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Aided Evaluation in Rank-1 LoS Rician Fading

Constantin Siriteanu, Akimichi Takemura, Christoph Koutschan,

Satoshi Kuriki, Donald St. P. Richards, Hyundong Shin

Abstract

We propose a new exact analysis and evaluation of zero-forcing detection (ZF) for multiple–

input/multiple–output (MIMO) spatial multiplexing under transmit-correlated Rician fading for an NR×

NT channel matrix with rank-1 line-of-sight (LoS) component. First, an analysis based on several matrix

transformations yields the exact signal-to-noise ratio (SNR) moment generating function (m.g.f.) as an

infinite series of gamma distribution m.g.f.’s. This produces analogous series for the SNR probability

density function and for ZF performance measures. However, their numerical convergence is inherently

problematic with increasing Rician K-factor, NR, and NT. Therefore, we additionally derive correspond-

ing differential equations by using computer algebra. Finally, we apply the holonomic gradient method

(HGM), i.e., we solve the differential equations by starting from suitable initial conditions computed

with the infinite series. HGM yields more reliable performance evaluation than by infinite series alone

and more expeditious than by simulation, for realistic values of K, and even for NR and NT relevant

to large MIMO systems. We anticipate that future MIMO analyses for Rician fading will produce even

more involved series that may benefit from the proposed computer-algebra-aided evaluation approach.
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I. INTRODUCTION

A. Background, Motivation, and Scope

The performance of multiple–input/multiple–output (MIMO) wireless communications sys-

tems has remained under research focus as the multiantenna architectures that attempt to harvest

MIMO gains have continued to evolve, e.g., from single-user MIMO, to multi-user and distributed

MIMO, and, most recently, to massive or large MIMO [1] – [7].

As the numbers of transmitting and receiving antennas, herein denoted with NT and NR, respec-

tively, have increased in seeking higher array, diversity, and multiplexing gains [1, pp. 72, 64, 385],

transceiver processing complexity has also increased. Then, for spatial multiplexing transmission,

linear detection methods [3] [5] [6], e.g., zero-forcing detection (ZF) and minimum mean-

squared-error detection (MMSE), are feasible because of their relatively-low complexity order

O(NRNT + NRN
2
T + N3

T) [6], and effective because of their near-optimum performance for

NR � NT, as the columns of the NR ×NT channel matrix H tend to become independent [6].

For increased practical relevance, MIMO channel model complexity has also been increasing,

and, with it, the difficulties of MIMO performance analysis and numerical evaluation. Thus,

conventionally, MIMO research assumed zero-mean, i.e., Rayleigh fading, for the elements of

H, which enabled relatively simple analysis and evaluation [8] [9] [10]. Recently, various cases

of nonzero-mean H, i.e., Rician fading, have rendered difficult the performance analysis and

evaluation for several transceiver methods [11] – [21]. Rician fading can occur due to line-of-

sight (LoS) propagation, in indoor, urban, and suburban scenarios, as shown by the WINNER

II project measurements [22, Section 2.3].

WINNER II [22, Table 5.5] has also characterized as lognormal the distributions of 1) the

Rician K-factor, which determines the strength of the channel mean vs. standard deviation [1,

p. 37], and 2) the azimuth spread (AS), which determines the antenna correlation [23, p. 136].

An ability to evaluate MIMO performance over the entire range of realistic values of K and AS

is useful, e.g., in averaging over their distributions, which has rarely been attempted [24].

Thus, we focus herein on evaluating MIMO spatial multiplexing with ZF under Rician fading

that is transmit-correlated. For tractable analysis, as in [15] [16], we assume that the LoS or

deterministic component of H satisfies rank(Hd) = r = 1. Whereas for LoS propagation r can



3

take any value from 1 to NT [25], small antenna apertures, relatively-low carrier frequency, or

large transmitter-receiver distance, as in point-to-point deployments [1] [16], are likely to yield

Hd as outer product of array response vectors [1, Eq. (7.29), p. 299], which implies r = 1.

Our future work shall consider r > 1, MMSE, and more general fading [26] and deployments

[17]. Higher r improves H conditioning, i.e., MIMO performance, and is becoming increasingly

more relevant due to envisioned LoS millimeter-wave applications [25] and distributed antennas

[17]. Further, MMSE is appealing because it outperforms ZF. Finally, more general fading and

deployment types shall enable more realistic performance predictions for future MIMO systems.

B. Limitations of Relevant Previous Work on MIMO ZF

Historically, the study of MIMO ZF commenced with that for uncorrelated Rayleigh fading

from [8]. The case of transmit-correlated Rayleigh fading was elucidated in [9] [10]. For Rician

fading, previous studies have assumed certain values for r and/or proceeded by approximation:

• Rician fading only for the intended stream, i.e., Rician–Rayleigh fading, which is a special

case with r = 1, or the interfering streams (i.e., Rayleigh–Rician fading, with r = NT − 1)

as may occur in heterogeneous networks. Then, we derived in [18] exact infinite-series

expressions for performance measures, e.g., the average error probability, outage probability,

and ergodic capacity (i.e., rate [15] [17]) — see more about this previous work below.

• Rician fading for all streams, i.e., full-Rician fading, with r = 1. Then, solely results

from bounds and approximations are available. For example, for uncorrelated fading, [15,

Eqs. (55)–(58)] show tight bounds for the sum rate. Other studies approximated the noncentral-

Wishart distribution of HHH with a central-Wishart distribution of equal mean — see [24]

and references therein. However, we have shown in [21] [24] that r = 1 does not necessarily

make this approximation reliable. Thus, only very careful usage in [24] helped average the

performance over WINNER II distributions of K and AS.

• Rician fading, ∀r = 1, · · · , NT. For this most general case, exact sum-rate expressions for

NR →∞ and approximations for finite NR were derived in [17].

Let us explain our recent exact ZF performance analyses and evaluations for Rician–Rayleigh

fading from [18] [19] [20]. In [18], we expressed the moment generating function (m.g.f.) of

the signal-to-noise ratio (SNR) in terms of the confluent hypergeometric function 1F1(·, ·, σ)

[18, Eq. (31)], where σ ∝ KNRNT. Thereafter, its well-known expansion around σ0 = 0
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[18, Eq. (30)] yielded an infinite series of gamma distribution m.g.f.’s [18, Eq. (37)]. Finally,

inverse-Laplace transformation and integration yielded analogous series for the SNR probability

density function (p.d.f.), average error probability, outage probability, and ergodic capacity [18,

Eqs. (39), (58), (69), (71)]. However, the Wishart distribution noncentrality induced by Rician

fading has led to numerical divergence with increasing K, NR, and NT for these series’ truncation

as in [18, Section V.F] [19, Section IV.A], although they theoretically converge everywhere [19].

This problem was tackled in [20] by using the fact that 1F1(·, ·, σ) is a holonomic function1,

i.e., it satisfies a differential equation [20, Eq. (27)] with polynomial coefficients with respect

to (w.r.t.) σ. Starting from it, a difficult by-hand derivation produced differential equations for

the SNR m.g.f. and then for the p.d.f., via inverse-Laplace transform. Thereafter, we computed

reliably the p.d.f. at realistic values of K — but only for relatively small NR and NT — by

numerically solving its differential equations from initial conditions computed with the infinite

series for small K. This approach is known as the holonomic gradient method (HGM) because,

at each step, the function value is updated with the differential gradient [20, Sec. IV.B]. Finally,

in [20], the SNR p.d.f. computed with HGM was numerically integrated to evaluate performance

measures, i.e., the outage probability and ergodic capacity.

Summarizing, our exact studies for r = 1 in [18] [19] [20] are limited by the following:

• Nonfull-Rician (i.e., only Rician–Rayleigh) fading assumption.

• Tedious by-hand derivations of the SNR m.g.f. and p.d.f. differential equations.

• Time-consuming numerical integration of the p.d.f. for performance measure evaluation.

• HGM not tried for large NR and NT, e.g., as relevant for large MIMO systems [5] [7].

On the other hand, only approximate analyses exist for full-Rician fading with r = 1 [15] [24].

