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Abstract

De Klerk-Pasechnik (2002) showed a way to compute the stability
number α(G) via copositive programming and proposed LP- and SDP-
based approximation schemes for the copositive program.

In this paper, we show that their LP-based approximation for the
stable set problem is equivalent to a problem of minimizing a quadratic
form over a rational grid on the simplex, which can be viewed as a
discretized version of the Motzkin-Straus theorem. Furthermore, we
provide an algorithm to recover a maximum stable set from an optimal
solution of the LP-based approximation and propose a simple local
search heuristics for the stable set problem on the basis of the results.

1 Introduction

The stable set problem is a classical problem in combinatorial optimization,
which has important applications in various fields. A pioneering work by
Lovász [4] introduced an SDP relaxation for the stable set problem to obtain
an upper bound θ(G) (called theta number) of the stability number α(G).
De Klerk-Pasechnik [2] refined this approach and provided a way to obtain
α(G) via copositive programming. They also provided LP- and SDP-based
approximation schemes by replacing the copositive cone Cn with a sequence
of cones that converges to Cn and proved that both of the schemes yield
α(G) after rounding down if the degree r of approximation is sufficiently
large.

In this paper, we establish a new explicit formula for the optimal value
of their LP-based approximation and reformulate it as a minimization of
a quadratic form over a rational grid on the simplex. Our reformulation
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sheds a new insight on the LP-based approximation and clarifies its power
of approximation. Our discrete quadratic program may be viewed as a dis-
cretized version of a classical result by Motzkin-Straus [5] on representing
the stability number as a quadratic program. We provide an algorithm to
recover a stable set from the support of a feasible solution. Our algorithm
actually gives a maximum stable set from any optimal solution, provided
the degree r of approximation is at least α(G)− 2. This lower bound sharp-
ens the result of Peña-Vera-Zuluaga [7]. Furthermore, on the basis of these
results, we provide a quite simple local search heuristics for the stable set
problem. The efficiency of the proposed heuristics is confirmed by compu-
tational experiments on DIMACS benchmarks.

2 Preliminaries

2.1 Stable Set Problem

Throughout the paper G = (V,E) will denote a simple undirected graph
with vertex set V = {1, . . . , n} and edge set E. Also, let A be the adjacency
matrix of G, I the n × n identity matrix, and e the n-dimensional all-one
vector. A subset V ′ ⊆ V is stable if {i, j} /∈ E for all i, j ∈ V ′. A stable set
is maximum if there are no larger stable sets in G and the stability number
α(G) is the cardinality of a maximum stable set in G. The stable set problem
is to find a maximum stable set and is known to be NP-hard [3].

2.2 Copositive Programming

Let Sn be the set of all n × n real symmetric matrices. A matrix X ∈
Sn is said to be copositive if y⊤Xy is nonnegative for all n-dimensional
nonnegative vectors y ∈ Rn

+. The set of all n × n copositive matrices is
denoted by Cn. A Copositive program is a convex optimization problem of
the following form:

Minimize Tr(CX)

subject to Tr(AiX) = bi (i = 1, . . . ,m),

X ∈ Cn,

where Ai, X,C ∈ Rn×n and bi ∈ R. The stability number α(G) can be
obtained by solving a copositive program.

Theorem 1 (De Klerk-Pasechnik [2]) The stability number α(G) equals
the optimal value of

Minimize λ

subject to λ(I +A)− ee⊤ ∈ Cn, (1)

λ ∈ R.

2



Theorem 1 implies that copositive programming is intractable. In fact, de-
termining whether a matrix is copositive is co-NP-complete [6].

2.3 LP-based Approximation

De Klerk-Pasechnik [2] introduced an LP-based approximation hierarchy
for Cn. We consider the equivalent definition of copositivity to construct the
approximate cone. We can see that M ∈ Sn is copositive if and only if the
fourth order form given by

PM (x) = (x ◦ x)⊤M(x ◦ x) =
n∑

i,j=1

Mijx
2
ix

2
j

is nonnegative, where “◦” indicates the componentwise product. Obviously,
a sufficient condition for M to be copositive is that all the coefficients of
PM (x) are nonnegative. Then higher-order sufficient conditions can be de-
rived by considering whether the coefficients of the polynomial

P
(r)
M (x) =

 n∑
i,j=1

Mijx
2
ix

2
j

( n∑
i=1

x2i

)r

take nonnegative value. For any integer r ≥ 0, we define Cr
n as the cone of

matrices M ∈ Sn such that all the coefficients of P
(r)
M (x) are nonnegative.

