

domain of a convex functional. See Subsection A.4 for details.

The theorem says that (13) is explicitly solved if the bivariate copulas Cij(ξ, η) are

the Gaussian copula. The author is not aware of any other copula for which (13) has an

explicit solution.
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For functional OGI, we can define a two-step version in the same manner as the quan-

tification method in Section 7: compute the OGI of transformed variables Φ−1(Xi). The

method is, however, theoretically not interesting since it is reduced to a finite-dimensional

case.

9 Discussion

9.1 High-dimensional and/or missing data

We defined the objective weight by the bi-unit canonical form of the sample covariance

matrix in Section 4. The standard error of the weight can be estimated by the bootstrap

method. However, if the dimension p is large, the procedure will break down. The sample

covariance should be replaced with some regularized estimator.

The data usually has missing values. Our method is available as long as the covariance

matrix is appropriately estimated.

9.2 OGI-based principal component analysis

Let XD, D = diag(w), be the scaled data determined by the objective weight. Then we

can apply the principal component analysis (PCA) to the matrix

Z = XD(Ip − 1p1′
p/p).

Then the matrix Z is orthogonal to the OGI, g = XD1p, since

g′Z = 1′
pD

′X ′XD(Ip − 1p1′
p/p)

= 1′
p(Ip − 1p1′

p/p)

= 0′
p.

Thus Z has information other than OGI.

9.3 Relation to the textile plot

In [10], a weight vector w is used to visualize high-dimensional data X effectively, where

the weight is determined in such a way that XD is aligned as horizontal as possible in

the parallel coordinate plot. The method is called the textile plot. If X has only nu-

meric attribute without missing values and it is standardized, then the weight w becomes

the eigenvector of the sample correlation matrix associated with the largest eigenvalue
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(Corollary 1 of [10]), that is, the first principal component. We call it the textile weight

here.

We can use the objective weight to visualize the data as well. A difference from the

textile plot is that the objective weight w must be always positive. Figure 6 shows the

parallel coordinate plot of the USJudgeRatings data. The plot based on OGI is rather

different from the textile plot.
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Figure 6: The parallel coordinate plot of the USJudgeRatings data based on the raw,
standardized, textile-weighted, and OGI-weighted scores, respectively.

A Appendix

A.1 Mathematical properties of bi-unit matrices

We briefly summarize mathematical properties of bi-unit matrices defined in Definition 2.

Let Bp be the set of all bi-unit matrices in Rp×p. The set Bp is a convex set and

closed under powers. As noted in Section 3, Bp is not closed under sign change of each

row/columns. A principal minor of a bi-unit matrix is not bi-unit in general.

A matrix A ∈ Rp×p is called doubly stochastic if every element of A is non-negative,

A1 = 1, and A′1 = 1. Denote the set of all doubly stochastic matrices by Dp. Then we

have

Bp ∩ Dp = {B ∈ Bp | Bij ≥ 0 for all i, j} = {A ∈ Dp | A is positive definite}.
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The set Bp ∩ Dp is studied in literature (e.g. [3]). There is no inclusive relation between

Bp and Dp. For example,(
2 −1
−1 2

)
∈ B2 \ D2 and

(
0 1
1 0

)
∈ D2 \ B2.

Denote the set of all correlation matrices by Cp, where a correlation matrix means a

positive definite matrix whose diagonal vector is 1. By Theorem 1, there is a one-to-one

correspondence between Bp and Cp. The correspondence is shown to be diffeomorphic.

If p = 2 or p = 3, Cp ∩Bp consists of the identity matrix only. If p = 4, then Bp ∩ Cp is

the set of positive definite matrices written as

B =


1 a b c
a 1 c b
b c 1 a
c b a 1

 , a+ b+ c = 0.

In general, Bp ∩ Cp is a p(p− 3)/2-dimensional convex set if p ≥ 4.