C. Problem Solved in the Current Work; Exact Analysis and Evaluation Approaches

To the best of our knowledge, the performance of MIMO ZF has not yet been studied exactly

under full-Rician fading even for r = 1. Therefore, we pursue this study herein.

First, upon applying a sequence of simplifying matrix transformations, we deduce several

theoretical results that help express exactly the m.g.f. of the SNR for any stream as an infinite

series2 with terms in 1F1(·, ·, ·). Thus, the m.g.f. is rewritten as a double infinite series of

1Other examples: rational functions, logarithm, exponential, sine, special functions (orthogonal polynomials, Bessel [27, p. 41]).
2This infinite series reduces for Rician–Rayleigh fading to our expression in a single 1F1(·, ·, ·) in [18, Eq. (31)].
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gamma distribution m.g.f.’s, which readily yields analogous series for the SNR p.d.f. and for

the performance measures. Finally, they are recast as a generic single infinite series, but its

truncation is found to incur numerical divergence with increasing K, NR, and NT. Therefore, as

in [18], it is necessary to derive corresponding differential equations and apply HGM.

However, because the generic series mentioned above renders intractable a by-hand derivation

of corresponding differential equations, we resort to a computer-algebra-aided approach. Thus,

we employ the computer-algebra package HolonomicFunctions written earlier by one of the

authors [27] [28]. It exploits, for holonomic functions, closure properties [20, Section IV.C] [27],

the algebraic concept of Gröbner bases3 [30] and creative telescoping algorithms [27, Ch. 3]

to deduce differential equations for their addition, multiplication, composition, and integration.

This computer-algebra-aided approach readily yields differential equations not only for the SNR

m.g.f. and p.d.f., but also for the outage probability and ergodic capacity.

Finally, we evaluate ZF performance measures by HGM, i.e., by solving the obtained differ-

ential equations starting from initial conditions computed with the infinite series.

D. Contributions

Compared to previous MIMO ZF work by us and others, herein we:

• Tackle full-Rician fading with r = 1 in a new exact analysis that reveals that the SNR

distribution is an infinite mixture of gamma distributions.

• Circumvent intractable by-hand deductions of indispensable differential equations by using

a computer algebra package written earlier by one of the authors.

• Bypass time-consuming numerical integration of the SNR p.d.f. by deducing differential

equations for performance measures and applying HGM for their computation.

• Demonstrate that HGM yields accurate performance evaluation for the entire range of

realistic values for K, and even for large NR and NT, unlike the infinite series alone,

and much faster than by simulation.

• Exactly average the ZF performance over WINNER II distributions of K and AS.

3Buchberger’s algorithm [29] for Gröbner basis computation specializes, for example, to the Euclidean algorithm when applied

to univariate polynomials, and to Gaussian elimination when applied to linear polynomials in several variables [30]. Gröbner

bases have helped solve communications optimization problems cast as systems of polynomial equations, e.g., for interference

alignment [31], coding gain maximization in space–time coding [32]; other relevant applications are listed in [30].
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E. Paper Organization

Section II describes our models and assumptions. Section III presents matrix transformations

that help express the m.g.f. of the ZF SNR. Section IV derives a generic infinite series for the SNR

m.g.f. and p.d.f., as well as for performance measures. Section V discusses the automated deriva-

tion of differential equations, which has been accomplished with HolonomicFunctions com-

mands as shown in [33]. Finally, Section VI presents numerical results obtained by simulation,

series truncation, and HGM. The Appendix shows some proofs and derivation details.

F. Notation

• Scalars, vectors, and matrices are represented with lowercase italics, lowercase boldface,

and uppercase boldface, respectively, e.g., y, h, and H; the statement H
.
= NR × NT

indicates NR rows and NT columns for H; the zero vectors and matrices of appropriate

dimensions are denoted with 0; superscripts ·T and ·H stand for transpose and Hermitian

(i.e., complex-conjugate) transpose; IN is the N ×N identity matrix.

• [·]i is the ith element of a vector; [·]i,j , [·]i,•, and [·]•,j indicate the i, jth element, ith row,

and jth column of a matrix; ‖H‖2 =
∑NR

i=1

∑NT
j=1 |[H]i,j|2 is the squared Frobenius norm.

• i = 1 : N stands for the enumeration i = 1, 2, . . . , N ; ⊗ stands for the Kronecker product

[34, p. 72] ; ∝ stands for ‘proportional to’; ⇒ stands for logical implication;
(49)
= means

that the ensuing expression follows from Eq. (49).

• H ∼ CN (Hd, INR ⊗RT) indicates a complex-valued circularly-symmetric Gaussian random

matrix with mean Hd, row covariance INR , and column covariance RT; subscripts ·d and

·r identify, respectively, deterministic and random components; subscript ·n indicates a

normalized variable; E{·} denotes statistical average; Gamma(N,Γ1) represents the gamma

distribution with shape parameter N and scale parameter Γ1; χ2
m(δ) denotes the noncentral

chi-square distribution with m degrees of freedom and noncentrality parameter δ; χ2
m de-

notes the central chi-square distribution with m degrees of freedom; Beta(N,M) represents

the central beta distribution with shape parameters N and M ; Beta(N,M, x) represents

the noncentral beta distribution with shape parameters N and M , and noncentrality x.

• 1F1(·; ·; ·) is the confluent hypergeometric function [35, Eq. (13.2.2), p. 322]; (N)n is the

Pochhammer symbol, i.e., (N)0 = 1 and (N)n = N(N + 1) . . . (N + n− 1), ∀n ≥ 1.

• ∂kt g(t, z) denotes the kth partial derivative w.r.t. t of function g(t, z).
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II. MODELS AND ASSUMPTIONS

A. Received Signal and Fading Models

We consider an uncoded point-to-point MIMO spatial multiplexing system over a frequency-

flat fading channel [1, Chs. 3, 7]. There are NT ≥ 2 and NR ≥ NT antenna elements at the

transmitter4 and receiver, respectively. For the transmit-symbol vector denoted with

y = (y1 y2 · · · yNT)
T .

= NT × 1, (1)

the stream of symbols yi transmitted from antenna i is referred to as Stream i. Without loss

of generality, we consider that Stream 1 is the intended stream (i.e., stream whose symbol is

detected, and whose detection performance is analyzed and evaluated), and that the remaining

NI = NT − 1 (2)

streams, i.e., Streams i = 2 : NT, are interfering streams. The number of degrees of freedom is

N = NR −NI = NR −NT + 1. (3)

Then, the vector with the received signals can be represented as

r =

√
Es

NT
Hy + n

.
= NR × 1, (4)

where Es
NT

is the energy transmitted per symbol (i.e., per antenna), and n ∼ CN (0, N0 INR) is

the additive noise. Then, the per-symbol transmit-SNR is

Γs =
Es

N0

1

NT
. (5)

Finally, we assume that the complex-Gaussian channel matrix H
.
= NR × NT, of rank NT, is

perfectly known at the receiver5. With its deterministic and random components denoted as Hd

and Hr, respectively, we can write

H = Hd + Hr =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (6)

where Hd,n and Hr,n are normalized according to [20] [21]

‖Hd,n‖2 = E{‖Hr,n‖2} = NRNT, which implies E{‖H‖2} = NRNT, (7)

4For NT = 1, i.e., maximal-ratio combining, we obtained a simple SNR m.g.f. expression for Rician fading in [18, Eq. (36)].
5ZF for imperfectly-known H can be studied with the effective-SNR approach we described in [24].
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and K, known as the Rician K-factor, is described by

K =
‖Hd‖2

E{‖Hr‖2}
=

K
K+1
‖Hd,n‖2

1
K+1

E{‖Hr,n‖2}
. (8)

Then, K = 0 yields full-Rayleigh fading, i.e., | [H]i,j | is Rayleigh distributed ∀i, j, as assumed

in [8] [9] [10]. Further, the case when K 6= 0 and in Hd,n only column [Hd,n]•,1 is nonzero is

referred to as Rician–Rayleigh fading, as in [18] [19] [20]. Finally, herein, the case when K 6= 0

and each column of Hd,n has at least one nonzero element is referred to as full-Rician fading.

