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Abstract

We prove global convergence of particular iterative projection meth-
ods using the so-called shift-and-invert technique for solving symmet-
ric generalized eigenvalue problems. In particular, we aim to provide
a variant of the convergence theorem obtained by Crouzeix, Philippe,
and Sadkane for the generalized Davidson method. Our result covers
the Jacobi-Davidson and the rational Krylov methods with restarting
and preconditioning that are important techniques for modern eigen-
solvers. More specifically, we prove that the Ritz pairs converge to
exact eigenpairs, even though they are not necessarily the target eigen-
pairs. We would like to emphasize that our proof is not a routine
consideration of Crouzeix, Philippe, and Sadkane. To complete the
proof, we discover a key lemma, which leads to a very simple conver-
gence proof, resulting in a new theorem similar to that of Crouzeix,
Philippe, and Sadkane.

1 Introduction

In this study, we focus on convergence theory for iterative projection meth-
ods for finding smallest eigenvalues of the generalized eigenvalue problem

Ax = λBx, A,B ∈ Rn×n, (1)

where A is symmetric, and B is symmetric positive definite. Solving such
eigenvalue problems is important in many scientific and engineering applica-
tions. For example, (1) arises from discretization of a self-adjoint operator
for elliptic partial differential equations. Some discretization methods are
associated with projection to a finite-dimensional subspace.
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For large matrix eigenvalue problems, projection methods are also effec-
tive, as in the case of the discretization of infinite dimensional operators.
Nearly all the effective projection methods for generalized symmetric eigen-
value problems are based on the Rayleigh-Ritz procedure for a subspace of
the Euclidean space Rn [4, 12, 13, 34, 36]. The best-known method is the
Lanczos method using a Krylov subspace [20]. In recent times, the ratio-
nal Krylov method has also attracted much attention [7, 14, 21, 22, 23, 35].
See [3, 5, 6, 46, 48] for recent developments regarding Krylov subspace meth-
ods. Furthermore, the Davidson [10] and Jacobi-Davidson methods [39] are
familiar. Moreover, a generalized Davidson method exists [25, 31, 32], which
can be viewed as a general framework that includes the Lanczos, Davidson,
and Jacobi-Davidson methods. Furthermore, the steepest descent and con-
jugate gradient methods for minimizing the Rayleigh-quotient

ρ(x) :=
xTAx

xTBx
(2)

to obtain the eigenvalue often use the Rayleigh-Ritz procedure [17, 19].
Moreover, some contour integral methods [15, 45] can be viewed as belonging
to the class of the Rayleigh-Ritz procedure.

This study discusses theoretical global convergence properties for such
methods. In 1994, Crouzeix, Philippe, and Sadkane derived a global con-
vergence theorem [8, Theorem 2.1] for the restarted generalized Davidson
method that covers the restarted block Lanczos method, whereas Sorensen
proved global convergence of the restarted Lanczos in 1992 [40, Theorem
5.9]. Furthermore, in 2015, Sorensen’s result was extended to general situ-
ations [1, Theorems 3 and 4] to cover modern sophisticated restart strate-
gies [46, 48].

The steepest descent (PSD) and locally optimal conjugate gradient meth-
ods (LOPCG) with preconditioning for the Rayleigh-quotient are also effec-
tive with convergence rates that can be derived for an appropriate initial
guess and preconditioning [17, 18, 27, 28]. In recent times, it was shown in
[44] that global and asymptotic convergence of the basic conjugate gradient
(CG) method applies to nonlinear Hermitian eigenvalue problems. From
another standpoint, PSD and LOPCG can be viewed as a sort of restarted
generalized Davidson method. In 2003, Ovtchinnikov presented convergence
estimates from this viewpoint in [32]. Although such an approach has de-
rived sharper convergence estimates than that of the generalized Davidson
method with suitable initial guesses for more than a decade [30, 33], they do
not show global convergence properties of the Jacobi-Davidson method for
any initial guess, which cannot be covered by Crouzeix, Philippe, and Sad-
kane [8, Theorem 2.1]. Global convergence of the restarted Jacobi-Davidson
method was proved in [1, Theorem 6] for the first time in 2015. In particu-
lar, [1, Theorem 6] shows that the smallest Ritz value converges to an exact
eigenvalue, although not necessarily to the smallest one, in the same manner
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as [8, Theorem 2.1]. This global convergence property is also similar to the
Rayleigh-quotient iteration [34, Theorem 4.9.1].

In connection with recent developments of the (inexact) Rayleigh-quotient
iteration [2, 11, 16, 29, 37, 43, 47], the (inexact) rational Krylov method
using the so-called shift-and-invert technique or the Cayley transform has
recently been thoroughly investigated [7, 14, 22, 23]. The shift-and-invert
or Cayley transform techniques can be viewed as a sort of preconditioning,
which has been also thoroughly investigated to accelerate general iterative
projection methods [24, 41, 42].

With such a background of studies, we would like to construct a gen-
eral framework concerning global convergence for iterative projection meth-
ods. In particular, we aim to extend the convergence proof for the Jacobi-
Davidson [1, Theorem 6] to more general methods in the same manner as
that of Crouzeix, Philippe, and Sadkane [8, Theorem 2.1]. Our result cov-
ers the rational Krylov method with a restart strategy and preconditioning.
We would like to emphasize that our proof is not a routine consideration
of [8, Theorem 2.1]. We need a key lemma (Lemma 1) to complete the con-
vergence proof. This key lemma leads to a very simple convergence proof,
though the convergence rate cannot be derived from it.

