
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Continuous Relaxation for
Discrete DC Programming

Takanori MAEHARA, Naoki MARUMO,
and Kazuo MUROTA

METR 2015–26 August 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Continuous Relaxation for

Discrete DC Programming ∗

Takanori Maehara

Department of Mathematical and Systems Engineering,
Shizuoka University

maehara.takanori@shizuoka.ac.jp

Naoki Marumo and Kazuo Murota

Department of Mathematical Informatics,
University of Tokyo

naoki marumo@mist.i.u-tokyo.ac.jp,
murota@mist.i.u-tokyo.ac.jp

August 2015

Abstract

Discrete DC programming with convex extensible functions is stud-
ied. A natural approach for this problem is a continuous relaxation that
extends the problem to a continuous domain and applies the algorithm
in continuous DC programming. By employing a special form of continu-
ous relaxation, which is named “lin-vex extension,” the optimal solution
of the continuous relaxation coincides with the original discrete problem.
The proposed method is demonstrated for the degree-concentrated span-
ning tree problem, the unfair flow problem, and the correlated knapsack
problem.

∗A preliminary version of this paper is included in the Proceedings of the 3rd International
Conference on Modelling, Computation and Optimization in Information Systems and Man-
agement Sciences (MCO 2015, Metz, May 13–15) — Part I, Advances in Intelligent Systems
and Computing, vol.359, Springer, 2015, pp. 181–190.
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1 Introduction

DC programming, minimization of a difference of two convex functions, is an
established area in nonconvex optimization. Most of the optimization prob-
lems can be represented as a DC programming problem [9, 27–29] and many
practically efficient algorithms are developed. Two different approaches can be
distinguished in the solution method for DC programming problems. The first is
the combinatorial approach [8,9,28], which employs techniques such as branch-
and-bound and cutting plane method for global optimization. The second is the
convex analysis approach [26,27], which utilizes the concepts in convex analysis,
such as biconjugacy and subgradient. Combinatorial or discrete optimization
problems have also been treated via DC programming [7, 23,24].

Recently, Maehara and Murota [17] proposed a framework of discrete DC
programming using discrete convex analysis [4, 20, 21]. A function f : Zn →
Z ∪ {−∞,+∞} is defined to be a discrete DC function if it can be represented
as f = g − h with two discrete convex (M♮-convex and/or L♮-convex) functions
g, h : Zn → Z∪{+∞}. This framework contains minimization of a difference of
two submodular functions, which often appears in machine learning [11,13,22].
The methods of Narasimhan and Bilmes [22], Iyer, Jegelka, and Bilmes [11], and
Maehara and Murota [17] are categorized as convex analysis approach, whereas
that of Kawahara and Washio [13] as combinatorial approach.

In this paper, we are dealing with a larger class of discrete convex functions,
convex extensible functions. A discrete-variable real-valued function g : Zn →
R ∪ {+∞} is said to be convex extensible if it can be interpolated by a convex
function ĝ : Rn → R∪{+∞} in continuous variables. M♮-convex and L♮-convex
functions are known to be convex extensible. Convex extensibility is a natural
property required of discrete convex functions, but it is considered too weak for
a rich theory. In fact, any function g defined on a unit cube {0, 1}n is convex
extensible. Not much theory has been developed so far for convex extensible
functions.

Here, we study a discrete DC programming problem

minimize f(x) := g(x)− h(x) s.t. x ∈ Zn (1.1)

with convex extensible functions g and h. This class of discrete optimization
problems arise in many applications. For example, a discrete optimization prob-
lem with a continuous objective function restricted to the integer domain usually
falls into this category.

A natural approach for such problem is continuous relaxation, which extends
the discrete functions to the continuous domain and applies a continuous opti-
mization method. As the continuous extension of f = g−h, we employ a special
form, which we call a lin-vex extension f̃ = g − ĥ, where g is the convex clo-
sure (largest convex extension, usually piecewise linear) of g and ĥ is any (often
smooth) convex extension of h. A crucial fact (Theorem 3.6) is that no integral
gap exists between the discrete optimization problem for f and the continuous
optimization problem for its lin-vex extension f̃ . This approach is useful in solv-
ing a discrete optimization problem having a “nice” DC representation. If an
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objective function f is represented as f = g−h such that the discrete optimiza-
tion problem with g is efficiently solved and the subgradient of ĥ is efficiently
obtained, then the continuous DC algorithm for the lin-vex extension can be
efficiently implemented and the obtained solution for the continuous relaxation
is guaranteed to be an integral solution.

Use of continuous extension for discrete optimization problems is a standard
technique. Integer programming problems are solved successfully via linear
programing. In discrete convex analysis [4, 20, 21], in particular, we can design
theoretically and practically faster algorithms by using continuous extensions
and proximity theorems for M♮-convex and L♮-convex functions [18,19].

To demonstrate the use of the proposed framework, we consider three prob-
lems. The first problem is a variant of the spanning tree problem, to be called
degree-concentrated spanning tree problem, which finds a spanning tree with the
maximum variance of degrees. Our experiment for a real-world network shows
that the proposed DC algorithm works pretty well for this problem. The sec-
ond problem is a variant of the minimum cost flow problem, to be called unfair
flow problem, which finds a sparse supply vector with smaller cost value. This
problem is an opposite of the fair flow problem [4,10,12], which aims at finding
a supply vector x whose component values are distributed as evenly as possible.
We formulate this problem in a concave-regularized minimum cost flow prob-
lem, which is a DC programming problem. Our experiment for random graphs
shows that the DC algorithm successfully finds a desired solution. The third
problem is a correlated knapsack problem, which is a knapsack problem in which
utility (or profit) of chosen items is pairwise correlated. This problem can be
formulated as a DC programming problem of the form of (1.1), but it turns out
that the proposed DC algorithm is not better than the greedy algorithm.