We assume that Hd arises due to LoS propagation between transmitter and receiver. Then,

if the transmitter–receiver distance is much larger than the antenna interelement spacing, Hd

can be represented as the outer product of the array response vectors for the receiving antenna,

a
.
= NR × 1, and transmitting antenna, b .

= NT × 1, i.e., [1, Eq. (7.29), p. 299]

Hd = abH = a (b∗1 b∗2 . . . b∗NT
), (9)

which reveals that Hd has rank r = 1 and columns given by hd,i = a b∗i , i = 1 : NT.

Remark 1. We may assume that ‖a‖ = 1 if we scale b according to

‖b‖2 =

NT∑
i=1

|bi|2 =

NT∑
i=1

‖a‖2︸︷︷︸
=1

|bi|2 =

NT∑
i=1

‖hd,i‖2 = ‖Hd‖2(6),(7)
=

K

K + 1
NRNT. (10)

For tractable analysis, we assume zero row correlation (i.e., receive-antenna correlation) for H.

Also, we assume, as in [9] [10] [18] [19] [20], that any row of Hr,n is distributed as CN (0,RT),

so that any row of Hr is distributed as CN (0,RT,K) with

RT,K =
1

NR
E{HHr Hr} =

1

K + 1

1

NR
E{HHr,nHr,n} =

1

K + 1
RT, (11)

so that H ∼ CN (Hd, INR ⊗RT,K).

Matrix RT is determined by antenna interelement spacing and AS, i.e., the ‘standard deviation’

of the power azimuth spectrum [23, p. 136]. When the latter is modeled as Laplacian, as

recommended by WINNER II [22], RT can be computed from the AS with [23, Eqs. (4-3)–(4-5)].

Remark 2. WINNER II modeled the measured AS (in degrees) and K (in dB) as random variables

with scenario-dependent lognormal distributions [22, Table 5.5] [24, Table 1]. Thus, herein, we

attempt to evaluate ZF performance for AS and K values relevant to these distributions.
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B. Matrix Partitioning Used in Analysis

To study Stream-1 detection performance6 we shall employ the partitioning

H = (h1 H2) = (hd,1 Hd,2) + (hr,1 Hr,2), (12)

where h1, hd,1, and hr,1 are NR × 1 vectors, whereas H2, Hd,2, and Hr,2 are NR ×NI matrices.

We shall also employ the corresponding partitioning of the column covariance matrix, i.e.,

RT,K =

 RT,K11
RT,K12

RT,K21
RT,K22

 =

 rT,K11
rHT,K21

rT,K21
RT,K22

 . (13)

Remark 3. Herein, we consider full-Rician fading with r = rank(Hd) = rank(Hd,2) = 1,

whereas in [18] [20] we considered its special case of Rician–Rayleigh fading, i.e., rank(Hd) =

1, but rank(Hd,2) = 0. Thus, the results obtained herein specialize to those in [18] [20] when

we reduce to 0 the vector formed with the last NI = NT − 1 elements of b, i.e., the vector

b̃ = (b2 . . . bNT)
T . (14)

III. EXACT ANALYSIS OF ZF

A. ZF SNR as Hermitian Form

Given H, ZF for the signal from (4) refers to symbol detection based on the operation√
NT

Es

[
HHH

]−1
HH r = y +

1√
Γs

[
HHH

]−1
HH

n√
N0

. (15)

Based on (15) and [10] [18], the SNR for Stream 1 can be written as the Hermitian form below:

γ1 =
Γs

[(HHH)−1]1,1
= Γsh

H
1

[
INR −H2(HH2 H2)−1HH2

]
h1 = Γsh

H
1 Q2h1. (16)

Remark 4. The following transformations do not change the ZF SNR in (16):

• Row transformations of H with unitary matrices, because they do not change HHH.

• Column transformations of H2 with nonsingular matrices, because they do not change Q2.

Several such transformations shown below help simplify the SNR distribution analysis.

6Without loss of generality, because of the full-Rician model adopted in (9).



10

B. Row Transformation F = VH That Zeroes Rows [Fd]i,•, i = 2 : NR

If we make the substitution H = VHF, with unitary V
.
= NR × NR, in (16) and partition

according to (12) the matrix

F = VH = (f1 F2) = (fd,1 Fd,2) + (fr,1 Fr,2)
.
= NR ×NT, (17)

the SNR expression (16) becomes

γ1 = Γsf
H
1 Q2f1, (18)

and the idempotent and rank-N matrix Q2
.
= NR ×NR can be written as

Q2 = INR −H2(HH2 H2)−1HH2 = INR − F2(FH2 F2)−1FH2 . (19)

Choosing the first row of the unitary matrix V as [V]1,• = aH, we conveniently obtain

[Fd]1,•
(9)
= ([V]1,• a)bH = ‖a‖2bH = bH, (Row 1) (20)

[Fd]i,•
(9)
= ([V]i,• a)︸ ︷︷ ︸

=0

bH = 0, i = 2 : NR, (Rows 2 : NR) (21)

⇒ [Fd]•,j = fd,j = (b∗j 0 . . . 0)
T , j = 1 : NT, (All columns). (22)

Theorem 1. The m.g.f. of the SNR conditioned on Q2 can be written, simply, as

Mγ1|Q2(s) = Eγ1{esγ1|Q2} =
1

(1− Γ1s)N
exp

{
f1(s)[Q2]1,1

}
, (23)

where scalar Γ1 and function f1(s) are defined in the proof below.

Proof: Because the column covariance of F = VH is the same as that of H, i.e., RT,K ,

partitioned as in (13), and because f1
.
= NR × 1 and F2

.
= NR × NI from the partitioning of

F in (17) are jointly Gaussian, the distribution of f1 given F2 is given by [10, Appendix] [18,

Eqs. (12)-(16)]

f1|F2 ∼ CN
(

(fd,1 − Fd,2r2,1)︸ ︷︷ ︸
=µµµ
.
=NR×1

+F2r2,1,
([

R−1
T,K

]
1,1

)−1

INR

)
,with (24)

r2,1 = R−1
T,K22

rT,K21

.
= NI × 1, (25)([

R−1
T,K

]
1,1

)−1

= rT,K11
− rHT,K21

R−1
T,K22

rT,K21

.
= 1× 1. (26)
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Then, it can be shown by substituting (24) into (18) and further manipulating as in [10] [18],

that the SNR conditioned on Q2 from (18) can be written as the Hermitian form

γ1|Q2 = Γ1f̃
H
1 Q2f̃1, with (27)

Γ1 =
Γs[

R−1
T,K

]
1,1

, (28)

f̃1 ∼ CN
(√[

R−1
T,K

]
1,1
µµµ, INR

)
, (29)

µµµ
(24)
= fd,1 − Fd,2r2,1

(22)
= (b∗1 − b̃Hr2,1 0 . . . 0)T = (µ1 0 . . . 0)T . (30)

Thus, transformation (17) yielded a single nonzero-mean element in f̃1, simplifying analysis.

The Hermitian form in f̃1 from (27) helps cast the m.g.f. of the SNR given Q2 as [18, Eq. (20)]

Mγ1|Q2(s) =
exp

{
− x1ννν

H [INR − (INR − Γ1sQ2)−1]ννν}
det (INR − Γ1sQ2)

, with (31)

x1 =
[
R−1

T,K

]
1,1
‖µµµ‖2 =

[
R−1

T,K

]
1,1
|µ1|2, (32)

ννν =
µµµ

µ1

= (1 0 . . . 0)T , (33)

INR − (INR − Γ1sQ2)−1 = − Γ1s

1− Γ1s
Q2. (34)

Above, (34) follows by using the eigendecomposition of Q2. The desired m.g.f. expression

in (23) ensues by substituting (34) and (33) into (31) and defining f1(s) = Γ1s
1−Γ1s

x1.

