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Abstract

Dynamical systems, such as electric circuits, mechanical systems, and chemical plants,

can be modeled by mixed matrix pencils, i.e., matrix pencils having two kinds of nonzero

coefficients: fixed constants that account for conservation laws and independent parameters

that represent physical characteristics. Based on dimension analysis of dynamical systems,

Murota (1985) introduced a physically meaningful subclass of mixed polynomial matrices.

For this class of mixed matrix pencils, we provide a combinatorial characterization of the

sums of the minimal row/column indices of the Kronecker canonical form. The characteri-

zation leads to an efficient algorithm for computing them. This is an extension of the result

by Iwata and Shimizu (2007) on matrix pencils whose nonzero entries are all independent

parameters.

1 Introduction

A matrix pencil is a polynomial matrix in which the degree of each entry is at most one. Each

matrix pencil is known to be strictly equivalent to its Kronecker canonical form, which is in

a block-diagonal form that consists of nilpotent blocks, rectangular blocks, and the residual

square block, where rectangular blocks appear only in the singular case.

The Kronecker canonical form of matrix pencils plays an important role in many fields

such as systems control [2, 27] and differential-algebraic equations [5, 12, 24]. The problem

of computing the Kronecker canonical form has been studied especially for singular matrix

pencils, because the singularity makes this problem much more complicated than the regular

case. Several algorithms are designed for numerically stable computation of the Kronecker

canonical form [1, 3, 4, 10, 28].

An alternative method for the Kronecker canonical form is based on the structural ap-

proach, which extracts zero/nonzero pattern of each coefficient in the matrix pencil, ignoring

the numerical values. The structural approach has been adopted in control theory [13] and in
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theory of differential-algebraic equations [23]. Such a simplification enables us to compute the

Kronecker canonical form of regular matrix pencils efficiently by exploiting graph-algorithmic

techniques under the genericity assumption that all the nonzero coefficients are independent

parameters, which do not cause any numerical cancellation. A recent work [7] has extended

the structural approach to deal with singular matrix pencils. Under the genericity assumption,

it provides a combinatorial characterization of the sizes of the nilpotent blocks as well as the

sum of the sizes of the rectangular blocks.

The size of each rectangular block in the Kronecker canonical form is called the minimal

row/column indices. They are also referred to as the left/right Kronecker indices in control

theory [11, 29]. For a linear time-invariant dynamical system

ẋ(t) = Ax(t) +Bu(t),

the minimal column indices of the matrix pencil D(s) =
(
sI −A | B

)
provides the so-called

controllability indices [6, 11, 25, 30, 31], and the sum of the minimal column indices corresponds

to the dimension of the controllable subspace.

An advantage of the structural approach is that it is supported by efficient combinatorial

algorithms that are free from errors in numerical computation. On the other hand, however,

the genericity assumption is often invalid when we set up a faithful model of a physical system.

This is partly because structural equations such as the conservation laws can be described with

specific numbers. This natural observation led Murota and Iri [20] to introduce the notion of

a mixed matrix, which is a constant matrix that consists of two kind of numbers as follows.

Accurate Numbers (Fixed Constants) Numbers that account for conservation laws are

precise in values. These numbers should be treated numerically.

Inaccurate Numbers (Independent Parameters) Numbers that represent physical char-

acteristics are not precise in values. These numbers should be treated combinatorially as

nonzero parameters without reference to their nominal values. Since each such nonzero

entry often comes from a single physical device, the parameters are assumed to be inde-

pendent.

A matrix consisting only of independent parameters is called a generic matrix , which is a

special type of a mixed matrix.

The polynomial matrix version of a mixed matrix is called a mixed polynomial matrix. To be

more specific, a mixed polynomial matrix is a polynomial matrix with each coefficient matrix

being a mixed matrix. In other words, a mixed polynomial matrix is a polynomial matrix

D(s) = Q(s) + T (s) such that the nonzero entries in the coefficient matrices of Q(s) are fixed

constants and those of T (s) are independent parameters.

The concept of mixed polynomial matrices may be too broad as a mathematical tool for

describing dynamical systems in practice. Taking the consistency of physical dimensions in

structural equations into account, Murota [14] introduced a class of mixed polynomial matrices

that satisfy the following condition.

(DC) Every nonvanishing subdeterminant of Q(s) is a monomial in s.
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This subclass of mixed polynomial matrices has played an important role in matroid-theoretic

structural approach to dynamical systems [16, 17, 22].

The results in [7] on the nilpotent blocks have been successfully extended to the framework

of mixed matrix pencils, i.e., mixed polynomial matrices with degree at most one, without

imposing the assumption (DC) on dimensional consistency [8]. Extending the remaining results

on rectangular blocks has remained to be done. In this paper, we extend the characterization on

the sum of the minimal row/column indices to the framework of mixed matrix pencils satisfying

(DC). This characterization leads to an efficient matroid-theoretic algorithm for computing

them.