This paper is organized as follows. Section 2 is devoted to descriptions
of the Rayleigh-Ritz procedure with restart strategy in an abstract form and
the convergence proof by Crouzeix, Philippe, and Sadkane [8] for the general-
ized Davidson method for solving standard symmetric eigenvalue problems.
This theorem is extended to generalized symmetric eigenvalue problems, and
our goal is clarified in Section 3. In Section 4, we derive a new convergence
theorem including the Jacobi-Davidson and rational Krylov methods with
restarting and preconditioning in an abstract form.

Notation. Throughout this study, A ∈ Rn×n is symmetric, B ∈ Rn×n is
symmetric positive definite, and the generalized eigenvalues for (A,B) are
λ1 ≤ · · · ≤ λn. Furthermore, Xi := [x1, . . . , xi] the matrix whose jth column
is the corresponding eigenvector xj to λj for any j = 1, . . . , i, normalized as
XT

i BXi = I, where I is the identity matrix. For any V ∈ Rn×i, let span{V }
be the subspace spanned by the columns of V . Moreover, k is the number
of desired smallest eigenvalues. For any vector v ∈ Rn, let ∥v∥ be

√
vTv and

∥v∥B be
√
vTBv.

2 Rayleigh-Ritz procedure and convergence the-
ory [8]

We describe the Rayleigh-Ritz procedure with restart strategy in an abstract
mathematical form as follows.
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Algorithm 1 A framework of iterative projection methods with restarting
for computing the k smallest eigenvalues of Ax = λBx.

Input: A,B ∈ Rn×n and V (0) = [v
(0)
1 , . . . , v

(0)
m0 ] ∈ Rn×m0

1: for ℓ := 0, 1, . . . , do

2: compute A(ℓ) = V (ℓ)TAV (ℓ), B(ℓ) = V (ℓ)TBV (ℓ)

3: compute the k smallest eigenvalues for (A(ℓ), B(ℓ)): λ
(ℓ)
1 ≤ · · · ≤ λ

(ℓ)
k

4: compute the corresponding Ritz vectors x
(ℓ)
1 , . . . , x

(ℓ)
k

5: compute V (ℓ+1) := [v
(ℓ+1)
1 , . . . , v

(ℓ+1)
mℓ+1 ], where span{V (ℓ+1)} ∋ x

(ℓ)
i for

i = 1, . . . , k
6: end for

For example, the restarted Lanczos method corresponds to the situation
where V (ℓ) for any ℓ ∈ N is a Krylov subspace. The relationship of Algo-
rithm 1 and modern solvers to generalized symmetric eigenvalue problems is
discussed in the next section. In general, most iterative projection methods
are related to Algorithm 1, and are of one of two types, i.e., the residual
based and the Rayleigh-quotient iteration methods as shown in Table 1 in
the next section. In this section, we first discuss global convergence of the
above algorithm for standard eigenvalue problems, for which B = I.

2.1 Convergence proof by Crouzeix, Philippe, and Sadkane

Here we focus on standard symmetric eigenvalue problems. Crouzeix, Philippe,
and Sadkane [8] proposed the following algorithm, an instance of Algo-
rithm 1.

Algorithm 2 The generalized Davidson method for Ax = λx in [8].

Input: A ∈ Rn×n and V (0) = [v
(0)
1 , . . . , v

(0)
k ] ∈ Rn×m0 with V (0)TV (0) = I

1: for ℓ := 0, 1, . . . , do

2: compute A(ℓ) = V (ℓ)TAV (ℓ)

3: compute the k smallest eigenvalues of A(ℓ): λ
(ℓ)
1 ≤ · · · ≤ λ

(ℓ)
k

4: compute the corresponding Ritz vectors x
(ℓ)
1 , . . . , x

(ℓ)
k

5: compute the residuals r
(ℓ)
i := Ax

(ℓ)
i − λ

(ℓ)
i x

(ℓ)
i (1 ≤ i ≤ k)

6: compute the new directions t
(ℓ)
i := C

(ℓ)
i r

(ℓ)
i (1 ≤ i ≤ k)

7: if dim(span{V (ℓ)}) ≤ m− k then

8: V (ℓ+1) := GS(V (ℓ), t
(ℓ)
1 , . . . , t

(ℓ)
k )

9: else
10: V (ℓ+1) := GS(x

(ℓ)
1 , . . . , x

(ℓ)
k , t

(ℓ)
1 , . . . , t

(ℓ)
k )

11: end if
12: end for

In lines 8 and 10, GS is the Gram-Schmidt orthogonalization. The block
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Lanczos method corresponds to C
(ℓ)
i = I (i = 1, . . . , k, ℓ ∈ N), which sat-

isfy the convergence conditions. In general, C
(ℓ)
i (i = 1, . . . , k, ℓ ∈ N) in

line 6 can be regarded as the preconditioning required to obtain the new

directions t
(ℓ)
i := C

(ℓ)
i r

(ℓ)
i (i = 1, . . . , k, ℓ ∈ N). To prove the convergence of

Algorithm 2, Crouzeix, Philippe, and Sadkane derived a convergence theo-
rem for Algorithm 1 in an abstract form, as follows [8].