C. Partial Column Transformations That Help Rewrite [Q2]1,1 Conveniently

1) Unitary Transformation E2 = F2Ṽ That Zeroes Elements [Ed,2]1,j , j = 2 : NI: Making

the substitution F2 = E2Ṽ
H, with unitary Ṽ

.
= NI ×NI, in (19) yields

Q2 = INR − F2(FH2 F2)−1FH2 = INR − E2(EH2 E2)−1EH2 . (35)

Based on (17), we can write

E2 = F2Ṽ = Fd,2Ṽ + Fr,2Ṽ = Ed,2 + Er,2
.
= NR ×NI. (36)

Setting [Ṽ]•,1 = b̃/‖b̃‖ simplifies the ensuing SNR analysis as it zeroes [Ed,2]1,j , j = 2 : NI:

Ed,2 = Fd,2Ṽ
(22)
=

 b̃H

0

( b̃

‖b̃‖
[Ṽ]•,2 · · · [Ṽ]•,NI

)
= ‖b̃‖

 1 0

0 0

 . (37)
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2) Nonsingular Transformation That Decorrelates the Columns of E2: For the column cor-

relation of Er,2 from (36), i.e., for

1

NR
E{EHr,2Er,2} =

1

NR
E{(Fr,2Ṽ)H(Fr,2Ṽ)} =

1

NR
ṼHE{FHr,2Fr,2}Ṽ

(13)
= ṼHRT,K22

Ṽ, (38)

let us consider the Cholesky decomposition [34, Sec. 5.6]

ṼHRT,K22
Ṽ = AAH, (39)

where A
.
= NI ×NI is upper triangular with real-valued and positive diagonal elements.

Then, considering a matrix with uncorrelated elements distributed as [Ew,2]i,j ∼ CN (0, 1),

i = 1 : NR, j = 1 : NI, we can write (36) based on (39) and (38) as

E2 = Ed,2 + Ew,2A
H =

(
Ed,2A

−H + Ew,2
)
AH, (40)

Thus, by transforming the columns of E2 with A−H, we obtain

G2 = E2A
−H = Ed,2A

−H + Ew,2
.
= NR ×NI, (41)

whose mean that can be written, based on (37) and the fact that A−H is lower triangular, as

Gd,2 = Ed,2A
−H = ‖b̃‖[A−H]1,1

 1 0

0 0

 . (42)

Furthermore, the derivation from Appendix A yields

x2 = ‖Gd,2‖2 (42)
= ‖b̃‖2([A−H]1,1)2 (79)

= b̃HR−1
T,K22

b̃. (43)

Remark 5. For Rician–Rayleigh fading, Remark 3 revealed that b̃ = 0, which by (43) implies

x2 = 0. On the other hand, for full-Rayleigh fading, (32) implies that also x1 = 0.

Thus, column transformation (41) yielded G2 with uncorrelated columns and mean given by

[Gd,2]i,j =


√
x2 , (i.e., real-valued) for i = j = 1,

0 , otherwise.
(44)

Upon substituting E2 = G2A
H in (35), i.e.,

Q2 = INR −G2A
H(AGH2 G2A

H)−1AGH2 = INR −G2(GH2 G2)−1GH2 , (45)

the tractability of our SNR distribution analysis benefits from the simple statistics of G2 (vs.

F2), as shown below.
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3) QR Decomposition: Finally, by substituting in (45) the QR decomposition [34, Sec. 5.7]

G2 = U2T2, (46)

where U2
.
= NR × NI satisfies UH2 U2 = INI , and T2

.
= NI × NI is upper triangular with

real-valued and positive diagonal elements, we can write Q2 simply as

Q2 = INR −U2T2(TH2 T2)−1TH2 U
H
2 = INR −U2U

H
2 . (47)

This helps write [Q2]1,1 for the m.g.f. in (23) solely in terms of the first row of U2 as

[Q2]1,1 = 1− [U2]1,• ([U2]1,•)
H = 1− (|[U2]1,1|2 + |[U2]1,2|2 + · · ·+ |[U2]1,NI |2)

= (1− |[U2]1,1|2)︸ ︷︷ ︸
=β1

(
1− |[U2]1,2|2 + · · ·+ |[U2]1,NI |2

1− |[U2]1,1|2︸ ︷︷ ︸
=β2

)
. (48)

D. The Main Analysis Result: Exact M.G.F. Expression of the Unconditioned SNR

The above transformations have helped write the conditioned-SNR m.g.f. from (23) as

Mγ1(s | β1, β2) =
1

(1− Γ1s)N
exp{f1(s)β1β2}. (49)

In order to express the unconditioned-SNR m.g.f., we need to average (49) over the distributions

of β1 and β2, which are elucidated in the following two lemmas.

Lemma 1. Random variable β1 from (48) is distributed as

β1 ∼ Beta(NR − 1, 1, x2). (50)

Proof: See Appendix B.

Lemma 2. Random variable β2 from (48) is distributed as

β2 ∼ Beta(N,NI − 1), (51)

i.e., with m.g.f. [18, Eq. (30)]

Mβ2(s) = 1F1(N ;NR − 1; s), (52)

and is independent of β1.

Proof: See Appendix C.
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Theorem 2. The m.g.f. of the unconditioned SNR for ZF under full-Rician fading with r = 1 is

Mγ1(s;x1, x2) =
e−x2

(1− Γ1s)N

∞∑
n2=0

xn2
2

n2!
1F1

(
N ;n2 +NR;

Γ1s

1− Γ1s
x1

)
. (53)

Proof: See Appendix D.

The above reduces for Rician–Rayleigh fading (i.e., for x2 = 0) to [18, Eqs. (31), (37)]

Mγ1(s;x1) =
1

(1− Γ1s)N
1F1

(
N ;NR;

Γ1s

1− Γ1s
x1

)
, (54)

=
∞∑

n1=0

(N)n1

(NR)n1

xn1
1

n1!

n1∑
m1=0

(
n1

m1

)
(−1)m1

1

(1− sΓ1)N+n1−m1︸ ︷︷ ︸
=Mn1,m1 (s)

, (55)

where (55) follows from (54) by the infinite-series expansion around σ0 = 0 [18, Eq. (30)]

1F1(N ;NR;σ) =
∞∑
n=0

(N)n
(NR)n

σn

n!
. (56)

Theoretically, (56) converges ∀σ [19, Section III.B]. Nevertheless, inherent numerical conver-

gence difficulties with increasing σ [36] have encumbered the computation of ensuing measures,

e.g., the ZF SNR p.d.f. for Rician–Rayleigh fading at realistic values of K [18] [19] [20].

IV. EXACT INFINITE SERIES EXPRESSIONS FOR PERFORMANCE MEASURES

A. Exact Double Infinite Series for M.G.F., P.D.F., and Performance Measures

By substituting (56) into (53) and proceeding as for (55), the SNR m.g.f. becomes

Mγ1(s;x1, x2) = e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

n1∑
m1=0

(
n1

m1

)
(−1)m1Mn1,m1(s)︸ ︷︷ ︸

=Mn1 (s)

. (57)

Using the m.g.f.–p.d.f. Laplace-transform pair corresponding to Gamma(N + n1 − m,Γ1),

i.e.,

Mn1,m1(s) =
1

(1− sΓ1)N+n1−m1

Laplace←→ t(N+n1−m1)−1e−t/Γ1

[(N + n1 −m1)− 1]! ΓN+n1−m1
1

= pn1,m1(t), (58)

the ZF SNR p.d.f. corresponding to (57) can be written, analogously, as:

pγ1(t;x1, x2) = e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

n1∑
m1=0

(
n1

m1

)
(−1)m1pn1,m1(t)︸ ︷︷ ︸

=pn1 (t)

. (59)
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By integrating (59), the Stream-1 outage probability at threshold SNR τ and the ergodic

capacity (i.e., rate) are exactly characterized by analogous infinite series, i.e.,

Po(x1, x2) =

∫ τ

0

pγ1(t;x1, x2) dt (60)

= e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

n1∑
m1=0

(
n1

m1

)
(−1)m1Po,n1,m1︸ ︷︷ ︸

=Po,n1

, (61)

C(x1, x2) =
1

ln 2

∫ ∞
0

ln(1 + t)pγ1(t;x1, x2) dt (62)

= e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

n1∑
m1=0

(
n1

m1

)
(−1)m1Cn1,m1︸ ︷︷ ︸

=Cn1

, (63)

where, from (58), we have7

Po,n1,m1 =

∫ τ

0

pn1,m1(t) dt =
γ (N + n1 −m1, τ/Γ1)

[(N + n1 −m1)− 1]!
, (64)

Cn1,m1 =
1

ln 2

∫ ∞
0

ln(1 + t)
t(N+n1−m1)−1e−t/Γ1

[(N + n1 −m1)− 1]! ΓN+n1−m1
1

dt. (65)

Finally, by following the approach in [18, Section V.A], the average error probability can also

be expressed as an infinite series analogous to (61) and (63).