2 Existing studies of DC programming

2.1 Continuous DC programming

Let g : Rn → R ∪ {+∞} be a convex function. The effective domain of g is
defined by domR g := {x ∈ Rn : g(x) < +∞}. Throughout the paper, we always
consider functions with domR g ̸= ∅. A vector p ∈ Rn is a subgradient of g at
x ∈ domR g if

g(y) ≥ g(x) + ⟨p, y − x⟩ (y ∈ Rn), (2.1)

where ⟨p, x⟩ =
∑n

i=1 pixi denotes the inner product. The set of all subgradients
of g at x is called the subdifferential of g at x and denoted by ∂Rg(x). Every
convex function g has a subgradient at each x ∈ relint(domR g), where relint
denotes the relative interior.

The Fenchel conjugate g∗ : Rn → R ∪ {+∞} of a convex function g : Rn →
R ∪ {+∞} is defined by

g∗(p) := sup
x∈Rn

{⟨p, x⟩ − g(x)}, (2.2)
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Algorithm 1 DC algorithm.

1: Let x ∈ domR g be an initial solution.
2: repeat
3: Find p ∈ ∂Rh(x)
4: Find x ∈ ∂Rg

∗(p)
5: until convergence

which is a convex function. When g is a closed proper convex function (with all
level sets closed), we have g∗∗ = g. This property is called biconjugacy.

A function f : Rn → R ∪ {+∞,−∞} is called a DC function if it can be
represented as a difference of two convex functions g and h, i.e., f = g − h. To
guarantee f > −∞, we always assume domR g ⊆ domR h, and define (+∞) −
(+∞) = +∞. A DC programming problem is a minimization problem for a DC
function.

In the convex analysis approach to DC programming, the most important
fact is the Toland–Singer duality, which can be established by a direct calcula-
tion using biconjugacy.

Theorem 2.1 (Toland–Singer duality). For closed convex functions g, h : Rn →
R ∪ {+∞}, we have

inf
x∈Rn

{g(x)− h(x)} = inf
p∈Rn

{h∗(p)− g∗(p)}. (2.3)

DC algorithm [27,28] is a practically efficient algorithm for finding a local op-
timal solution of a DC programming problem. It starts from an initial solution
x(0) ∈ domR g, and repeats the following process until convergence. Let x(ν) be
the ν-th solution. DC algorithm approximates the function h for the concave
part by its subgradient, h(x) ≈ h(x(ν))+ ⟨p, x−x(ν)⟩, and minimize the convex
function g(x)−h(x(ν))−⟨p, x−x(ν)⟩ to determine the next solution x(ν+1). Since
x ∈ argminy∈Rn

(
g(y)− h(x(ν))− ⟨p, y − x(ν)⟩

)
is equivalent to x ∈ ∂Rg

∗(p), the
algorithm is expressed simply as in Algorithm 1. When the algorithm termi-
nates, we obtain a pair of vectors (x, p) such that p ∈ ∂Rg(x) ∩ ∂Rh(x). If both
g and h are differentiable, this condition is equivalent to p = ∇g(x) = ∇h(x),
which implies ∇f(x) = ∇g(x)−∇h(x) = 0. Thus the DC algorithm terminates
at a stationary point.

2.2 Discrete DC programming

Extending DC programming to discrete setting is a natural idea to conceive.
But we must specify what we mean by “convex functions” in a discrete space.
Moreover, such discrete convex functions should satisfy “subdifferentiability (ex-
istence of subgradients)” and “biconjugacy.” Here, discrete versions of the sub-
gradient and Fenchel conjugate are defined similarly to (2.1) and (2.2) with
“R” replaced by “Z.” In particular, we denote by ∂Zg(x) the set of all integral
subgradients of g at x.
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Table 1: Complexity of discrete DC programming min{g(x)− h(x)} [17].

(a) x ∈ Zn

g\h M♮ L♮

M♮ NP-hard NP-hard
L♮ open NP-hard

(b) x ∈ {0, 1}n
g\h M♮ L♮

M♮ NP-hard [14] NP-hard
L♮ P NP-hard

A theory of discrete DC programming has been proposed recently by Mae-
hara and Murota [17] using discrete convex analysis [4, 20, 21]. A function
g : Zn → Z ∪ {+∞} is called M♮-convex if it satisfies a certain exchange ax-
iom. A linear function on a (poly)matroid is a typical example of M♮-convex
functions, and a matroid rank function is an M♮-concave function. A function
g : Zn → Z ∪ {+∞} is called L♮-convex if it satisfies the translation submodu-
larity. A submodular set function is a typical example of L♮-convex functions.
M♮-convex and L♮-convex functions are endowed with nice properties related
to subgradient and biconjugacy. A discrete DC function means a function
f : Zn → Z ∪ {+∞} that can be represented as a difference of two discrete
convex functions g and h, i.e., f = g − h. Since there are two classes of dis-
crete convex functions (M♮-convex functions and L♮-convex functions), there are
four types of discrete DC functions (an M♮-convex function minus an M♮-convex
function, an M♮-convex function minus an L♮-convex function, and so on).