Theorem 1 ([8]). Suppose that Algorithm 1 is applied to the symmet-
ric eigenvalue problem Ax = λx. Then, for i = 1, . . . , k, the sequences

{λ(ℓ)
i }ℓ∈N are nonincreasing and convergent. Let V (ℓ)TV (ℓ) = I for all

ℓ ∈ N. Moreover, let a set of matrices {C(ℓ)
i } satisfy the following as-

sumption: for any i = 1, . . . , k, there exist K1, K2 > 0 such that for any

ℓ ∈ N and for any vector v ∈ span{V (ℓ)}⊥: K1∥v∥2 ≤ vTC
(ℓ)
i v ≤ K2∥v∥2.

Furthermore, we assume that, for any i = 1, . . . , k, ℓ ∈ N, the vector

(I − V (ℓ)V (ℓ)T)C
(ℓ)
i (A − λ

(ℓ)
i I)x

(ℓ)
i belongs to span{V (ℓ+1)}. Then, for any

i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an eigenvalue of A, and the accumulation points

of {x(ℓ)i }ℓ∈N are the corresponding eigenvectors.

In [8], it is shown that C
(ℓ)
i (i = 1, . . . , k, ℓ ∈ N) are always positive

definite diagonal matrices with suitable V (0) for the block Davidson method
(Algorithm 2).

Our aim is to prove global convergence of other methods, such as the
rational Krylov and Jacobi-Davidson methods, which incorporate restart
strategies. For this purpose, we let

X
(ℓ)
i := [x

(ℓ)
1 , . . . , x

(ℓ)
i ] (3)

for the Ritz vectors, and we rewrite Theorem 1 as follows. Although the
proof is nearly the same as the proof in [8], we present the proof to explain
our contribution later.

Theorem 2. Suppose that Algorithm 1 is applied to the symmetric eigen-

value problem Ax = λx. Then, for i = 1, . . . , k, the sequences {λ(ℓ)
i }ℓ∈N are

nonincreasing and convergent. For each i = 1, . . . , k, define U
(ℓ)
m(i) ∈ Rn×m(i)

normalized to U
(ℓ)
m(i)

TU
(ℓ)
m(i) = I for m(i) ≥ i, satisfying span{X(ℓ)

i } ⊆

span{U (ℓ)
m(i)} ⊆ span{V (ℓ+1)} for all ℓ ∈ N. Let u

(ℓ)
i be the Ritz vector cor-

responding to the i-th smallest Ritz value θ
(ℓ)
i for the subspace span{U (ℓ)

m(i)}.

Moreover, let a set of matrices {C(ℓ)
i } satisfy the following assumption:

for any i = 1, . . . , k, there exist K1, K2 > 0 such that for any ℓ ∈ N,
s
(ℓ)
i := (A− θ

(ℓ)
i I)u

(ℓ)
i and w

(ℓ)
i := (I − U

(ℓ)
m(i)U

(ℓ)
m(i)

T)C
(ℓ)
i s

(ℓ)
i satisfy

K1∥s(ℓ)i ∥2 ≤ s
(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i , ∥w(ℓ)

i ∥2 ≤ K2. (4)

5



Furthermore, we assume that, for any i = 1, . . . , k, ℓ ∈ N, the vector w
(ℓ)
i

belongs to span{V (ℓ+1)}. Then, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an eigen-

value of A, and the accumulation points of {x(ℓ)i }ℓ∈N are the corresponding
eigenvectors.

Proof. It is easy to observe that for i = 1, . . . , k, the sequences {λ(ℓ)
i }ℓ∈N are

nonincreasing and convergent from the Cauchy interlace theorem.

In what follows, we prove that, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an

eigenvalue of A, and the accumulation points of {x(ℓ)i }ℓ∈N are the corre-

sponding eigenvectors. Using w
(ℓ)
i := (I − U

(ℓ)
m(i)U

(ℓ)
m(i)

T)C
(ℓ)
i s

(ℓ)
i , we see

u
(ℓ)
i

TAw
(ℓ)
i = s

(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i . (5)

Let Π
(ℓ)
i := [u

(ℓ)
i , w

(ℓ)
i /∥w(ℓ)

i ∥]. Note that Π
(ℓ)
i

TΠ
(ℓ)
i = I and let

Π
(ℓ)
i

TAΠ
(ℓ)
i =

(
θ
(ℓ)
i α

(ℓ)
i

α
(ℓ)
i β

(ℓ)
i

)
. (6)

Then, we see

α
(ℓ)
i =

u
(ℓ)
i

TAw
(ℓ)
i

∥w(ℓ)
i ∥

=
s
(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i

∥w(ℓ)
i ∥

(7)

from (5). To prove limℓ→∞ s
(ℓ)
i = 0, where s

(ℓ)
i = (A− θ

(ℓ)
i I)u

(ℓ)
i , we investi-

gate the behavior of α
(ℓ)
i as follows.