B. Generic Infinite Series for M.G.F., P.D.F., and Performance Measures

The analogous series (57), (59), (61), (63) can be written as the generic double infinite series

h(x1, x2) = e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(NR + n2)n1

Hn1

xn1
1

n1!

xn2
2

n2!
, (66)

where Hn1 stands for Mn1(s) from (57), pn1(t) from (59), Po,n1 from (61), and Cn1 from (63).

Numerical results not shown due to length limitations have revealed that increasing K, NR, and

NT yield increasingly problematic numerical convergence for series (66). This is explained by

1) the fact that (57) has been obtained from (53) by replacing 1F1

(
N ;n2 +NR; Γ1s

1−Γ1s
x1

)
with

its expansion around x1 = 0 from (56); and 2) the fact that x1 is increasing because of the

following proportionality, proved in Appendix E:

x1 ∝ KNRNT. (67)

7 γ(k, x) =
∫ x
0
tk−1e−t dt is the incomplete gamma function [35, p. 174]. Integral (65) is expressed in [18, Eq. (73)].
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Appendix E also shows that x2 ∝ KNRNT. In fact, the expressions for x1 and x2 deduced

in (103) and (104) can be used to show that their ratio c1 = x1
x2

is real-valued, positive, and

independent of K and NR. Finally, numerical results have revealed that c1 < 1 and c1 ∝ 1/NT.

This justifies making the substitutions x2 = z and x1 = c1z to improve numerical behavior.

Lemma 3. For x2 = z and x1 = c1z, series (66) can be recast as the single infinite series

h(z) = e−z
∞∑
n=0

Gn
zn

n!
, where Gn(z) =

n∑
m=0

(
n

m

)
(N)m

(NR + n−m)m
Hmc

m
1 . (68)

The derivatives of h(z), required below for HGM, are given by

∂kzh(z) =
k∑
l=0

(
k

l

)
(−1)k−le−z

∞∑
n=l

Gn
zn−l

(n− l)!
. (69)

Proof: The proof of the first part is not shown, due to simplicity and length limitations.

The second part follows from (68) based on Leibniz’s formula [35, Eq. (1.4.12), p. 5].

However, numerical results shown later reveal that the truncation of (68) still does not converge

reliably for practically relevant values of K, NR, and NT. Therefore, we endeavor to compute

it by HGM, as done for Rician–Rayleigh fading in [20] to compute the SNR p.d.f. series

deduced from (55). Recall that HGM evaluates a function at given values for its variables by

numerically solving its differential equations starting from initial conditions, i.e., known values

of the function and required derivatives, at another point [20, Sec. IV.B]. Thus, HGM requires

differential equations.

By-hand derivations based on (54) and the differential equation for 1F1(N ;NR;σ) [20, Eq. (27)]

σ · 1F
(2)
1 (N ;NR;σ) + (NR − σ) · 1F

(1)
1 (N ;NR;σ)−N · 1F1(N ;NR;σ) = 0, (70)

yielded, with difficulty, the differential equations for the ZF SNR m.g.f. and p.d.f. for Rician–

Rayleigh fading in [20, Eqs. (32), (42)]. As (68) is more complicated than (54), by-hand

derivation from (68) is intractable. Instead, we employ the automated approach described next

to derive differential equations for h(z) — i.e., for Mγ1(s; z), pγ1(t; z), Po(z), and C(z).

V. COMPUTER-ALGEBRA-AIDED DERIVATION OF DIFFERENTIAL EQUATIONS FOR HGM

A. Holonomic Functions, Annihilator, Gröbner Basis, and Creative Telescoping

A function is holonomic w.r.t. a set of continuous variables if it satisfies for each of them a

linear differential equation with polynomial coefficients. A function is holonomic w.r.t. to a set of
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discrete variables if the associated generating function is holonomic in the previous sense [20,

Sec. IV.C] [27, p. 17]. For example, 1F1(N ;NR;σ) is holonomic w.r.t. σ because it satisfies

differential equation8 (70). In other words, 1F1(N ;NR;σ) is annihilated by the differential

operator σ∂2
σ + (NR − σ)∂σ − N . The (infinite) set of all operators that annihilate a given

holonomic function is called its annihilator [27, p. 18].

Holonomic functions are closed under addition, multiplication, certain substitutions, and taking

sums and integrals [20] [27]. Consequently, functions Mγ1(s; z), pγ1(t; z), Po(z), and C(z), cast

as in (68), are holonomic. The fact that the closure properties for holonomic functions can

be executed algorithmically provides a systematic way of deriving the differential equations

required for HGM, by starting with the annihilating operators of the comprised “elementary”

holonomic functions in (68). A key ingredient for algorithmically executing closure properties is

the algebraic concept of Gröbner basis, which provides a canonical and finite representation of

an annihilator and helps decide whether an operator is in an annihilator. For details on Gröbner

bases theory, computation, and applications see [29] [27] [31] [32] [30] and references therein.

While many holonomic closure properties require, basically, only linear algebra, computing the

annihilator for a sum or integral of a holonomic function is a more involved task. For example,

one can employ the creative telescoping technique: given an integral F (x) =
∫ b
a
f(x, y) dy,

creative telescoping algorithmically finds in the annihilator of f(x, y) a differential operator of

the form P (x, ∂x) + ∂y · Q(x, y, ∂x, ∂y). Then, using the fundamental theorem of calculus [35,

p. 6] and differentiating under the integral sign reveals9 P (x, ∂x) as an annihilating operator

for F (x) [27, p. 46]. Several creative telescoping algorithms are described in [27, Ch. 3].

B. The HolonomicFunctions Computer-Algebra Package

This freely-available computer-algebra package written earlier in Mathematica by one of

the authors, is described, with numerous examples, in [28]. Its commands implement: 1) the

computation of Gröbner bases in operator algebras, 2) closure properties for holonomic functions,

and 3) creative telescoping algorithms from [27, Ch. 3]. Thus, it enables automated deduction

of differential equations for holonomic functions (e.g., our m.g.f. infinite series), their Laplace

8Note that 1F1(N ;NR;σ) is also holonomic w.r.t. N and NR.
9Under “natural boundary” conditions [27].
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transform (e.g., our p.d.f.), and their integrals (e.g., our outage probability and ergodic capacity).

Conveniently, its symbolic-computation ability10 allows for parameters (e.g., NR, N , Γ1, τ , c1).

C. Computer-Algebra-Aided Derivation Procedure and Results

The Mathematica file with HolonomicFunctions commands that produce the output

presented below can be downloaded from [33]. Therein, for example, Gröbner basis computation

with the command Annihilator yields annihilating operators for expression e−z z
n

n!
from (68).

Further, the command CreativeTelescoping yields annihilating operators for Gn based on

the summation in (68), and for Po(z) based on the integral in (60).

Note that the particular functions that enter the differential equations shown below — i.e.,

Mγ1(s; z), ∂sMγ1(s; z), ∂zMγ1(s; z); pγ1(t; z), ∂tpγ1(t; z), ∂zpγ1(t; z), ∂2
zpγ1(t; z); ∂kzPo(z), k =

0 : 4; ∂kzC(z), k = 0 : 6 — arise automatically from (68) by Gröbner basis computation and

creative telescoping, and are revealed with the command UnderTheStaircase in [33].

The steps and outcomes of the procedure implemented by the code in [33] are as follows:

1) Derive SNR m.g.f. differential equations w.r.t. s and z, based on (68). Then, [33] reveals

that the function vector

m(s; z) = (Mγ1(s; z) ∂sMγ1(s; z) ∂zMγ1(s; z))T
.
= 3× 1 (71)

satisfies the systems of differential equations w.r.t. s and z

∂sm(s; z) = ΘΘΘsm(s; z), ∂zm(s; z) = ΘΘΘzm(s; z), (72)

with the 3× 3 matrices ΘΘΘs and ΘΘΘz shown only in [33], due to space limitations.