In the derivation of our result, we have two difficulties to be overcome. In mixed matrix

theory, a problem for a mixed matrix pencil is generally reduced to that for a certain layered

mixed matrix pencil , but this straightforward approach does not work well for the minimal

column indices as discussed in [8, Section 8]. This is the first difficulty, which is resolved

by Theorem 6.2. The second one occurs in using the Combinatorial Canonical Form (CCF)

decomposition [21], which is a generalized version of the Dulmage-Mendelsohn decomposition

utilized in [7]. When we transform a mixed matrix pencil D(s) into the CCF, the resulting

matrix is not necessarily a matrix pencil. We resolve this problem by showing in Section 8 that

a part of the CCF, called the horizontal tail , remains to be a matrix pencil and has the same

minimal column indices as D(s).

The rest of this paper is organized as follows. In Section 2, we recapitulate the Kronecker

canonical form and its relation to the ranks of expanded matrices. Section 3 gives characteri-

zations of square blocks of the Kronecker canonical form, and Section 4 discusses which blocks

are invariant under equivalence transformations with unimodular matrices. Sections 5 and 6

are devoted to mixed polynomial matrices and mixed matrix pencils. After explaining the CCF

in mixed matrix theory in Section 7, we give a combinatorial characterization of the sums of

the minimal row/column indices in Section 8. Section 9 describes an application of our result

to controllability analysis of dynamical systems. Finally, Section 10 concludes this paper.

2 The Kronecker Canonical Form of Matrix Pencils

Let D(s) = sX+Y be an m×n matrix pencil with row set R and column set C. We denote by

D[I, J ] the submatrix of D(s) determined by I ⊆ R and J ⊆ C. A matrix pencil D(s) is said

to be regular if D(s) is square and detD(s) 6= 0 as a polynomial in s. It is strictly regular if

both X and Y are nonsingular. The rank of D(s) is the maximum size of its submatrix that is

a regular matrix pencil. A matrix pencil D̄(s) is said to be strictly equivalent to D(s) if there

exists a pair of nonsingular constant matrices U and V such that D̄(s) = UD(s)V .

For a positive integer µ, we consider µ× µ matrix pencils Kµ and Nµ defined by

Kµ =



s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . s 1

0 · · · · · · 0 s


, Nµ =



1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s

0 · · · · · · 0 1


.
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For a positive integer ε, we denote by Lε an ε× (ε+ 1) matrix pencil

Lε =


s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 s 1

 .

We also denote by L>η the transpose matrix of Lη.

Let us denote by block-diag(D1, . . . , Db) the block-diagonal matrix with diagonal blocks

D1, . . . , Db. A matrix pencil is known to be strictly equivalent to a block-diagonal form called

the Kronecker canonical form as follows.

Theorem 2.1. By a strict equivalence transformation, a matrix pencil D(s) can be brought

into a block-diagonal form D̄(s) with

D̄(s) = block-diag(Hν ,Kρ1 , . . . ,Kρc , Nµ1 , . . . , Nµd , Lε1 , . . . , Lεp , L
>
η1 , . . . , L

>
ηq),

where

ρ1 ≥ · · · ≥ ρc ≥ 1, µ1 ≥ · · · ≥ µd ≥ 1, ε1 ≥ · · · ≥ εp ≥ 0, η1 ≥ · · · ≥ ηq ≥ 0,

and Hν is a strictly regular matrix pencil of size ν. The numbers ν, c, d, p, q, ρ1, . . . , ρc,

µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq are uniquely determined.

The matrix D̄(s) is called the Kronecker canonical form of D(s). The matrices Nµ1 , . . . , Nµd

are called the nilpotent blocks, and the numbers µ1, . . . , µd are called the indices of nilpotency.

The numbers ε1, . . . , εp and η1, . . . , ηq are the minimal column indices and minimal row indices,

respectively. In addition, we call

(ν, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq) (1)

the structural indices of D(s).

For the rank r of D(s), it holds that

r = ν +
c∑
i=1

ρi +
d∑
i=1

µi +

p∑
i=1

εi +

q∑
i=1

ηi. (2)

Moreover, we have

p = n− r, q = m− r. (3)

We denote the degree of a polynomial f(s) by deg f(s), where deg 0 = −∞ by convention.

For a rational function f(s) = g(s)/h(s) with polynomials g(s) and h(s), its degree is defined

by deg f(s) = deg g(s)− deg h(s). Let B(s) be a rational function matrix with row set R and

column set C. For k = 1, . . . , rankB, we denote

δk(B) = max{deg detB(s)[I, J ] | |I| = |J | = k, I ⊆ R, J ⊆ C},

where δ0(B) = 0 by convention.
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A rational function f(s) is called a Laurent polynomial if sNf(s) is a polynomial for some

integer N . For a Laurent polynomial f(s), we define

ord f = −min{N ∈ Z | sNf(s) is a polynomial}.