Minimization problems of discrete DC functions are referred to as discrete
DC programming problems. According to the four classes of discrete DC func-
tions, we have four classes of discrete DC programming problems. The compu-
tational complexity of these four classes is summarized in Table 1. It is noted
that the NP-hardness of M♮−M♮ DC programming has been shown recently [14]
through a reduction from the maximum clique problem.

The Toland–Singer duality is extended to the discrete case.

Theorem 2.2 (Discrete Toland–Singer duality [17]). For M♮- and/or L♮-convex
functions g, h : Zn → Z ∪ {+∞}, we have

inf
x∈Zn

{g(x)− h(x)} = inf
p∈Zn

{h∗(p)− g∗(p)}. (2.4)

A discrete version of the DC algorithm can also be defined similarly with
R in Algorithm 1 replaced by “Z.” Each step of the algorithm, p ∈ ∂Zh(x)
and x ∈ ∂Zg

∗(p), can be executed efficiently by using the existing algorithms in
discrete convex analysis. Moreover, by exploiting polyhedral properties of M♮-
convex and L♮-convex functions, we can guarantee a stronger local optimality
condition. See [17] for more details of discrete DC programming.
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3 Continuous relaxation for discrete DC pro-
gramming

A continuous relaxation framework for minimizing the difference of two convex
extensible discrete functions is presented in this section.

3.1 Continuous extension of discrete DC function

Let g : Zn → R∪{+∞} be a real-valued function in discrete variables. A convex
extension of g means a convex function ĝ : Rn → R ∪ {+∞} (in continuous
variables) that satisfies

ĝ(x) = g(x) (x ∈ Zn). (3.1)

We say that g is convex extensible if it admits a convex extension.
The following examples demonstrate some typical convex extensible func-

tions.

Example 3.1. Often a discrete function g : Zn → R∪{+∞} is defined in terms
of some continuous convex function ĝ : Rn → R ∪ {+∞} as g(x) := ĝ(x). Such
function g is obviously convex extensible.

Example 3.2 ( [20]). A univariate discrete function g : Z → R ∪ {+∞} is
convex extensible if (and only if) it satisfies

g(x− 1) + g(x+ 1) ≥ 2g(x) (x ∈ Z). (3.2)

Example 3.3. Any function g on {0, 1}-vectors, g : {0, 1}n → R ∪ {+∞}, is
convex extensible.

Example 3.4. L-convex, L♮-convex, M-convex, and M♮-convex functions in
discrete convex analysis [20] are convex extensible. Integrally convex functions
[3, 20] and BS-convex functions [5] are convex extensible.

Example 3.5. A sum of convex extensible functions is also convex extensible.

Note that there are (possibly) many convex extensions for a discrete function
g. The convex closure g : Rn → R ∪ {+∞} of g is the point-wise maximum of
all affine functions that are global underestimators of g, i.e.,

g(x) := sup{ℓ(x) : ℓ affine, ℓ(y) ≤ g(y) (y ∈ Zn)}. (3.3)

Under mild assumptions (e.g., if the effective domain is bounded), the convex
closure of a function on Zn is a piecewise linear function. In this paper, we
always assume that, if g is convex extensible, then g(x) = g(x) for x ∈ Zn and
the supremum in (3.3) is attained for each x. Figure 1 illustrates the difference
between a convex extension and the convex closure.
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Figure 1: Convex extension and convex closure.

3.2 Lin-vex extension of discrete DC function

We consider a discrete DC programming problem:

minimize g(x)− h(x) s.t. x ∈ Zn, (3.4)

which is represented in terms of two convex extensible functions g and h. A
natural approach to this problem is continuous relaxation that extends the ob-
jective function to the continuous domain and solves the continuous optimization
problem by some existing method in continuous optimization.

A special form of continuous relaxation is particularly convenient in this
context. Let g be the convex closure of g and ĥ be any convex extension of h
that is continuous on dom ĥ. The function defined by

f̃(x) = g(x)− ĥ(x) (3.5)

is named here a lin-vex extension of f = g − h, where “lin-vex” is intended to
mean “piecewise linear for g and general convex for h.” By definition, we have
f(x) = f̃(x) for all x ∈ Zn; therefore

inf
x∈Zn

f(x) ≥ inf
x∈Rn

f̃(x). (3.6)

In discrete (or integer) optimization, in general, the optimal values of the original
problem and that of a continuous relaxation are different, and the discrepancy
between these optimal values are referred to as the integrality gap. Fortunately,
however, our continuous relaxation based on lin-vex extension does not suffer
from integrality gap (see Figure 2).

Theorem 3.6. For convex extensible functions g, h : Zn → R ∪ {+∞} with
domZ g bounded and domZ g ⊆ domZ h, we have

inf
x∈Zn

{g(x)− h(x)} = inf
x∈Rn

{g(x)− ĥ(x)}. (3.7)

Proof. By our assumptions, g and ĥ are continuous on their effective domains.
Moreover, since domZ g is bounded, domR g is compact. Therefore g− ĥ attains
the minimum in domR g. Let x∗ ∈ domR g be a minimizer of g − ĥ. Since g is
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g(x)

ĥ(x)

(a) Lin-vex extension.

ĝ(x)

h(x)

(b) Vex-lin extension

Figure 2: Difference between lin-vex extension g(x)− ĥ(x) and vex-lin extension
ĝ(x) − h(x). In lin-vex extension, (a), the minimum is attained at an integral
point; however, in vex-lin extension, (b), the minimum is attained at a non-
integral point.

a piecewise linear function, we can take a convex polyhedron R such that g is
linear on R and x∗ ∈ R. Since g is linear on R, g− ĥ is concave on R; therefore
its minimum is attained at an extreme point of R, which is integral.