2) Using results from Step 1, derive p.d.f. differential equations w.r.t. t and z, based on the

inverse-Laplace transform. Then, [33] reveals that the function vector

p(t; z) = (pγ1(t; z) ∂tpγ1(t; z) ∂zpγ1(t; z) ∂2
zpγ1(t; z))T

.
= 4× 1 (73)

satisfies the systems of differential equations w.r.t. t and z

∂tp(t; z) = ΞΞΞtp(t; z), ∂zp(t; z) = ΞΞΞzp(t; z), (74)

with the 4× 4 matrices ΞΞΞt and ΞΞΞz shown only in [33], due to space limitations.

10Inherited from Mathematica.
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TABLE I

THE ELEMENTS OF COMPANION MATRIX ΦΦΦz
.
= 5× 5 FROM THE SYSTEM OF DIFFERENTIAL EQUATIONS (75).

Element Expression

[ΦΦΦz]i,i+1, i = 1 : 4 1

[ΦΦΦz]5,2

1

Γ1z3
(
− c1τNR + 2Γ1NR + c1Γ1NR + c1Γ1NNR + c1τN

2
R − 2Γ1N

2
R − c1Γ1N

2
R

− c1Γ1NN
2
R + c1τNRz − 4Γ1NRz − 5c1Γ1NRz − c21Γ1NRz − c1Γ1NNRz

− c21Γ1NNRz − 2Γ1z
2 − 4c1Γ1z

2 − 2c21Γ1z
2
)

[ΦΦΦz]5,3

1

Γ1z3
(
Γ1NR − Γ1NR

3 + 2c1τNRz − 7Γ1NRz − 4c1Γ1NRz − 2c1Γ1NNRz

− 3Γ1N
2
Rz − 2c1Γ1N

2
Rz + c1τz

2 − 7Γ1z
2 − 9c1Γ1z

2 − 2c21Γ1z
2 − c1Γ1Nz

2

− c21Γ1Nz
2 − 3Γ1NRz

2 − 4c1Γ1NRz
2 − c21Γ1NRz

2 − Γ1z
3 − 2c1Γ1z

3 − c21Γ1z
3
)

[ΦΦΦz]5,4

1

Γ1z2
(
− 3Γ1NR − 3Γ1N

2
R + c1τz − 8Γ1z − 5c1Γ1z − c1Γ1Nz − 6Γ1NRz

− 4c1Γ1NRz − 3Γ1z
2 − 4c1Γ1z

2 − c21Γ1z
2
)

[ΦΦΦz]5,5
1

z

(
− 3− 3NR − 3z − 2c1z

)
Other 0

3) Using results from Step 2, derive differential equations w.r.t. z for Po(z) and C(z), based

on their integral relationships from (60) and (62) with pγ1(t; z). Then, [33] reveals that the

function vector po(z)
.
= 5 × 1 with [po(z)]k = ∂k−1

z Po(z), k = 0 : 4, and c(z)
.
= 7 × 1

with [c(z)]k = ∂k−1
z C(z), k = 0 : 6, satisfy the systems of differential equations

∂zpo(z) = ΦΦΦzpo(z), (75)

∂zc(z) = ΨΨΨzc(z), (76)

where ΦΦΦz
.
= 5 × 5 and ΨΨΨz

.
= 7 × 7 are companion matrices [34, p. 109]; the former is

depicted in Table I, whereas the latter is shown only in [33], due to space limitations.

The systems of differential equations deduced above enable the HGM-based computation of

the SNR p.d.f., outage probability, and ergodic capacity. HGM results for the computation

of the outage probability are shown below.
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VI. NUMERICAL RESULTS

A. Description of Parameter Settings and Approaches

For the channel-matrix mean model in (9), unit-norm vector a and vector b with the norm

in (10) are constructed, according to [1, Eq. (7.29), p. 299], from array response vectors11 as

a =
1√
NR

(1 e−jπ cos(θR) . . . e−jπ(NR−1) cos(θR))T , (77)

b =
1√
NT

(1 e−jπ cos(θT) . . . e−jπ(NT−1) cos(θT))T

√
K

K + 1
NRNT, (78)

assuming uniform linear antenna arrays with interelement spacing of half of the carrier wave-

length. Above, θR and θT are, respectively, the angles of arrival and departure of the LoS

component w.r.t. the antenna broadside directions. We show results for θT equal to the central

angle, θc, of the transmit-side Laplacian power azimuth spectrum12 [23, Eq. (4.2)]. Then, we

have computed RT from the AS with [23, Eqs. (4-3)–(4-5)].

Due to limited space, we can show results only for the Stream-1 outage probability13 for

τ = 8.2 dB, which corresponds to a symbol error probability of 10−2 for QPSK modulation.

Then, the constellation size is M = 4, and we show Po vs. Γb = Γs/ log2M = Γs/2. The ergodic

capacity can be computed similarly, using (68), (69), and (76) with ΨΨΨz deduced in [33].

Unless stated otherwise, presented results have been obtained by running MATLAB R2012a,

in its native fixed precision, on a computer with a 3.4-GHz, 64-bit, quad-core14 processor and 8

GB of memory. For the simulation results (in figure legends: Sim.) we have employed, when

feasible, Ns = 106 samples of n and H for (4), to produce reliable results for Po as low as 10−5.

Then, series results (in legends: Series) have been produced by truncating (68) as in [18,

Section V.F] [19, Section IV.A], i.e., new terms have been added until: 1) their relative change

falls below 10−10 [19, Eq. (34)], or 2) n ≤ nmax = 150 (additional terms in (68) lead to numerical

divergence because the arising large numbers are represented with poor precision — for further

details see also [19, Section IV.B]). Numerical divergence is indicated in legends with Series∗.

Full-Rayleigh fading results (in legend: Rayleigh,Exp.) have been obtained with expression

11See [1, Fig. 7.3b, p. 296, Eq. (7.20), p. 297] for geometry and derivation details.
12Unshown results have revealed that θc = θT is the worst-case scenario, i.e., ZF performance improves with larger |θc− θT|.
13The outage probability can be evaluated analogously for any other stream.
14Nevertheless, we have run single instances of MATLAB when measuring the computation time (with tic, toc.)
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Po = γ(N,τ/Γ1)
(N−1)!

, obtained from (61) based on Remark 5. Finally, HGM results (in legends: HGM)

have been produced by solving — with the MATLAB ode45 function with tolerance levels

of 10−10 — the system of differential equations (75). The initial condition po(z0) has been

computed with (69) for z0 = 0.05692 obtained with (43) for K = −25 dB, NR = 6, NT = 4,

and RT = INT . This choice enables the accurate computation of ∂kzPo(z0) with series (69).

Finally, results are shown for K and AS values relevant to their lognormal distributions for

WINNER II scenarios A1 (indoors office) and C2 (urban macrocell), under LoS propagation [22,

Table 5.5]: 1) averages of these distributions, i.e., for K = 7 dB, and for AS = 51◦ and 11◦, which

yield low and high antenna element correlation, i.e., |[RT]1,2| = 0.12 and 0.83, respectively; 2)

values within the range of most likely values [24, Table 1], or 3) random samples15.

B. Description of Results for K and AS Relevant to Scenario A1, and for Small NR and NT

Fig. 1 shows results for AS = 51◦ and K set to values from 0 dB to the upper limit of the

range expected with 0.99 probability for scenario A1 [24, Table 1]. Note that the MATLAB series

truncation diverges for K = 14 dB and 21 dB16, whereas HGM and simulation results agree

at all K. Thus, HGM enables us to investigate the performance degradation likely to occur in

practice with increasing K for MIMO ZF under full-Rician fading with r = 1.

Fig. 2 shows results from averaging also over AS and K from their WINNER II lognormal

distributions for scenario A1. First, simulation has not been attempted due to the long required

time. (The computation time is explored in more detail below.) Series truncation does not yield

useful results because of numerical divergence for the larger K values. Only HGM has yielded

relatively expeditiously a smooth plot whose unshown continuation at sufficiently large Γb has

revealed the expected diversity order17 of N = NR −NT + 1 = 3 [18, Eq. (46)].