Then the following inclusions hold:

C0
n ⊆ C1

n ⊆ · · · ⊆ Cn. (2)

We define ζ(r)(G) as the minimum of the LP-based approximation of (1):

Minimize λ

subject to λ(I +A)− ee⊤ ∈ Cr
n, (3)

λ ∈ R,

where we set ζ(r)(G) = ∞ if the problem is infeasible. Then it follows from
(2) that

ζ(0)(G) ≥ ζ(1)(G) ≥ · · · ≥ α(G).

De Klerk-Pasechnik [2] showed that ⌊ζ(r)(G)⌋ = α(G) if r ≥ α(G)2. Peña-
Vera-Zuluaga [7] strengthened and sharpened their result as follows.

Theorem 2 (Peña-Vera-Zuluaga [7]) It holds that ⌊ζ(r)(G)⌋ = α(G) if
and only if r ≥ α(G)2 − 1. Furthermore, ζ(r)(G) < ∞ if and only if r ≥
α(G)− 1.

Thus we can regard problem (3) as an LP-based formulation of the stable
set problem for sufficiently large r.
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3 Results

3.1 Discrete Version of Motzkin-Straus Theorem

We present a new explicit expression of ζ(r)(G) as follows.

Theorem 3 For r ≥ α(G)− 1, we have

ζ(r)(G) = max
w∈In(r+2)

(r + 2)(r + 1)

w⊤(I +A)w − (r + 2)
, (4)

where

In(t) = {w ∈ Zn
+ | e⊤w = t}.

Considering (3) is an LP with a single variable λ, we can solve it easily

by deriving conditions for each coefficient of P
(r)
M (x) to be nonnegative. We

can calculate them by expanding the polynomial.

Lemma 4 (Bomze-de Klerk [1]) Let M ∈ Sn and introduce the multi-
nomial coefficients

c(m) =
(
∑n

i=1mi)!

m1! · · ·mn!

for any m ∈ Zn
+. Then we have

P
(r)
M (x) =

∑
w∈In(r+2)

awx
w1
1 · · ·xwn

n ,

where

aw =
c(w)

(r + 2)(r + 1)
(w⊤Mw − w⊤diagM),

diagM = (M11, . . . ,Mnn)
⊤.

Now we can obtain (4) immediately from Lemma 4.

Proof of Theorem 3 The constraint in Problem (3), λ(I +A)− ee⊤ ∈ Cr
n,

means that every coefficient of P r
λ(I+A)−ee⊤

(x) is nonnegative. By Lemma 4,

this is equivalent to

w⊤(λ(I +A)− ee⊤)w − w⊤diag(λ(I +A)− ee⊤)

= λw⊤(I +A)w − (e⊤w)2 − (λ− 1)w⊤e

= λw⊤(I +A)w − (r + 2)2 − (λ− 1)(r + 2)

= λ(w⊤(I +A)w − (r + 2))− (r + 2)(r + 1) ≥ 0
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for every w ∈ In(r+2). If r ≥ α(G)− 1, we have w⊤(I +A)w− (r+2) > 0
for any w ∈ In(r + 2) from Theorem 2. Therefore (4) holds. (QED)

Our formula can be viewed as a discretized version of the Motzkin-Straus
formula.

Theorem 5 (Motzkin-Straus [5]) We have

α(G) = max
x∈∆

1

x⊤(I +A)x
, (5)

where ∆ denotes the n-dimensional standard simplex. Moreover, let {1, . . . , k}
be a maximum stable set of G. Then x1 = · · · = xk = 1/k, xk+1 = · · · =
xn = 0 is an optimal solution of (5).

The relation between (4) and (5) becomes more explicit if we rewrite ζ(r
′−2)(G)

for r′ ≥ α(G) + 1 as

ζ(r
′−2)(G) = max

x∈∆(r′)

r′ − 1

r′x⊤(I +A)x− 1
,

where ∆(r′) denotes the set of 1/r′-integral vectors in ∆ for r′ ∈ N. Theo-
rem 5 also states that the support of an optimal solution of (5) is a maximum
stable set. Correspondingly, we can derive a maximum stable set from the
support of an optimal solution of (4).

3.2 Recovery of Stable Set

We provide an algorithm to obtain a maximum stable set from the support
of an arbitrary optimal solution of (4).

Definition 6 Let ei be the unit vector of the ith coordinate direction. We
denote by x̂ the vector obtained from w ∈ In(r+2) by applying the following
procedure:

(i) If there are {i, j} ∈ E such that wi > 0, wj > 0, choose w+wi(ej−ei)
or w+wj(ei − ej) as w′ that makes w′⊤(I +A)w′ smaller and replace
w with w′.

(ii) Repeat (i) until the support of w corresponds to a stable set of G.