The lin-vex extension of f has two kinds of freedoms. First, it depends on
the DC representation f = g − h. For an arbitrary convex extensible function
k : Zn → R, we can obtain another DC representation f = (g + k) − (h + k),
and the corresponding lin-vex extension may change. Second, it depends on the
choice of convex extension ĥ of h. The convex closure h is eligible for ĥ, but in
some cases, there can be a more suitable choice for ĥ. For example, if h is defined
by the restriction of a continuous (smooth) convex function φ : Rn → R∪{+∞},
i.e., h(x) = φ(x) for x ∈ Zn, then φ is a reasonable candidate for ĥ. We intend
to make use of these freedoms to design an efficient algorithm.

Remark 3.7. Theorem 3.6 does not hold for a continuous extension of the
form ĝ − ĥ. For example, let us consider ĝ(x) = (x − 1/2)2 and ĥ(x) = 0

for x ∈ R, and g(x) = ĝ(x) and h(x) = ĥ(x) for x ∈ Z. Then we have

infx∈Z{g(x) − h(x)} = 1/4 ̸= 0 = infx∈R{ĝ(x) − ĥ(x)}. See also Figure 2b,
which demonstrates that “vex-lin” extension ĝ − h does not work, either.

Remark 3.8. In convex analysis, the Legendre–Fenchel duality

inf
x∈Rn

{g(x) + h(x)} = − inf
p∈Rn

{g∗(p) + h∗(−p)} (3.8)

is frequently used and a discrete version of (3.8) is also known in discrete convex
analysis. It should be clear that the Toland–Singer duality (2.3) deals with the
infimum of g−h, but the Legendre–Fenchel duality (3.8) deals with the infimum
of g + h. For the Legendre–Fenchel duality, there is an integrality gap, i.e.,

inf
x∈Zn

{g(x) + h(x)} ≠ inf
x∈Rn

{g(x) + ĥ(x)}, (3.9)
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in general. For example, let g(x1, x2) = |x1+x2−1| and h(x1, x2) = |x1−x2| for
(x1, x2) ∈ Z2, and g(x1, x2) = |x1+x2−1| and ĥ(x1, x2) = |x1−x2| for (x1, x2) ∈
R2. Then, the left-hand side of (3.9) is inf{g(x1, x2)+h(x1, x2)} = 1 attained at

(x1, x2) = (1, 0), (0, 1), and the right-hand side is inf{g(x1, x2) + ĥ(x1, x2)} = 0
attained at (x1, x2) = (1/2, 1/2).

3.3 DC algorithm for lin-vex extension

By Theorem 3.6, solving a convex extensible DC problem (left-hand side of
(3.7)) is equivalent to solving its lin-vex relaxation problem (right-hand side of
(3.7)), which is a continuous DC programming problem. Here, we consider how
to carry out the DC algorithm for this continuous DC programming problem.

As shown in Algorithm 1, the DC algorithm for infx∈Rn{g(x)−ĥ(x)} repeats

the dual step p ∈ ∂Rĥ(x) and the primal step x ∈ ∂Rg
∗(p). In some cases these

two steps can be carried out easily and efficiently. The dual step of finding a
subgradient p of ĥ at x can be done efficiently, if the convex extension ĥ can
be chosen to be a smooth function. For example, if h : Zn → R is given by
h(x) = x⊤Ax (x ∈ Zn) for some positive semidefinite matrix A, we can take

ĥ(x) = x⊤Ax (x ∈ Rn), whose subgradient is explicitly obtained as ∂Rĥ(x) =
{2Ax}. For the primal step, recall that x ∈ ∂Rg

∗(p) is equivalent to

x ∈ argmin
y∈Rn

{g(y)− ⟨p, y⟩}. (3.10)

Since g is a piecewise linear function and its linearity domain is an integral
polyhedron, the problem (3.10) has an integral optimal solution, provided that
domZ g is bounded. Therefore, the problem (3.10) is essentially equivalent to
the discrete optimization problem

x ∈ argmin
y∈Zn

{g(y)− ⟨p, y⟩}. (3.11)

Here, we emphasize that considering the convex closure of g is conceptually
important, but we do not really need its specific form, because we can minimize
the convex closure ḡ by minimizing the original discrete function g.

We assume that the minimization problem (3.11) can be solved efficiently.
This is the case, for example, if g is an M♮-convex or L♮-convex function, or if
the problem is a (practically) solvable problem such as matching problem on a
graph, maximum independent set problem on a tree, knapsack problem, etc.

The proposed method based on lin-vex extension is summarized in Algo-
rithm 2. Recall that we consider a discrete DC programming problem:

minimize g(x)− h(x) s.t. x ∈ Zn

in (3.4), where g and h are convex extensible. It is emphasized again that the
convex closure g is uniquely determined but a choice can be made for the convex
extension ĥ.
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Algorithm 2 DC algorithm based on lin-vex extension.