Let θ̂
(ℓ)
i denote the smallest eigenvalue of Π

(ℓ)
i

TAΠ
(ℓ)
i . Noting the char-

acteristic equation

det(Π
(ℓ)
i

TAΠ
(ℓ)
i − θ̂

(ℓ)
i I) = (θ

(ℓ)
i − θ̂

(ℓ)
i )(β

(ℓ)
i − θ̂

(ℓ)
i )− |α(ℓ)

i |2 = 0, (8)

we have

|α(ℓ)
i |2 ≤ 2∥A∥(θ(ℓ)i − θ̂

(ℓ)
i ) (9)

because of |β(ℓ)
i | ≤ ∥A∥ and |θ̂(ℓ)i | ≤ ∥A∥. Using λ

(ℓ+1)
i ≤ θ̂

(ℓ)
i ≤ θ

(ℓ)
i ≤ λ

(ℓ)
i

and limℓ→∞(λ
(ℓ)
i − λ

(ℓ+1)
i ) = 0, we have

lim
ℓ→∞

|α(ℓ)
i | = 0. (10)

From the relation (7), we have

|s(ℓ)i
TC

(ℓ)
i s

(ℓ)
i | = ∥w(ℓ)

i ∥|α(ℓ)
i |. (11)
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From (4) and (10), it follows that limℓ→∞ s
(ℓ)
i = 0, where s

(ℓ)
i = (A −

θ
(ℓ)
i I)u

(ℓ)
i . Hence, limℓ→∞ θ

(ℓ)
i is an eigenvalue of A and the accumulation

points of {u(ℓ)i }ℓ∈N are the corresponding eigenvectors. Recall that u
(ℓ)
i ∈

span{V (ℓ+1)} for i = 1, . . . , k. From the properties of the Rayleigh-Ritz

procedure, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an eigenvalue of A and the

accumulation points of {x(ℓ)i }ℓ∈N are the corresponding eigenvectors.

In this proof, the relation (7) is crucial. If we establish (7), the proof is
naturally derived through easy calculations. In this study, to derive the new
convergence theorem, we adapt such a relation to the proof for other eigen-
solvers. Furthermore, to complete our proof, we establish another crucial
lemma (Lemma 1) in Section 4.

3 Toward generalized eigenvalue problems

In this section, we examine an easy extension of Theorem 2 to generalized
eigenvalue problems as preparation for deriving our main result later.

Theorem 3. In Algorithm 1, for i = 1, . . . , k, the sequences {λ(ℓ)
i }ℓ∈N are

nonincreasing and convergent. For each i = 1, . . . , k, define U
(ℓ)
m(i) ∈ Rn×m(i)

normalized to U
(ℓ)
m(i)

TBU
(ℓ)
m(i) = I for m(i) ≥ i, satisfying span{X(ℓ)

i } ⊆

span{U (ℓ)
m(i)} ⊆ span{V (ℓ+1)} for all ℓ ∈ N. Let u

(ℓ)
i be the Ritz vector cor-

responding to the i-th smallest Ritz value θ
(ℓ)
i for the subspace span{U (ℓ)

m(i)}.

Moreover, let a set of matrices {C(ℓ)
i } satisfy the following assumption:

for any i = 1, . . . , k, there exist K1, K2 > 0 such that for any ℓ ∈ N,
s
(ℓ)
i := (A− θ

(ℓ)
i B)u

(ℓ)
i and w

(ℓ)
i := (I − U

(ℓ)
m(i)U

(ℓ)
m(i)

TB)C
(ℓ)
i s

(ℓ)
i satisfy

K1∥s(ℓ)i ∥2 ≤ s
(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i , ∥w(ℓ)

i ∥2B ≤ K2. (12)

Furthermore, we assume that, for any i = 1, . . . , k, ℓ ∈ N, the vector w
(ℓ)
i

belongs to span{V (ℓ+1)}. Then, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an eigen-

value for (A,B), and the accumulation points of {x(ℓ)i }ℓ∈N are the corre-
sponding eigenvectors.

Proof. It is easy to observe that, for i = 1, . . . , k, the sequences {λ(ℓ)
i }ℓ∈N

are nonincreasing and convergent, as in the proof of Theorem 2.

In what follows, we prove that, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an

eigenvalue and the accumulation points of {x(ℓ)i }ℓ∈N are the corresponding

eigenvectors. Using w
(ℓ)
i := (I − U

(ℓ)
m(i)U

(ℓ)
m(i)

TB)C
(ℓ)
i s

(ℓ)
i , we see

u
(ℓ)
i

TAw
(ℓ)
i = s

(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i .
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Let Π
(ℓ)
i := [u

(ℓ)
i , w

(ℓ)
i /∥w(ℓ)

i ∥B]. Note Π
(ℓ)
i

TΠ
(ℓ)
i = I and let

Π
(ℓ)
i

TAΠ
(ℓ)
i =

(
θ
(ℓ)
i α

(ℓ)
i

α
(ℓ)
i β

(ℓ)
i

)
.

in the same way as (6). It then follows that

α
(ℓ)
i =

u
(ℓ)
i

TAw
(ℓ)
i

∥w(ℓ)∥B
=

s
(ℓ)
i

TC
(ℓ)
i s

(ℓ)
i

∥w(ℓ)∥B
. (13)

Let θ̂
(ℓ)
i be the smallest eigenvalue of Π

(ℓ)
i

TAΠ
(ℓ)
i . We observe

det(Π
(ℓ)
i

TAΠ
(ℓ)
i − θ̂

(ℓ)
i I) = (θ

(ℓ)
i − θ̂

(ℓ)
i )(β

(ℓ)
i − θ̂

(ℓ)
i )− |α(ℓ)

i |2 = 0.