We show that this procedure recovers a maximum stable set if w is optimal.
Note that it holds for r ≥ α(G)− 1 that

arg min
w∈In(r+2)

w⊤(I +A)w = arg max
w∈In(r+2)

(r + 2)(r + 1)

w⊤(I +A)w − (r + 2)
.
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Lemma 7 It holds for any w ∈ In(r + 2) that

w⊤(I +A)w ≥ ŵ⊤(I +A)ŵ.

Proof At each choice of w′ in Definition 6, if w′ = w+wj(ei−ej), we have

w′⊤(I +A)w′ − w⊤(I +A)w

= w2
j (Iii −Aij −Aji + Ijj) + 2wjw

⊤(I +A)(ei − ej)

= 2wjw
⊤(I +A)(ei − ej),

since {i, j} ∈ E. Similarly, if w′ = w + wi(ej − ei), we have

w′⊤(I +A)w′ − w⊤(I +A)w = 2wiw
⊤(I +A)(ej − ei).

Since one of these values are nonpositive, w⊤(I+A)w ≥ w′⊤(I+A)w′. Thus
we have w⊤(I +A)w ≥ ŵ⊤(I +A)ŵ by repeating the process. (QED)

Theorem 8 Let w∗ ∈ argminw∈In(r+2)w
⊤(I + A)w and S(w) = {i | wi ̸=

0}. Then S(ŵ∗) is a maximum stable set if and only if r ≥ α(G)− 2.

Proof We can assume that {1, 2, . . . , k} is a maximum stable set without
loss of generality. If r < α(G)− 2, it follows from the definition of In(r+2)
that |S(ŵ∗)| < α(G), which implies that S(ŵ∗) is not a maximum stable
set.

To show the sufficiency, suppose |S(ŵ∗)| < α(G). Denote by w̃∗ the
vector obtained by sorting the elements of ŵ∗ in descending order. From
the assumption, w̃∗

1 is greater than 1 since r ≥ α(G) − 2. We consider the
vector w̃∗ − e1 + ek ∈ In(r + 2). It follows from the stability of S(w̃∗) and
S(w̃∗ − e1 + ek) that

w̃∗⊤(I +A)w̃∗ − (w̃∗ − e1 + ek)
⊤(I +A)(w̃∗ − e1 + ek)

= w̃∗⊤w̃∗ − (w̃∗ − e1 + ek)
⊤(w̃∗ − e1 + ek)

= 2(w̃∗
1 − 1) > 0.

Now, from the optimality of w∗ and Lemma 7,

w∗(I +A)w∗ = ŵ∗⊤(I +A)ŵ∗ = w̃∗⊤(I +A)w̃∗

> (w̃∗ − e1 + ek)
⊤(I +A)(w̃∗ − e1 + ek).

This contradicts w∗ ∈ argminw∈In(r+2)w
⊤(I + A)w. By contradiction,

|S(ŵ∗)| = α(G). (QED)

Thus we can solve the stable set problem by minimizing the quadratic form
over In(r + 2) for r ≥ α(G) − 2, although ⌊ζ(r)(G)⌋ ̸= α(G) if α(G) ≤ r <
α(G)2 − 1. Since we need r′ ≥ α(G)2 − 1 to obtain α(G) in (4), Theorem 8
sharpens Theorem 2 with regard to the degree of approximation.
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3.3 Local Search Heuristics

We propose a simple heuristics for the stable set problem using the results
in the previous subsections. For each w ∈ In(r + 2), we regard

N(w) = {w + ei − ej | i, j ∈ {1, . . . , r}, wj > 0}

as a neighborhood of w. This neighborhood leads to a local search shown in
Algorithm 1. The heuristic starts from the initial point w = e, which implies
that we set r = n ≥ α(G). Then we repeatedly pick w′ ∈ N(w) to get the
objective value smaller until w reaches a local optimum. In the algorithm,
we take w as a local optimum if the objective value does not change n times
in a row. Finally, we compute ŵ and its support S(ŵ).

Algorithm 1 Local search for the stable set problem
w := e
while w is not a local optimum do

choose w′ ∈ N(w)
if w′⊤(I +A)w′ ≤ w⊤(I +A)w then

w := w′

end if
end while
compute ŵ
return S(ŵ)

The performance of this heuristics has been tested on the complement
graphs of the DIMACS clique benchmarks. See for details of the graphs at

http://dimacs.rutgers.edu/Challenges/.

We applied the heuristics 10 times for each graph. All computations were
executed with 2.4GHz Intel CPU Core i7 and 16GB of memory. The results
are given in Table 1. The columns “Name”, “α(Ḡ)”, “Solution”, “Average”,
and “Time” represent the name of the graph, the stability number of the
complement graph, the maximum cardinality of the stable sets obtained, the
average cardinality of them, and CPU time in seconds.