1: Choose a convex extension ĥ for h.
2: Let x ∈ domZg be an initial solution.
3: repeat
4: Find p ∈ ∂Rĥ(x),
5: Find x ∈ Zn that minimizes g(x)− ⟨p, x⟩.
6: until convergence

Under mild assumptions (e.g., if the effective domain is bounded), after
finite iterations, Algorithm 2 terminates with a pair of vectors (x∗, p∗) such

that p∗ ∈ ∂Rĥ(x
∗) and x∗ ∈ ∂Rḡ

∗(p∗). Thus we have

∂Rĥ(x
∗) ∩ ∂Rḡ(x

∗) ̸= ∅. (3.12)

If ĥ is differentiable, i.e., its subgradient consists of a single element as ∂Rĥ(x) =

{∇ĥ(x)}, the above condition is reduced to

∇ĥ(x∗) ∈ ∂Rḡ(x
∗), (3.13)

which implies

g(x)− g(x∗) ≥ ⟨∇ĥ(x∗), x− x∗⟩ (3.14)

for any x ∈ Zn.

Remark 3.9. As mentioned in Introduction, combinatorial or discrete opti-
mization problems have been treated via continuous DC programming [7,23,24],
but the existing methods are completely different from ours. Specifically, the
method proposed in [23] minimizes a discrete function f : Zn → R∪{+∞} that

has a convex extension f̂ : Rn → R ∪ {+∞} as follows. Let

ϕ(x) :=
n∑

i=1

(1− cos(2πxi))
2
.

Then ϕ(x) = 0 if and only if x ∈ Zn. Therefore, for a sufficiently large µ > 0,
we have

min
x∈Zn

f(x) = min
x∈Rn

f̂(x) + µϕ(x).

Since the Hessian of ϕ(x) is bounded, it has a DC representation ϕ(x) =

(λ∥x∥2 + ϕ(x)) − λ∥x∥2 for a sufficiently large λ > 0. Therefore, if f̂ has a
DC representation, the above problem can be expressed as a DC programming
problem.
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4 Applications

4.1 Degree-concentrated spanning tree problem

We consider a problem in network routing [25]. Let G = (V,E) be an undirected
graph with vertex set V and edge set E, where V represents a set of computers
and E the connection of the computers: (i, j) ∈ E if computer i communicates
with computer j. The spanning tree routing is a routing system such that all
packets are sent along a spanning tree.

Let us consider monitoring of network communications by observing pack-
ets on vertices. Naturally, much information can be obtained at high-degree
vertices. Thus, for efficient monitoring, we want to construct a spanning tree
with high-degree vertices. This problem can be formulated as constructing a
spanning tree T that has the maximum sum of squares of the degrees; note that
the sum of the degrees is constant for spanning trees. That is, we consider the
following problem, to be named degree-concentrated spanning tree problem:

maximize
∑
v∈V

degT (v)
2 s.t. T : spanning tree, (4.1)

where degT (v) is the degree of a vertex v in the spanning tree T .
This problem is NP-hard [6] as follows.

Proposition 4.1. The degree-concentrated spanning tree problem for cubic
graphs is NP-hard.

Proof. We prove the claim by a reduction from the maximum leaf spanning tree
problem, which is known to be NP-hard for cubic graphs [6, 16].

Let T be a spanning tree on a cubic graph with n vertices, and let x(T )
denote the sum of squares of degrees on T . Let a(T ), b(T ), and c(T ) be the
numbers of vertices of degrees 1, 2, and 3 on T , respectively. Then we have
a(T ) + b(T ) + c(T ) = n, a(T ) + 2b(T ) + 3c(T ) = 2n − 2, and a(T ) + 4b(T ) +
9c(T ) = x(T ). From these equations, we obtain a(T ) = x(T )/2 + 5 − 2n.
Therefore, maximizing a(T ), which is the maximum leaf spanning tree problem,
is equivalent to maximizing x(T ), which is the degree-concentrated spanning
tree problem.

The above problem can be formulated in a DC programming problem as
follows. Let B ∈ R|V |×|E| be the incidence matrix of graph G, i.e., Bie = 1 if an
edge e is incident to a vertex i. Then, for x ∈ {0, 1}|E| and T = {e ∈ E : xe = 1},
we have

Bx = (degT (v1), . . . ,degT (v|V |))
⊤. (4.2)

Therefore, for A = B⊤B ∈ R|E|×|E|, we have

x⊤Ax =
∑
v∈V

degT (v)
2. (4.3)
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Figure 3: Illustration of the DC algorithm for the degree-concentrated spanning
tree problem. For a current solution shown in (a), the gradient p is given as (b),
and the updated solution (c) is a maximum spanning tree with respect to p.

We define the concave part by h(x) = x⊤Ax and the convex part by

g(x) =

{
0, {e ∈ E : xe = 1} is a spanning tree,

+∞, otherwise.
(4.4)

Then we have

g(x)− h(x) =

{
−
∑

v∈V degT (v)
2, T = {e ∈ E : xe = 1} is a spanning tree,

+∞, otherwise.

(4.5)

Thus the minimization problem for f(x) = g(x)−h(x) coincides with the degree-
concentrated spanning tree problem. It is known that g(x) in (4.4) is an M-
convex function [20, Example 6.27], whereas h(x) = x⊤Ax is neither L♮-convex
nor M♮-convex.

In this representation, both g and h are convex extensible. The gradi-
ent of ĥ(x) = x⊤Ax is explicitly obtained as ∂Rĥ(x) = {p} = {2Ax}; here
(Ax)(u,v) = degT (u) + degT (v). The minimization of g(x)− ⟨p, x⟩ is performed
by solving a maximum spanning tree problem with edge weight pe for e ∈ E;
see Figure 3 for the illustration of the algorithm. If there are two or more
optimal solutions in this minimization problem, we randomly choose one of
them. The algorithm terminates when the objective value is not improved,
i.e., f(x(ν)) = f(x(ν+1)). Thus, the local optimal solution for the degree-
concentrated spanning tree problem can be found efficiently by the DC algo-
rithm. The complexity of the algorithm is O(|E| log |E|) for each iteration.