Hence, similar to (9), we have

|α(ℓ)
i |2 ≤ 2∥B−1A∥(θ(ℓ)i − θ̂

(ℓ)
i )

because of |β(ℓ)
i | ≤ ∥B−1A∥ and |θ̂(ℓ)i | ≤ ∥B−1A∥. Using λ

(ℓ+1)
i ≤ θ̂

(ℓ)
i ≤

θ
(ℓ)
i ≤ λ

(ℓ)
i and limℓ→∞(λ

(ℓ)
i − λ

(ℓ+1)
i ) = 0, we have α

(∞)
i = 0. Therefore,

we have limℓ→∞ s
(ℓ)
i = 0 in the same manner as in the proof of Theorem 2.

This completes the proof.

This theorem establishes global convergence in the case of C
(ℓ)
i = I (i =

1, . . . , k, ℓ ∈ N), though the convergence speed might be very slow. The

block Lanczos method corresponds to the situation C
(ℓ)
i = B−1 (i = 1, . . . , k, ℓ ∈

N), which is an ideal case. If solving the linear system requires high compu-
tational cost for the large matrix B, then the linear system is often solved ap-

proximately, which corresponds, in a sense, to the situation C
(ℓ)
i ≈ B−1 (i =

1, . . . , k, ℓ ∈ N). For example, if we determine C
(ℓ)
i (i = 1, . . . , k, ℓ ∈ N)

as the inverse matrices of the diagonal part of B in the same way as in the
Davidson method, then the convergence is also guaranteed.

Here we classify the popular projection methods based on the new di-
rection expanding subspace in Theorem 3. In general, there are two classes,
i.e., the residual-based and Rayleigh-quotient iteration methods. The for-

mer aims to add the residual (A− θ
(ℓ)
i B)u

(ℓ)
i (improved by B−1) to the new

subspace, which is also interpreted as one power iteration to obtain a new
direction. Hence, this covers the Lanczos method (e.g., see [8]). The latter
aims to filter the target eigenpairs directly using the Rayleigh-quotient as

(A−θ
(ℓ)
i B)−1Bu

(ℓ)
i . From this viewpoint, we classify the popular projection

methods as in Table 1 (see [4] for details).
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Table 1: Classification of the popular eigensolvers from the new direction
expanding subspace.

B−1(A− θ
(ℓ)
i B)u

(ℓ)
i (A− θ

(ℓ)
i B)−1Bu

(ℓ)
i

(with a slight modification) (with a slight modification)

Lanczos [20, 40] Jacobi-Davidson [39]
PSD (PINVIT) [19, 26] Rational Krylov [35]
LOPCG [17]

More precisely, the new directions of the PSD and LOPCG are T (A −
θ
(ℓ)
i B)u

(ℓ)
i , where T is often assumed to be a positive definite matrix filtering

the target eigenvector in the same manner as in the right part of Table 1. In

other words, (A−θ
(ℓ)
i B)u

(ℓ)
i is the steepest descent direction for the Rayleigh-

quotient u
(ℓ)
i

TAu
(ℓ)
i /u

(ℓ)
i

TBu
(ℓ)
i , then T can be viewed as the precondition-

ing matrix. Since the generalized Davidson is a general framework, it ex-
ists in both the classes. Furthermore, there are block versions (e.g., block
Lanczos [9], LOBPCG [17], block Jacobi-Davidson [38], and so forth). Al-
though Theorem 3 covers the left part of Table 1, it does not cover the right

part where the new directions are obtained using (A − θ
(ℓ)
i B)−1Bu

(ℓ)
i (i =

1, . . . , k, ℓ ∈ N), such as the Jacobi-Davidson [39] (see also [1, §7]), and ratio-
nal Krylov [23, 35] (see also [4, §8.5]). If we apply Theorem 3 to such situa-

tions, we must let C
(ℓ)
i := (A−θ

(ℓ)
i B)−1B(A−θ

(ℓ)
i B)−1 (i = 1, . . . , k, ℓ ∈ N).

For simplicity, we assume k = 1 for the Jacobi-Davidson method. If we as-

sume θ
(∞)
1 is not equal to an eigenvalue, then the conditions in (12) are

satisfied. Hence, θ
(ℓ)
1 is convergent to an eigenvalue. This is a contradiction.

Therefore, θ
(∞)
1 = λ

(∞)
1 would be expected to be an eigenvalue. However,

in such a case, ∥w(ℓ)
1 ∥2B is not bounded in view of (13), α

(∞)
1 = 0, and

C
(ℓ)
1 := (A− θ

(ℓ)
1 B)−1B(A− θ

(ℓ)
1 B)−1. In other words, ∥w(ℓ)

1 ∥2B ≤ K2 in (12)

does not hold in Theorem 3 for the condition of limℓ→∞ s
(ℓ)
1 = 0, and hence

the convergence of x
(ℓ)
1 cannot be theoretically guaranteed.