The set Bp is the intersection of a Lie group {G ∈ GL(p) | G1 = 1} and the cone of

positive definite matrices. The Lie algebra is {A ∈ Rp×p | A1 = 0}. Any bi-unit matrix B

is uniquely written as B = exp(A) =
∑∞

k=0 Ak/k! with a symmetric matrix A satisfying

A1 = 0. Any real power Bλ of a bi-unit matrix B is also bi-unit.

Choose a matrix Q ∈ Rp×(p−1) such that (1/
√
p,Q) is an orthogonal matrix. Then

any bi-unit matrix B is uniquely written as

B =
1
p
11′ + QAQ′ (14)

with a positive definite matrix A ∈ R(p−1)×(p−1). In particular, the set Bp is affinely

isomorphic to the set of (p− 1)-dimensional positive definite matrices.

A.2 Dual data

Denote the covariance matrix of a data matrix X = (x1, . . . ,xp) by S. Assume that

x1, . . . ,xp are linearly independent and therefore S is positive definite. Define the dual

data by Y = XS−1. Each column of Y is written as yi =
∑

j S
ijxj , where Sij is (i, j)-

element of S−1. The covariance matrix of Y is S−1.

Then the covariance between yi and xj is

1
n

y′
ixj =

1
n

∑
k

Sikx′
kxj =

∑
k

SikSkj = δij .
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Therefore, for each i, yi is orthogonal to {xj}j 6=i. In terms of linear algebra, {yi} is the

dual basis of {xi} with respect to the inner product. In terms of linear regression, yi is

(a scalar multiple of) the residual when xi is explained by {xj}j 6=i,

The following lemma shows that consistency defined in Definition 1 is equivalent to

covariance consistency with respect to the dual data.

Lemma 2. A general index g = Xw is consistent if and only if the covariance between

g and yi is positive for each i.

Proof. For any general index g =
∑p

i=1wixi, we have

1
n

g′yi =
∑

j

wj
1
n

x′
jyi =

∑
j

wjδij = wi.

Hence wi > 0 if and only if g′yi > 0.

We also have an invariant property of OGI under the dual transformation.

Lemma 3. The OGI of the dual data Y is equal to that of the original data X.

Proof. Denote the objective weight of S by wi. The dual coordinate yi has

the covariance matrix S−1, whose objective weight is w−1
i . Hence the OGI of

Y is

∑
i

1
wi

yi =
∑

i

∑
j

1
wi
Sijxj =

∑
j

wjxj ,

where the relation
∑

i S
ij/wi = wj is used.

A.3 The basis of increasing functions

Recall that hξ(x) = 1{x≥ξ} − (1− ξ).

Lemma 4. Let wx be a nonnegative continuous function of x ∈ (0, 1) such that
∫ 1
0 wxx(1−

x)dx < ∞. Then y(x) =
∫ 1
0 wξhξ(x)dξ is a continuously differentiable non-decreasing

function satisfying y′(x) = wx and
∫ 1
0 y(x)dx = 0.

Proof. Fix x ∈ (0, 1). We have hξ(x) = ξ for 0 < ξ < x, and hξ(x) = −(1 − ξ) for
x < ξ < 1. Hence y(x) =

∫ 1

0
wξhξ(x)dξ is finite by the assumption on w. For any

δ ∈ (0, x), we have

y(x)− y(x− δ) =
∫ x

x−δ

wξdξ,
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which implies y(x) is non-decreasing and y′(x) = wx. By Fubini’s theorem, we obtain∫ 1

0

y(x)dx =
∫ 1

0

(∫ 1

0

wξhξ(x)dξ
)
dx

=
∫ 1

0

wξ

(∫ 1

0

hξ(x)dx
)
dξ = 0,

where the condition of Fubini’s theorem is checked as∫ 1

0

∫ 1

0

wξ|hξ(x)|dxdξ = 2
∫ 1

0

wξξ(1− ξ)dξ <∞.

A.4 Infinite-dimensional OGI

We formally define the objective general index of infinitely many random variables.