To evaluate the performance of the above DC algorithm and the quality of so-
lutions, we conducted the following experiment. We used a real-world network,
p2p-Gnutella08, obtained from Stanford Large Network Dataset Collection,1

representing a network of a peer-to-peer communication network.
We performed the proposed algorithm 1000 times. The number of iterations

for convergence and the obtained objective values are shown in Figures 4a and

1http://snap.stanford.edu/data/ For other real-world networks in this collection, we
performed the same experiments, to obtain similar results.
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Figure 4: Distribution of the number of iterations (a) and objective values (b)
of the DC algorithm for the degree-concentrated spanning tree problem.

4b, respectively. The number of iterations stays in the range [14, 44], and the
average is 23.49 with the standard deviation of 4.30. This shows that, since the
number of iterations is small, the DC algorithm is efficient and scales to large
instances. The objective values are contained in the range [101420, 106826], and
the average is 104717.79 with the standard deviation of 818.51. With probability
≥ 95%, the objective value is greater than 104192, which is 97% of the maximum
objective value.

To see the detail of the convergence of the DC algorithm, we select four runs
and plot the objective values in the first 10-iterations in Figure 5; each plot
corresponds to a single run of the algorithm. This shows that a solution of the
DC algorithm quickly approaches the optimal solution in the first few iterations.

For comparison, we also implemented the greedy algorithm that iteratively
selects an edge e∗ randomly from argmine ̸∈T f(T ∪{e}) and updates the solution
T to T ∪{e∗}. We performed the greedy algorithm 1000 times. The best greedy
solution has objective value 87016, which is also shown in Figure 5 as a horizontal
line. The greedy solution is outperformed by the DC algorithm in the second
iteration. Note that the greedy solution is out-of-range in Figure 4b because
it is too small, i.e., all solutions obtained by the DC algorithm outperformed
the greedy solution. Thus, the DC algorithm works pretty well for the degree-
concentrated spanning tree problem.

Remark 4.2. In contrast to (4.1) we may also consider

minimize
∑
v∈V

degT (v)
2 s.t. T : spanning tree, (4.6)

which is named degree-balanced minimum spanning tree problem. This problem
is also NP-hard because the optimal solution is a Hamilton path if it exists.

This problem can also be formulated as a DC programming problem as
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concentrated spanning tree problem.

follows. By introducing an L2-regularization factor we define g and h as

g(x) =

{
µ∥x∥2, {e ∈ E : xe = 1} is a spanning tree,

+∞, otherwise,

h(x) = −x⊤Ax+ µ∥x∥2,

where A = B⊤B as above, and µ > 0 is a constant large enough to make µI−A
positive semidefinite.

The minimization of g(x)−h(x) coincides with the degree-balanced spanning
tree problem. In our computational experiment, however, the DC algorithm
for this formulation did not work well. This phenomenon can be explained
theoretically for regular graphs as follows.

Let G be an r-regular graph. To make µI −A positive semidefinite, the reg-
ularization parameter µ must satisfy µ ≥ λmax(A), where λmax(A) is the maxi-
mum eigenvalue ofA. With the estimate λmax(A) ≥ u⊤Au/∥u∥2 = ∥Bu∥2/∥u∥2 =
2r for u = (1, . . . , 1)⊤, we obtain µ ≥ 2r. Now we can see that such µ is too
large for the primal step. Consider a gradient vector p = ∇h(x) = 2(µx− Ax)
at any solution x. If xi = 0, then pi = −2eiAx < 0 because eiAx is the number
of edges in x that touch edge i. If xi = 1, then pi = 2(µ− 2r) ≥ 0. This means
that the primal step for p = ∇h(x) does not change the solution from x, i.e.,
the DC algorithm does not improve an initial solution.

4.2 Unfair flow problem

We consider a network flow problem. Let G = (V,E) be a graph and γe : Z →
R ∪ {+∞} be convex functions associated with edges e ∈ E. For an integral
flow ϕ : E → Z, its cost Γ(ϕ) is defined by

Γ(ϕ) :=
∑
e∈E

γe(ϕ(e)). (4.7)
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Figure 6: A network with n input terminals S and a single output terminal t.

Suppose that an input terminal set S ⊂ V , an output terminal t ∈ V \S, and the
flow demand z ≥ 0 at the output terminal are given (Figure 6). The flow supply
at the input terminals is specified by a vector x ∈ ZS , where

∑
s∈S xs = z and

xs ≥ 0 (s ∈ S) are assumed. There are possibly many integral flows ϕ that
satisfy the supply/demand condition:∑

{ϕ(e) : tail of e is s} −
∑

{ϕ(e) : head of e is s} = xs (s ∈ S), (4.8)∑
{ϕ(e) : tail of e is t} −

∑
{ϕ(e) : head of e is t} = −z, (4.9)

as well as the conservation condition at vertices in V \ (S ∪ {t}). We define a
function g : ZS → R ∪ {+∞} as the minimum cost of such a flow:

g(x) := min{Γ(ϕ) : ϕ is an integral flow that satisfies (4.8), (4.9)}. (4.10)

It is known that g(x) is an M-convex function [20, Chapter 2]. This implies, in
particular, that the minimization of g(x) can be done via a greedy algorithm,
where the value of g(x) itself can be computed by solving a minimum cost flow
problem.