With such a background, we derive another convergence theorem that

covers the Ritz vectors in the case of C
(ℓ)
i := (A− θ

(ℓ)
i B)−1B(A− θ

(ℓ)
i B)−1

in the next section. Note that the following analysis also focuses on the

situation in which (A − θ
(ℓ)
i B)−1Bu

(ℓ)
i for i = 1, . . . , k, ℓ ∈ N are solved

approximately from the practical point of view.

4 New convergence theorem

In this section, we derive another new convergence theorem for particu-
lar iterative projection methods, such as the Jacobi-Davidson, and ratio-

9



nal Krylov methods and some methods with preconditioning related to

(A− θ
(ℓ)
i B)−1.

To this end, we provide the following crucial lemma.

Lemma 1. Suppose that A is symmetric, and B is symmetric positive def-
inite. Let {U (ℓ)}ℓ∈N and {V (ℓ)}ℓ∈N be the sequences of matrices satisfying

span{U (ℓ)} ⊆ span{V (ℓ+1)} for all ℓ ∈ N. For span{U (ℓ)}, let θ
(ℓ)
i denote

the i-th smallest Ritz value and u
(ℓ)
i the corresponding Ritz vector. For

span{V (ℓ)}, let λ(ℓ)
i and x

(ℓ)
i be the Ritzpair in a similar manner. Further-

more, let {y(ℓ)}ℓ∈N be a sequence satisfying ∥y(ℓ)∥B ≤ K for all ℓ ∈ N and

positive constant K > 0. Assume that {θ(ℓ)i }ℓ∈N and {λ(ℓ)
i }ℓ∈N are con-

vergent, that θ
(∞)
i = λ

(∞)
i , and that {y(ℓ)i }ℓ∈N satisfies (A − θ

(ℓ)
i B)−1y(ℓ) ∈

span{V (ℓ+1)} and limℓ→∞ 1/∥(A − θ
(ℓ)
i B)−1y(ℓ)∥B = 0. Then, λ

(∞)
i is an

eigenvalue for (A,B) and the accumulation points of {x(ℓ)i }ℓ∈N are the cor-
responding eigenvectors.

Proof. Since θ
(ℓ)
i is convergent and limℓ→∞ 1/∥(A−θ

(ℓ)
i B)−1y(ℓ)∥B = 0, (A−

θ
(∞)
i B) is singular. In other words, λ

(∞)
i (= θ

(∞)
i ) is an eigenvalue. Therefore,

the accumulation points of {(A− θ
(ℓ)
i B)−1y(ℓ)/∥(A− θ

(ℓ)
i B)−1y(ℓ)∥B}ℓ∈N are

the eigenvectors corresponding to the eigenvalue λ
(∞)
i (= θ

(∞)
i ) for (A,B).

Moreover, noting (A − θ
(ℓ)
i B)−1y(ℓ) ∈ span{V (ℓ+1)}, we see that the accu-

mulation points of {x(ℓ)i }ℓ∈N are also the corresponding eigenvectors.

In this proof, the convergence of θ
(ℓ)
i to an eigenvalue is obvious be-

cause (A − θ
(∞)
i B) must be singular. In addition, u

(ℓ)
i corresponding to

θ
(ℓ)
i is also regarded as the Ritz vector for span{V (ℓ+1)} as ℓ → ∞ in view

of span{U (ℓ)} ⊆ span{V (ℓ+1)} and θ
(∞)
i = λ

(∞)
i . Hence, most researchers

might try to prove that {u(ℓ)i }ℓ∈N is also convergent to the eigenvector, but
this cannot be proved directly. To overcome this limitation, we track the

behavior of {(A − θ
(ℓ)
i B)−1y(ℓ)/∥(A − θ

(ℓ)
i B)−1y(ℓ)∥B}ℓ∈N, resulting in the

finding of the corresponding eigenvector in span{V (ℓ)}. This finding is cru-

cial, even though proving its convergence is not so difficult. Since {u(ℓ)i }ℓ∈N
corresponds to {θ(ℓ)i }ℓ∈N converging to an eigenvalue, it is difficult to find

out {(A − θ
(ℓ)
i B)−1y(ℓ)}ℓ∈N using {y(ℓ)}ℓ∈N, which has nothing to do with

{span{V (ℓ)}}ℓ∈N. In fact, the latest paper [1] cannot find such a sequence,
and hence the convergence of the Ritz vector in the Jacobi-Davidson method
cannot be proved in the general situation [1, Theorem 6]. In this study, com-
bining this finding with Theorem 3 using appropriate definitions, we obtain
the following main result covering the eigenvectors.

Theorem 4. In Algorithm 1, for i = 1, . . . , k, the sequences {λ(ℓ)
i }ℓ∈N are

nonincreasing and convergent. For each i = 1, . . . , k, define U
(ℓ)
m(i) ∈ Rn×m(i)

10



normalized to U
(ℓ)
m(i)

TBU
(ℓ)
m(i) = I for m(i) ≥ i, satisfying span{X(ℓ)

i } ⊆

span{U (ℓ)
m(i)} ⊆ span{V (ℓ+1)} for all ℓ ∈ N. Let u

(ℓ)
i be the Ritz vector cor-

responding to the i-th smallest Ritz value θ
(ℓ)
i for the subspace span{U (ℓ)

m(i)}.