Figs. 1 and 2 depict the same Γb range in order to reveal that 1) setting AS and K to their

means can substantially overestimate the performance compared to averaging over AS and K —

compare the blue dash-dotted plot in Fig. 1 with the solid black plot in Fig. 2; and 2) making the

15Then, even just computing RT with [23, Eqs. (4-3)–(4-5)] is time consuming; nevertheless, the employed 2, 100 samples

of AS and K have yielded smooth outage probability plots.
16Our series truncation in Mathematica, with its arbitrary precision, converged also for K = 14 dB, but required an hour

instead of a few seconds for the HGM. Thus, series truncation in Mathematica was not tried for K = 21 dB.
17The expected diversity order is also noticeable from the plots for K = 0 dB and 7 dB in Fig. 1.
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Fig. 1. Stream-1 outage probability for NR = 6, NT = 4, AS = 51◦ (i.e., scenario A1 mean), and various values of K,

including K = 7 dB (i.e., scenario A1 mean). Series results for K = 14, 21 dB do not appear because of numerical divergence.

assumption of full-Rayleigh fading instead of full-Rician fading leads to unrealistic performance

expectations — compare the plots in Fig. 2.

C. Description of Results for K, AS Relevant to Scenarios A1, C2, and for Increasing NR, NT

Table II summarizes compactly results of several numerical experiments for K and AS set to

their averages for scenarios A1 and C2, and for the pair (NR, NT) set to Na × (6, 4), with Na

shown in the second column18. The Γb ranges shown in the third column yield Po in the order

of 10−2 – 10−5, as shown in the fourth column. The remaining three columns show the actual or

estimated computation time (in seconds), per Γb value. The marks 3 and 7 in the ‘Series’

column denote, respectively, successful and unsuccessful (i.e., numerical divergence) series

computation19. Further, mark 7 in the ‘Sim.’ column indicates infeasible simulation duration.

Finally, mark 3 in the ‘HGM’ column indicates successful HGM-based computation.

18Note that NR does not necessarily have to be much larger than NT even in massive MIMO [7].
19For (NR = 6, NT = 4) numerical convergence is achieved with n = 134, whereas the other (NR, NT) pairs yield n =

nmax = 150. Consequently, MATLAB reports about the same computation time (≈ 1.3 s) for all cases.
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Fig. 2. Stream-1 outage probability for NR = 6, NT = 4, averaged also over the WINNER II lognormal distributions of K

and AS for scenario A1. Results corresponding to Rician,Series do not appear because of numerical divergence.

Fig. 3 characterizes ZF performance for K = 7 dB and AS = 51◦, and for the large-MIMO

setting with NR = 100 and NT = 20. On the one hand, series truncation does not produce

useful results; on the other hand, HGM results agree with the simulation results, and we have

found HGM over 30 times faster20. Thus, unlike series truncation and simulation, HGM enables

reliable, accurate, and expeditious ZF assessments even for large MIMO.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Summarizing, this paper has provided an exact performance analysis and evaluation of MIMO

spatial multiplexing with ZF, under transmit-correlated full-Rician fading with LoS component

of rank r = 1. First, we expressed as infinite series the SNR m.g.f. and p.d.f., as well as

performance measures, e.g., the outage probability and ergodic capacity. However, their numer-

ical convergence has been revealed inherently more problematic with increasing K, NR, and

20When large NT yields infeasibly-long simulation, HGM results can be validated by checking the diversity order revealed

by its Po-vs.-Γb plot. E.g., for NR = 104 and NT = 100, we have found its slope magnitude to be near the expected N = 5.
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TABLE II

RESULTS FOR K = 7 DB, AS = 51◦ (I.E., SCENARIO A1) AND AS = 11◦ (C2), AND (NR, NT) = Na × (6, 4).

AS Na Γb (dB) Po = [a×10−2, b×10−5] Series Sim. (Ns = 106) HGM

51◦ (A1) 1 [15, 25] a = 1.53, b = 2.15 1.3 s 3 31 s 20 s 3

51◦ (A1) 2 [11, 17] a = 1.74, b = 4.26 1.3 s 7 53 s 20 s 3

51◦ (A1) 5 [6, 9] a = 1.39, b = 6.39 1.3 s 7 520 s 20 s 3

51◦ (A1) 10 [2, 4.5] a = 2.35, b = 2.45 1.3 s 7 2,300 s 20 s 3

51◦ (A1) 15 [0, 2] a = 1.98, b = 1.61 1.3 s 7 8,800 s 20 s 3

51◦ (A1) 100 [-9.2, -8.5] a = 2.72, b = 2.57 1.3 s 7 estimated : 1.9× 106 s 7 20 s 3

11◦ (C2) 1 [23, 32] a = 1.12, b = 3.01 1.3 s 3 31 s 20 s 3

11◦ (C2) 2 [18.5, 24.5] a = 1.43, b = 3.36 1.3 s 7 54 s 20 s 3

11◦ (C2) 10 [5, 7.5] a = 2.12, b = 2.09 1.3 s 7 2,400 s 20 s 3
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Fig. 3. Stream-1 outage probability for NR = 100, NT = 20, for K = 7 dB and AS = 51◦ (i.e., averages for scenario A1).

Results corresponding to Series do not appear because of numerical divergence.

NT. Therefore, we have applied computer algebra to the derived infinite series and deduced

corresponding differential equations. They have been used for HGM-based computation. Thus,

we have expeditiously produced accurate results for the range of realistic values of K and even

for large NR and NT. Consequently, we have been able to assess the substantial performance

degradation incurred with increasing K for ZF when r = 1. Furthermore, HGM has helped reveal
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that the performance averaged over WINNER II AS and K distributions can be much worse than

that for average AS and K. Finally, we have been able to evaluate the performance for antenna

numbers relevant to large MIMO reliably and much more expeditiously than by simulation. In

future work, we shall consider cases with higher r, more general fading and deployment models,

and other transceiver processing methods. We expect that such cases will yield exact expressions

as multiple infinite series for MIMO performance measures. Then, we shall employ computer

algebra to deduce the corresponding differential equations before HGM-based computation.

APPENDIX

A. Derivation of ([A−H]1,1)2 for Eq. (43)

Using (39), the fact that A−1 is upper triangular and A−H = (A−1)H is lower triangular, and

the fact that [A−1]i,i, ∀i = 1 : NI, are real-valued yields, respectively,

(AAH)−1 = A−HA−1 = ṼHR−1
T,K22

Ṽ, [(AAH)−1]1,1 = [A−H]1,1[A−1]1,1, [A−H]1,1 = [A−1]1,1.

Then, also recalling the choice [Ṽ]•,1 = b̃/‖b̃‖ made to obtain (37), we can write:

([A−H]1,1)2 = [A−H]1,1[A−1]1,1 = [(AAH)−1]1,1 = [ṼHR−1
T,K22

Ṽ]1,1 = ([Ṽ]•,1)HR−1
T,K22

[Ṽ]•,1

=
b̃HR−1

T,K22
b̃

‖b̃‖2
. (79)

B. Proof of Lemma 1

Based on (41) and (44), we can regard [G2]•,1
.
= NR×1, as a vector of independent complex-

valued Gaussians with variance of 1/2 for the real and imaginary parts, and means

E{[G2]1,1} =
√
x2 = ‖b̃‖[A−H]1,1, E{[G2]i,1} = 0, i = 2 : NR. (80)

Thus, we have:

|[G2]1,1|2

1/2
∼ χ2

2

(
x2

1/2

)
, (81)

|[G2]i,1|2

1/2
∼ χ2

2, i = 2 : NR ⇒
|[G2]2,1|2

1/2
+ · · ·+ |[G2]NR,1|2

1/2
∼ χ2

2(NR−1). (82)

Now, because T2 in (46) is upper triangular, we can write the first column of G2 = U2T2 as

[G2]•,1 = [U2]•,1[T2]11, and then we may set

[U2]•,1 =
[G2]•,1
‖[G2]•,1‖

, [T2]1,1 = ‖[G2]•,1‖. (83)
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Thus, we have

|[U2]1,1|2 =
|[G2]1,1|2

|[G2]1,1|2 + |[G2]2,1|2 + · · ·+ |[G2]NR,1|2
(81),(82)∼ χ2

2 (2x2)

χ2
2 (2x2) + χ2

2(NR−1)

, (84)

which, based on [37], yields

|[U2]1,1|2 ∼ Beta(1, NR − 1, 2x2), (85)

so that β1
(48)
= 1− |[U2]1,1|2 ∼ Beta(NR − 1, 1, 2x2). (86)

The p.d.f. of β1 is then given by [37]

fβ1(v) =
∞∑

n2=0

e−x2xn2
2

n2!