Here, we consider a sparse optimization problem [1,2] associated with g: Find
a sparse vector x that has a smaller value of g(x). We call this problem unfair
flow problem, as it can be viewed as an opposite of the fair flow problem [4,10,12],
which finds a vector x whose component values are distributed as evenly as
possible.

Remark 4.3. The unfair flow problem admits an interpretation in the con-
text of electrical circuits. Imagine an electrical circuit consisting of nonlinear
resistors, with n input terminals and a single output terminal represented by a
network G = (V,E) as Figure 6. When a current of value I flows through an
edge e ∈ E, the power consumption is represented by a convex function, say,
γe(I). For example, γe(I) = RI2/2 for a linear (ohmic) resistor of resistance R.
When the currents on E are represented by ϕ, the total power consumption in
the circuit is given by Γ(ϕ) in (4.7). Suppose that a vector x of currents on the
input terminals is given. Then, physically, the currents in the circuits are deter-
mined according to a variational principle that the current distribution ϕ should
minimize the total power consumption Γ(ϕ). Therefore g(x) defined in (4.10)
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is equal to the physically realized power consumption for x. By Kirchhoff’s
current law, the output current is equal to x1 + · · ·+ xn.

In this context the unfair flow problem may be regarded as a discrete ver-
sion of the following problem: Find input currents x that satisfy the following
conditions: (1) the output current is equal to a specified value z, (2) the power
consumption is small, and (3) the number of used terminals is small. The third
condition is the sparsity on the solution, which is helpful to simplify circuit
operation.

Let us formulate the unfair flow problem as a DC programming problem:

minimize fλ(x) := g(x)− hλ(x) s.t. x ∈ Zn (4.11)

with

hλ(x) := λ∥x∥2 = λ
n∑

i=1

x2
i , (4.12)

where n = |S| and λ ≥ 0 is a regularization parameter. This is a minimization
of the cost g(x) regularized by a concave function −hλ(x). Since the concave
regularization tends to give a sparse solution [15], the solution to the DC pro-
gramming problem (4.11) is expected to be sparse. Note that hλ(x) is a separa-
ble convex function; thus it is an L♮-convex and M♮-convex function. Therefore,
the problem (4.11) is a discrete DC programming problem in the sense of [17].

In the representation (4.11), both g and hλ are convex extensible and the

gradient of ĥλ(x) = λ∥x∥2 is explicitly obtained as ∂ĥλ(x) = {p} = {2λx}.
The minimization of g(x)− ⟨p, x⟩ is performed by solving a minimum cost flow
problem, where the cost of an input terminal s is specified by −ps. Hence, if
xs > xs′ for two terminals s and s′, we have ps > ps′ , and at the next step, a
larger amount of flow will go through terminal s than through s′. Thus we can
expect that the obtained solution tends to be concentrated (i.e., sparse).

To evaluate the performance of this algorithm, we conducted the following
experiment. We constructed an Erdős-Rényi random graph G = (V,E) with
|V | = 1000 and |E| = 3042; each edge e ∈ E having the same cost function
given by γe(I) = I2. We randomly varied 100 input terminals S ⊂ V and a
single output terminal t ∈ V \ S and set the demand z at the output terminal
to be 200. We solved (4.11) for various λ ≥ 0 to find a sparse input flow x
by using the DC algorithm. For comparison, we also implemented the greedy
algorithm that iteratively selects an input terminal s from argmins∈S fλ(x+es).
We varied λ ∈ {0.00, 0.01, . . . , 0.40} for both algorithms. For the DC algorithm,
we additionally varied λ ∈ {0.140, 0.141, . . . , 0.150} to observe the changes in
the sensitive range.

Figures 7a and 7b respectively show the objective value fλ(x) and the num-
ber of nonzero elements of the solutions obtained by the algorithms for each λ.
For λ ≤ 0.140, both algorithms produce almost the same objective values and
sparsities; therefore the plots are overlapped. For λ > 0.140, on the other hand,
the DC algorithm outperforms the greedy algorithm in the sense that the DC
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algorithm produces lower objective values and sparser solutions than the greedy
algorithm. In particular, the number of nonzero elements of the solutions ob-
tained by the DC algorithm quickly decreases to one from λ = 0.140 to 0.150.
Compatibly with our original objective to find a sparse vector x with low cost
g(x), we show the relation between the number of nonzero elements and the cost
value in Figure 8. The solutions obtained by the DC algorithm are located at
the lower-left of the solutions obtained by the greedy algorithm. Therefore, the
DC algorithm gives lower cost and sparser solution than the greedy algorithm.

4.3 Correlated knapsack problem

We recall the knapsack problem. Let V = {1, . . . , n} be a set of items, uj ∈ R
(uj > 0) be the utility of item j ∈ V , and wj ∈ Z (wj > 0) be the weight of item
j. The knapsack problem maximizes the total utility

∑
j∈S uj by selecting a

subset of items S ⊆ V under the capacity constraint
∑

j∈S wj ≤ W for a given
capacity W .