Moreover, let a set of matrices {C(ℓ)
i } satisfy the following assumption: for

any i = 1, . . . , k, there exist K1,K2 > 0 such that for any ℓ ∈ N, u(ℓ)i satisfies

K1 ≤ u
(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i , ∥C(ℓ)

i u
(ℓ)
i ∥2B ≤ K2. (14)

Furthermore, we assume that, for any i = 1, . . . , k, ℓ ∈ N, the vector

(A − θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i belongs to span{V (ℓ+1)}. Then, for any i = 1, . . . k,

limℓ→∞ λ
(ℓ)
i is an eigenvalue for (A,B), and the accumulation points of

{x(ℓ)i }ℓ∈N are the corresponding eigenvectors.

Proof. Since the convergence limℓ→∞ λ
(ℓ)
i for any i = 1, . . . k is obvious, we

prove that, for any i = 1, . . . k, limℓ→∞ λ
(ℓ)
i is an eigenvalue of A, and the

accumulation points of {x(ℓ)i }ℓ∈N are the corresponding eigenvectors. Letting

w
(ℓ)
i := (I − U

(ℓ)
m(i)U

(ℓ)
m(i)

TB)(A− θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i , (15)

we see

u
(ℓ)
i

TAw
(ℓ)
i = u

(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i . (16)

Define α
(ℓ)
i in the same manner as in Theorem 3. Then, we have

α
(ℓ)
i =

u
(ℓ)
i

TAw
(ℓ)
i

∥w(ℓ)
i ∥B

=
u
(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i

∥w(ℓ)
i ∥B

(17)

and α
(∞)
i = 0 in the same manner as in the proof of Theorem 3. Noting the

definition (15), and K1 ≤ u
(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i in (14), we have

lim
ℓ→∞

K1

∥(I − U
(ℓ)
m(i)U

(ℓ)
m(i)

TB)(A− θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i ∥B

= 0, (18)

whereK1 > 0. Then, it follows that limℓ→∞ 1/∥(A−θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i ∥B = 0.

Hence, letting y(ℓ) := C
(ℓ)
i u

(ℓ)
i in Lemma 1, we obtain the theorem.

In this proof, the relation (17) found in [8] and Lemma 1 are crucial.
Note that, as a consequence of Lemma 1, the theorem is organized similar
to Theorem 3.

Our new theorem covers any solver in the right part of Table 1. The ratio-

nal Krylov method corresponds to the situation C
(ℓ)
i := B (i = 1, . . . , k, ℓ ∈
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N) [23, 35] (see also [4, §8.5]). The Jacobi-Davidson method also corre-

sponds to the situation k = 1 and C
(ℓ)
1 := B for all ℓ ∈ N, in which the

so-called correction equations are solved exactly [39] (see also [1, §7]). A
block variant of Jacobi-Davidson [38, Algorithm 9.3] is also covered because

it corresponds to the situation C
(ℓ)
i := B (i = 1, . . . , k, ℓ ∈ N) in the same

way as the rational Krylov method.

4.1 Inexact inner iteration and preconditioning

From the practical point of view, (A − θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i for i = 1, . . . , k

are often computed using sparse LU factorization (e.g., see [23]). Other-

wise, (A − θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i for i = 1, . . . , k are solved approximately us-

ing some linear system solvers such as the generalized minimal residual
method (GMRES) together with preconditions filtering the target eigen-
vectors. Theorem 4 covers such a situation as follows. Let the new di-
rections be t

(ℓ)
i := P

(ℓ)
i Bu

(ℓ)
i (i = 1, . . . , k, ℓ ∈ N), where P

(ℓ)
i can be

regarded as the product of the preconditioning matrix and an approxima-

tion of (A − θ
(ℓ)
i B)−1. Also note that t

(ℓ)
i can be obtained without ex-

plicitly constructing P
(ℓ)
i . Theorem 4 states that, for any i = 1, . . . , k, if

C
(ℓ)
i u

(ℓ)
i := (A − θ

(ℓ)
i B)t

(ℓ)
i satisfies the convergence conditions in (14) for

some positive constants K1,K2 > 0 (i.e., K1 ≤ u
(ℓ)
i

T(A − θ
(ℓ)
i B)t

(ℓ)
i and

∥(A−θ
(ℓ)
i B)t

(ℓ)
i ∥B ≤ K2), then the eigenpairs can be obtained. As an exam-

ple, we choose the new direction t
(ℓ)
i using the GMRES iterations for solving

Bu
(ℓ)
i = (A − θ

(ℓ)
i B)t

(ℓ)
i approximately, for which the number of iterations

is determined as u
(ℓ)
i

T(A − θ
(ℓ)
i B)t

(ℓ)
i and ∥(A − θ

(ℓ)
i B)t

(ℓ)
i ∥B are less than

K1 and K2, respectively. Then, the convergence is guaranteed from Theo-

rem 4. Note that since u
(ℓ)
i

T(A − θ
(ℓ)
i B)t

(ℓ)
i and ∥(A − θ

(ℓ)
i B)t

(ℓ)
i ∥B can be

computed during the GMRES iteration, we can stop the GMRES iteration
appropriately in order to guarantee the global convergence.