Table 1: Results on the DIMACS benchmarks

Name α(Ḡ) Solution Average Time (s)

c-fat200-1 12 12 12.0 0.5
c-fat200-2 24 24 23.0 0.2
c-fat200-5 58 58 55.2 0.1
c-fat500-1 14 14 13.4 4.6
c-fat500-2 26 26 26.0 2.0
c-fat500-5 64 64 64.0 0.8
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Table 1: Results on the DIMACS benchmarks

Name α(Ḡ) Solution Average Time (s)

c-fat500-10 ≥126 126 125.8 0.5
johnson8-2-4 4 4 2.6 <0.1
johnson8-4-4 14 14 12.0 0.1
johnson16-2-4 8 8 7.7 0.2
johnson32-2-4 16 16 15.7 3.6

keller4 11 9 8.0 0.3
keller5 27 19 17.3 5.5
keller6 ≥59 38 35.8 125.4

hamming6-2 32 32 28.1 <0.1
hamming6-4 4 4 2.4 <0.1
hamming8-2 128 128 119.0 0.1
hamming8-4 16 16 14.0 0.8
hamming10-2 512 512 442.0 1.6
hamming10-4 ≥40 34 31.2 9.9
san200 0.7 1 30 15 15.0 <0.1
san200 0.7 2 18 12 12.0 <0.1
san200 0.9 1 70 45 45.0 <0.1
san200 0.9 2 60 38 36.1 0.1
san200 0.9 3 44 33 31.4 0.1
san400 0.5 1 13 7 7.0 <0.1
san400 0.7 1 40 20 20.0 0.1
san400 0.7 2 30 15 15.0 0.1
san400 0.7 3 22 12 12.0 0.1
san400 0.9 1 100 52 50.6 0.2

san1000 15 8 8.0 0.5
sanr200 0.7 18 17 15.2 0.3
sanr200 0.9 42 41 37.4 0.1
sanr400 0.5 13 11 9.9 4.2
sanr400 0.7 21 21 16.3 1.6
brock200 1 21 19 17.0 0.3
brock200 2 12 9 7.7 0.6
brock200 3 15 13 11.2 0.5
brock200 4 17 15 13.1 0.3
brock400 1 27 22 20.4 1.4
brock400 2 29 22 20.2 1.3
brock400 3 31 22 19.6 1.5
brock400 4 33 24 20.3 1.3
brock800 1 23 18 16.1 15.3
brock800 2 24 18 16.2 14.9
brock800 3 25 18 16.4 15.6
brock800 4 26 19 16.7 19.3

8



Table 1: Results on the DIMACS benchmarks

Name α(Ḡ) Solution Average Time (s)

p hat300-1 8 7 6.0 3.2
p hat300-2 25 25 23.5 0.6
p hat300-3 36 36 31.8 0.4
p hat500-1 9 8 6.8 10.0
p hat500-2 36 36 34.4 1.2
p hat500-3 ≥49 49 47.2 0.9
p hat700-1 11 9 6.7 25.2
p hat700-2 44 44 41.8 2.8
p hat700-3 62 60 58.4 1.8
p hat1000-1 10 10 7.1 56.7
p hat1000-2 46 45 42.9 6.8
p hat1000-3 65 64 61.6 4.1
p hat1500-1 12 11 7.7 186.1
p hat1500-2 63 63 60.7 13.4
p hat1500-3 94 90 87.5 8.8

MANN a9 16 16 14.7 <0.1
MANN a27 126 118 117.2 0.1
MANN a45 345 332 330.4 0.5
MANN a81 ≥1100 1081 1080.2 5.8

The proposed heuristics found a maximum stable set in 24 of the 36 in-
stances in the categories of CFAT, Johnson, Hamming, PHAT, and MANN.
However, it did not perform well on the graphs in the categories of Keller,
SAN, SANR, and BROCK.

4 Conclusion

In this paper, we have reformulated the LP-based approximation for the
stable set problem as a discrete version of the Motzkin-Straus theorem. This
reformulation leads to an algorithm to obtain a maximum stable set from
an optimal solution and a local search heuristics for the stable set problem.
Furthermore, we showed the strict lower bound for our algorithm to yield
a maximum stable set. This lower bound is less than the strict bound to
compute α(G) as the optimal value of the LP-based approximation.

It remains as a future work to investigate whether we can apply a similar
idea to other problems in combinatorial optimization which can be formu-
lated as a copositive program. Also, the performance of our heuristics can
be expected to improve by using a more efficient technique, such as tabu
search, for the local search.
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