Let {Xξ}ξ∈Ξ be a set of random variables, where Ξ is a measurable space with a finite

measure µ. Assume that E[Xξ] = 0 for each ξ. Then a general index of {Xξ}ξ∈Ξ is defined

by

G =
∫

Ξ
wξXξµ(dξ),

where wξ is a positive measurable function of ξ depending on the covariance process

Sξη = E[XξXη], ξ, η ∈ Ξ.

The objective weight w = w[S] is defined by an integral equation∫
Ξ
wηSξηµ(dη) =

1
wξ
, µ - almost every ξ. (15)

This is the stationary condition of a convex functional

Ψ[w] =
1
2

∫
Ξ

∫
Ξ
wξwηSξη µ(dξ)µ(dη)−

∫
Ξ
(logwξ)µ(dξ).

Then a uniqueness result is given in the following lemma. Existence is not discussed here.

Lemma 5. The solution of (15) over the region W = {w | Ψ[w] < ∞} is unique (µ-a.e.)

if it exists.

Proof. Let w ∈ W and w + δ ∈ W. Then

Ψ[w + δ]−Ψ[w]

=
1
2

∫∫
δξδηSξηµ(dξ)µ(dη) +

∫
δξ

∫
wηSξηµ(dη)µ(dξ)−

∫
log

wξ + δξ
wξ

µ(dξ)

≥
∫
δξ

∫
wηSξηµ(dη)µ(dξ)−

∫
log

wξ + δξ
wξ

µ(dξ)

=
∫
δξ

(∫
wηSξηµ(dη)− 1

wξ

)
µ(dξ) +

∫ (
δξ
wξ
− log

(
1 +

δξ
wξ

))
µ(dξ)

>

∫
Ξ

δξ

(∫
Ξ

wηSξηµ(dη)− 1
wξ

)
µ(dξ)
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unless δ is zero µ-almost everywhere. Hence the solution of (15) over W is the unique
minimal point of Ψ.

We give some examples. If Ξ = {1, . . . , p} and µ is the counting measure on Ξ, then

(15) is equivalent to (3). The functional OGI in Section 8 uses Ξ = [0, 1]× {1, . . . , p} and

the product measure µ of the Lebesgue and counting measures.

Example 6 (Geostatistics). Let Ξ ⊂ Rd be a bounded set with non-empty interior and

define µ(A) = |A|/|Ξ|, where |A| is the Lebesgue measure of A. In geostatistics, the

Matérn covariance function

Sξη =
φ

2ν−1Γ(ν)
(α|ξ − η|)νKν(α|ξ − η|)

is recommended to use (e.g. [16]), where φ, ν and α are positive parameters andKν denotes

the modified Bessel function of the second kind. Figure 7 shows numerically evaluated

weight functions wξ for several values of ν, where Ξ = [0, 1] and α = φ = 1. The interval

Ξ = [0, 1] is approximated by n = 100 grid points. There is an edge effect in that the

weight increases as ξ approaches to the boundary.
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Figure 7: The objective weight function wξ of the Matérn class, where Ξ = [0, 1] and
α = φ = 1.

25



Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 26540013.

References

[1] R. J. Baker. Selection indexes without economic weights for animal breeding. Canad.

J. Animal Sci., 54(1):1–8, 1974.

[2] R. A. Bradley, S. K. Katti, and I. J. Coons. Optimal scaling for ordered categories.

Psychometrika, 27(4):355–374, 1962.

[3] J. P. R. Christensen and P. Fischer. Positive definite doubly stochastic matrices and

extreme points. Linear Algebra Appl., 82:123–132, 1986.

[4] V. Chv́ital. Linear Programming. W. H. Freeman and Company, 1983.

[5] T. F. Cox and R. T. Dunn. An analysis of decathlon data. J. Roy. Statist. Soc., Ser.

D, 51(2):179–187, 2002.

[6] D. D. Dill and M. Soo. Academic quality, league tables, and public policy: a cross-

national analysis of university ranking systems. Higher Education, 49(4):495–533,

2005.

[7] R. C. Elston. A weight-free index for the purpose of ranking or selection with respect

to several traits at a time. Biometrics, 19(1):85–97, 1963.
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