4.2 Extension to extremal eigenvalues

In modern eigensolvers, it is important to use both the smallest and largest
Ritz values and the corresponding Ritz vectors for the restart strategies [9,
46, 48]. Hence, we prove global convergence for such strategies, as demon-
strated in [1, Lemma 3].

To this end, we describe the Rayleigh-Ritz procedure with restart strat-
egy for computing both the p smallest and the q largest ones.

12



Algorithm 3 A framework of iterative projection methods with restarting
for computing extremal eigenvalues of Ax = λBx.

Input: A,B ∈ Rn×n and V (0) = [v
(0)
1 , . . . , v

(0)
m0 ] ∈ Rn×m0

1: for ℓ := 0, 1, . . . , do

2: compute A(ℓ) = V (ℓ)TAV (ℓ), B(ℓ) = V (ℓ)TBV (ℓ)

3: compute the p smallest eigenvalues for (A(ℓ), B(ℓ)):

λ
(ℓ)
1 ≤ · · · ≤ λ

(ℓ)
p

4: compute the q largest eigenvalues for (A(ℓ), B(ℓ)):

λ
(ℓ)
mℓ−q+1 ≤ · · · ≤ λ

(ℓ)
mℓ

5: compute the corresponding Ritz vectors

x
(ℓ)
1 , . . . , x

(ℓ)
p , x

(ℓ)
mℓ−q+1, . . . , x

(ℓ)
mℓ

6: compute V (ℓ+1) := [v
(ℓ+1)
1 , . . . , v

(ℓ+1)
mℓ+1 ], where span{V (ℓ+1)} ∋ x

(ℓ)
i

for i = 1, . . . , p,mℓ − q + 1, . . . ,mℓ

7: end for

For simplicity, let

X(ℓ) := [x
(ℓ)
1 , . . . , x(ℓ)p , x

(ℓ)
mℓ−q+1, . . . , x

(ℓ)
mℓ

]

in the following discussion. Similar to Theorem 4, we obtain the following
convergence theorem.

Theorem 5. In Algorithm 3, for i = 1, . . . , p, the sequences {λ(ℓ)
i }ℓ∈N are

nonincreasing and convergent. and for i = mℓ− q+1, . . . ,mℓ, the sequences

{λ(ℓ)
i }ℓ∈N are nondecreasing and convergent. For each i = 1, . . . , p,mℓ −

q + 1, . . . ,mℓ, define U
(ℓ)
m(i) ∈ Rn×m(i) normalized to U

(ℓ)
m(i)

TBU
(ℓ)
m(i) = I for

m(i) ≥ i, satisfying span{X(ℓ)} ⊆ span{U (ℓ)
m(i)} ⊆ span{V (ℓ+1)} for all ℓ ∈ N.

Let u
(ℓ)
i be the Ritz vector corresponding to the i-th smallest Ritz value θ

(ℓ)
i

for the subspace span{U (ℓ)
m(i)}. Moreover, let a set of matrices {C(ℓ)

i } satisfy
the following assumption: for any i = 1, . . . , p,mℓ−q+1, . . . ,mℓ, there exist

K1,K2 > 0 such that for any ℓ ∈ N, u(ℓ)i satisfies

K1 ≤ u
(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i , ∥C(ℓ)

i u
(ℓ)
i ∥2B ≤ K2. (19)

Furthermore, we assume that, for any i = 1, . . . , p,mℓ−q+1, . . . ,mℓ, ℓ ∈ N,
the vector (A − θ

(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i belongs to span{V (ℓ+1)}. Then, for any

i = 1, . . . , p,mℓ− q+1, . . . ,mℓ, limℓ→∞ λ
(ℓ)
i is an eigenvalue for (A,B), and

the accumulation points of {x(ℓ)i }ℓ∈N are the corresponding eigenvectors.

Proof. Since the convergence limℓ→∞ λ
(ℓ)
i for any i = 1, . . . , p,mℓ − q +

1, . . . ,mℓ is obvious, we prove that, for any i = 1, . . . , p,mℓ − q + 1, . . . ,mℓ,

limℓ→∞ λ
(ℓ)
i is an eigenvalue of A, and the accumulation points of {x(ℓ)i }ℓ∈N
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are the corresponding eigenvectors. The following proof is almost the same

as that of Theorem 4. Letting w
(ℓ)
i := (I−U

(ℓ)
m(i)U

(ℓ)
m(i)

TB)(A−θ
(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i ,

we see u
(ℓ)
i

TAw
(ℓ)
i = u

(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i . Define α

(ℓ)
i in the same manner as in The-

orem 4. Then, we have

α
(ℓ)
i =

u
(ℓ)
i

TAw
(ℓ)
i

∥w(ℓ)
i ∥B

=
u
(ℓ)
i

TC
(ℓ)
i u

(ℓ)
i

∥w(ℓ)
i ∥B

and α
(∞)
i = 0, resulting in limℓ→∞ 1/∥(A − θ

(ℓ)
i B)−1C

(ℓ)
i u

(ℓ)
i ∥B = 0 in the

same manner as in the proof of Theorem 4. Noting that Lemma 1 is also
established for the largest Ritz values, we obtain the theorem.
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