(
v(NR−1)−1(1− v)(n2+1)−1∫ 1

0
t(NR−1)−1(1− t)(n2+1)−1 dt

)
︸ ︷︷ ︸

=fβ3 (v;NR−1,n2+1)

, (87)

where fβ3(v;NR − 1, n2 + 1) is the p.d.f. of some variable β3 ∼ Beta(NR − 1, n2 + 1). Thus,

the n1th moment of β1 can be written from (87) as:

E{βn1
1 } =

∞∑
n2=0

e−x2xn2
2

n2!
E{βn1

3 } =
∞∑

n2=0

e−x2xn2
2

n2!

(NR − 1)n1

(n2 +NR)n1

. (88)

C. Proof of Lemma 2

First, let us expand NR × NI matrix G2 ∼ CN (Gd,2, INR ⊗ INI) from (41) — whose sole

nonzero-mean column is [G2]•,1 — into an NR × NR matrix Ĝ2 ∼ CN
(
Ĝd,2, INR ⊗ INR

)
, by

attaching an NR ×N matrix G̃2 with uncorrelated elements distributed as [G̃2]i,j ∼ CN (0, 1).

Then, paralleling (46), let us consider the QR decomposition of Ĝ2, i.e.,

Ĝ2 = (G2 G̃2) = Û2T̂2, (89)

with Û2
.
= NR ×NR unitary, i.e., ÛH2 Û2 = Û2Û

H
2 = INR , and T̂2

.
= NR ×NR upper triangular

with positive diagonal elements. By partitioning in (89) and using (46), we can write

Ĝ2 = (G2 G̃2) = (U2 Ũ2)

 T2 T̃12

0 T̃22

 = (U2T2 U2T̃12 + Ũ2T̃22), (90)

where Ũ2
.
= NR×N satisfies ŨH2 Ũ2 = IN , T̃12

.
= NI×N , and T̃22

.
= N×N is upper triangular

with positive diagonal elements.

Now, given [G2]•,1 — i.e., given [U2]•,1 set as in (83) — the distribution of

Ĝ2
(89)
= Û2T̂2 = (U2 Ũ2)T̂2 = ([U2]•,1 [U2]•,2 . . . [U2]•,NI Ũ2)T̂2 (91)
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is invariant to unitary transformations of the columns [U2]•,i, ∀i = 2 : NI, and the columns of

Ũ2. Thus, we may rewrite

Û2 = (U2 Ũ2) =
(
[U2]•,1 (u0

2 . . . u0
NI

u0
NI+1 . . . u0

NR
)P
)
, (92)

where fixed orthonormal vectors u0
2, . . . ,u

0
NR

are selected to form a basis with [U2]•,1, and

P
.
= (NR − 1)×(NR − 1) is unitary, Haar-distributed [18, Sec. III.E], not dependent on [U2]•,1.

Using the first row of U0 = (u0
2 . . . u0

NR
)
.
= NR × (NR − 1) from (92) to define the vector

qT = [U0]1,•P
.
= 1× (NR − 1), (93)

the first row of Û2 from (92) can be written as

[Û2]1,• = ([U2]1,1 qT ). (94)

Then, based on Û2Û
H
2 = INR and (94), we can write

1 = ‖[Û2]1,•‖2 = |[U2]1,1|2 + ‖q‖2 ⇒ ‖q‖2 = 1− |[U2]1,1|2. (95)

Further, note from (93) that the vector

q

‖q‖
=

q√
1− |[U2]1,1|2

(96)

is uniformly distributed on the unit sphere SNR−2.

Finally, based on (92) and (94), we can write

[Û2]1,• = ([U2]1,1 [U2]1,2 . . . [U2]1,NI [Ũ2]1,•) = ([U2]1,1 q1 . . . qNI−1 qNI . . . qNR−1),

i.e., [U2]1,2, . . . , [U2]1,NI are the first NI−1 elements of q. Thus, we can write, by also using (95),

|[U2]1,2|2 + · · ·+ |[U2]1,NI|2

1− |[U2]1,1|2
=

|q1|2 + · · ·+ |qNI−1|2

(|q1|2 + · · ·+ |qNI−1|2) + (|qNI |2 + · · ·+ |qNR−1|2)
= β4,

which implies that, conditioned on [G2]•,1, i.e., on [U2]•,1, we have [37]

β4 ∼ Beta(NI − 1, NR −NI) = Beta(NT − 2, N), (97)

so that β2 = 1− β4 ∼ Beta(NR −NI, NI − 1) = Beta(N,NT − 2), (98)

which does not depend on [U2]•,1, i.e., our β2 is independent of β1
(48)
= 1− |[U2]1,1|2.
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D. Proof of Theorem 2

From the m.g.f. of the conditioned SNR in (49), based on the independence of β2 and
(
1−

|[U2]1,1|2
)
, we have deduced (53) as follows:

Mγ1(s;x1, x2) = E(β1,β2)

{
Mγ1(s | β1, β2)

}
(49)
=

1

(1− Γ1s)N
E(β1,β2)

{
exp{f1(s)β1β2}

}
=

1

(1− Γ1s)N
Eβ1
{
Eβ2
{
ef1(s)β1β2

}}
=

1

(1− Γ1s)N
Eβ1
{
Mβ2

(
f1(s)β1

)}
(52)
=

1

(1− Γ1s)N
Eβ1
{

1F1

(
N ;NR − 1; f1(s)β1

)}
(56)
=

1

(1− Γ1s)N

∞∑
n1=0

(N)n1

(NR − 1)n1

f1(s)n1

n1!
E[U2]1,1

{
βn1

1

}
(88)
=

1

(1− Γ1s)N

∞∑
n1=0

(N)n1

������(NR − 1)n1

f1(s)n1

n1!

∞∑
n2=0

e−x2xn2
2

n2!
������(NR − 1)n1

(n2 +NR)n1

(56)
=

e−x2

(1− Γ1s)N

∞∑
n2=0

xn2
2

n2!
1F1(N ;n2 +NR; f1(s)).

E. Derivation of the Expressions for x1 and x2

From Remark 1, the normalized vector bn = b
‖b‖

.
= NT × 1 does not depend on K. Using

R̃ =

 0 0

0 R−1
T,K22

 .
= NT ×NT, (99)

r̃2,1 = (1 −rT2,1)T
.
= NT × 1, (100)

we can write µ1 from (30) and b̃HR−1
T,K22

b̃ from (43) as follows:

µ1 = b∗1 − b̃Hr2,1 = bHr̃2,1 = ‖b‖bHn r̃2,1, (101)

b̃HR−1
T,K22

b̃ = bHR̃b = ‖b‖2 bHn R̃bn. (102)

Now, from (10), we have that ‖b‖2 = KNRNT/(K + 1). Further, based on (11), we deduce

that:
[
R−1

T,K

]
1,1
∝ (K + 1), and R−1

T,K22
∝ (K + 1), so that R̃ ∝ (K + 1); also, r̃2,1 does not

depend on K because r2,1 defined in (25) does not depend on K. These yield:

x1
(32)
=

[
R−1

T,K

]
1,1
|µ1|2 = ‖b‖2

[
R−1

T,K

]
1,1
|bHn r̃2,1|2 ∝ KNRNT, (103)

x2
(43)
= b̃HR−1

T,K22
b̃ = ‖b‖2 bHn R̃bn ∝ KNRNT. (104)
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