Here, we consider the case that some items have correlations, i.e., if two items
i and j are simultaneously selected, we get additional utility cij (= cji). Here,
cij can be positive or negative; if cij > 0, these two items are complementary
goods (e.g., coffee and sugar), and if cij < 0, they are substitute goods (e.g.,
coffee and tea). For simplicity, we assume that correlations cij are much smaller
than the individual utility ui. The correlated knapsack problem is to maximize
the total utility by taking this correlation into account:

maximize
∑
j∈V

ujxj +
∑
i ̸=j

cijxixj

subject to
∑
j∈V

wjxj ≤ W,
(4.13)

where x ∈ {0, 1}V represents the characteristic vector of a selected subset S.
Let C = (cij) be an n × n matrix whose entries represent correlations of

items, where cii = 0 (i = 1, . . . , n), and let h(x) = x⊤Cx. Define g as

g(x) =

0,
∑
j∈V

wjxj ≤ W,

+∞, otherwise.

(4.14)

Then the minimization of f(x) = g(x)− ⟨u, x⟩ − h(x) coincides with the corre-
lated knapsack problem (4.13). However, h(x) is not necessarily convex exten-
sible.

We consider three different DC programming formulations. First, we set

g1(x) = g(x)− ⟨u, x⟩+ µ∥x∥2, h1(x) = x⊤(C + µI)x (4.15)

for µ ≥ max{0,−λmin(C)}, where λmin(C) denotes the smallest eigenvalue of
C. As the second choice, we set

g2(x) = g(x) + µ∥x∥2, h2(x) = x⊤(C + diag(u) + µI)x, (4.16)
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Table 2: Computational results for the correlated knapsack problem. “#Itera-
tions” means the average number of iterations and “Objective values” are shown
in the format of “(average) ± (standard deviation)” in 1000 trials.

Formulation Initial solution #Iterations Objective value

DC (4.15): g1 − h1
zero vector 2.3 4737.81± 88.92

uncorrelated opt. 2.0 4736.60± 80.90

DC (4.16): g2 − h2
zero vector 2.0 4447.30± 69.50

uncorrelated opt. 2.0 4722.17± 77.20

DC (4.17): g3 − h3
zero vector 2.6 4699.44± 23.29

uncorrelated opt. 2.2 4886.64± 85.61
greedy — — 4914.87± 83.60

where µ ≥ max{0,−λmin(C + diag(u))}. Note that ⟨u, x⟩ = x⊤diag(u)x for a
zero-one vector x. Finally, we set

g3(x) = g(x), h3(x) = x⊤(C + diag(d))x+ ⟨u− d, x⟩ (4.17)

with di =
∑

j ̸=i |cij |. Note that C + diag(d) is diagonally dominant, and hence
positive semidefinte. For k = 1, 2, 3 we have f(x) = gk(x) − hk(x), and gk(x)
and hk(x) have natural convex extensions according to their representations.
We also mention that gk(x) and hk(x) are neither L♮-convex nor M♮-convex.

The primal step (3.11) can be performed in O(|V |W ) time by dynamic pro-
gramming, where we randomly perturb the utilities of items for tie-breaking.
We try with two kinds of initial solutions: the zero vector and the optimal solu-
tion to the corresponding uncorrelated knapsack problem, which is obtained by
dynamic programming. We refer to the latter by an abbreviation “uncorrelated
optimal.”

To generate problem instances we employed the standard generator by David
Pisinger2 with parameters 100 200 3 1 1000, which means that we obtain 1000
instances, each of which has n = 100 items and strongly correlated profit and
capacity with uj , wj ∈ [1, 200]. Next, we defined correlated cost as follows.
For each i < j, with probability p = 0.99, we set cij = 0. Otherwise, we set
cij ∈ [−ui/5, ui/5]. The budget is set as W = 5000.

We evaluate the above three DC formulations, with two kinds of initial
solutions, in terms of the quality of the obtained solutions. For comparison, we
also implemented a greedy algorithm that greedily selects item j to maximize
f(x + ej) under the budget constraint. The result is summarized in Table 2.
Overall, the greedy algorithm outperforms the DC algorithms. Among the
DC algorithms, the third formulation (4.17) with “uncorrelated optimal” as
an initial solution gives the best performance. The comparison between these
two algorithms are given in Figure 9, which indicates that the DC algorithm
sometimes outperforms the greedy algorithm, buy, statistically, it gives slightly
worse performance than the greedy algorithm. Thus we may safely say that DC

2http://www.diku.dk/~pisinger/codes.html
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programming approach is not suited for this problem, although we could not
identify the reason for that.

Next, we discuss the behavior of the DC algorithms. First, for all formula-
tions with both initial solutions, the DC algorithms terminate in two or three
iterations. The first formulation (4.15) with the zero initial solution and “un-
correlated optimal” initial solution give comparable results. For the second
formulation (4.16), we have ∇h2(x) = 0 at x = 0 and hence the DC algorithm
gives a meaningless solution at the first step when the zero initial solution is
used. Accordingly, the initial solution of “uncorrelated optimal” is better than
the zero initial solution. The third formulation (4.17) with the zero initial so-
lution gives solutions with significantly small standard deviation. However, the
quality of the solution is worse than that for the first and second formulations
with “uncorrelated optimal” initial solution.

As observed above, even for the same problem, different DC formulations
and different initial solutions exhibit different behaviors with different qualities
of solutions. Our preliminary experiments have demonstrated that the choice
of DC formulations as well as initial solutions is an important issue in solving
discrete optimization problem by DC programming approach. But not much
insight has been obtained so far, and further investigation is left for the future.
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Figure 7: Comparison of the DC algorithm and the greedy algorithm for the
unfair flow problem: (a) Objective value fλ(x) versus regularization parameter
λ. (b) Number of nonzero elements in x versus λ.
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