Let B(s) be a Laurent polynomial matrix. For k = 1, . . . , rankB, we denote

ζk(B) = min{ord detB(s)[I, J ] | |I| = |J | = k, I ⊆ R, J ⊆ C},

where ζ0(B) = 0 by convention. Note that ord f(s) = −deg f(1/s) holds for any Laurent

polynomial f(s), and thus we have

ζk(B(s)) = −δk(B(1/s)) (4)

for any Laurent polynomial matrix B(s).

For the indices of nilpotency of the Kronecker canonical form, it is known that

d = r −max
k≥0

δk(D), µi = δr−i(D)− δr−i+1(D) + 1 (i = 1, . . . , d) (5)

hold [19, Theorem 5.1.8]. We also have the following lemma.

Lemma 2.2 ([7]). Let D(s) be a matrix pencil of rank r with the structural indices (1). Then

we have

ν +

p∑
i=1

εi +

q∑
i=1

ηi = δr(D)− ζr(D).

For an m × n matrix pencil D(s) = sX + Y , we consider km × kn matrices Θk(D) and

Ωk(D) defined by

Θk(D) =



X O · · · · · · O

Y X
. . .

...

O Y
. . .

. . .
...

...
. . .

. . . X O

O · · · O Y X


, Ωk(D) =



Y O · · · · · · O

X Y
. . .

...

O X
. . .

. . .
...

...
. . .

. . . Y O

O · · · O X Y


.

We also construct a (k+1)m×kn matrix Ψk(D) and a km× (k+1)n matrix Φk(D) defined by

Ψk(D) =



X O · · · O

Y X
. . .

...

O Y
. . . O

...
. . .

. . . X

O · · · O Y


, Φk(D) =


X Y O · · · O

O X Y
. . .

...
...

. . .
. . .

. . . O

O · · · O X Y

 .

The ranks of these expanded matrices are denoted by

θk(D) = rank Θk(D), ωk(D) = rank Ωk(D),

ψk(D) = rank Ψk(D), ϕk(D) = rank Φk(D).

The following theorem shows a close relationship between the ranks of the expanded matrices

and the structural indices.
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Theorem 2.3 ([7, Theorem 2.3]). Let D(s) be a matrix pencil of rank r with the structural

indices (1). Then we have

θk(D) = rk −
d∑
i=1

min{k, µi}, ωk(D) = rk −
c∑
i=1

min{k, ρi},

ψk(D) = rk +

p∑
i=1

min{k, εi}, ϕk(D) = rk +

q∑
i=1

min{k, ηi}.

By Theorem 2.3, the ranks of the expanded matrices determine µi (i = 1, . . . , d), ρi (i =

1, . . . , c), εi (i = 1, . . . , p), and ηi (i = 1, . . . , q).

We generalize the definitions of Ψk(D) and ψk(D) for a matrix pencil D(s) to those for a

polynomial matrix as follows. Let A(s) =
∑N

i=0 s
iAi be an m×n polynomial matrix such that

the maximum degree of entries is N . Given A(s) and an integer l, we define a (k + l)m × kn
matrix Ψl

k(A) by

Ψl
k(A) =



C0 C1 · · · Ck−1

R0 A0 O · · · O

R1 A1 A0
. . .

...
...

... A1
. . . O

Rl−1 Al−1
...

. . . A0

Rl Al Al−1
. . . A1

Rl+1 O Al
. . .

...
...

...
. . .

. . . Al−1
Rk+l−1 O · · · O Al


with row set R̃ = R0 ∪ R1 ∪ · · · ∪ Rk+l−1 and column set C̃ = C0 ∪ C1 ∪ · · · ∪ Ck−1. We can

check that Ψ1
k(A) coincides with Ψk(A0 + sA1). The ranks of Ψl

k(A) for l ≥ N attain the same

value, which we denote by ψk(A).

We conclude this section with the following lemma, which is a generalization of Corollary 2.4

in [7].

Lemma 2.4. If an m× n polynomial matrix A(s) is of full-column rank, we have ψk(A) = kn

for each k.

Proof. Let N denote the maximum degree of entries in A(s). We assume that ψk(A) 6= kn,

which implies that ΨN
k (A) is not of full-column rank. Let hlj denote the lth column vector of

ΨN
k (A)[R̃, Cj ]. Then we have

k−1∑
j=0

∑
l∈Cj

λljh
l
j = 0 (6)

for some λlj such that scalars λlj are not all zero.

Let C denote the column set of A(s). By the definition of ΨN
k (A), a part of vector hlj

indexed by Ri is equal to the lth vector of Ai−j , denoted by Ali−j , where we set Ai−j = O if

6



i− j < 0 or i− j > N . Hence it follows from (6) that

k−1∑
j=0

∑
l∈C

λljA
l
i−j = 0 (i = 0, 1, . . . , k +N − 1). (7)

We denote the lth vector of A(s) by al(s). Consider a linear combination

∑
l∈C

k−1∑
j=0

λljs
j

al(s) (8)

of vectors in A(s), where each coefficient
∑k−1

j=0 λ
l
js
j is a polynomial in s. The coefficient of si

in (8) is expressed as ∑
l∈C

k−1∑
j=0

λljA
l
i−j ,

which is equal to 0 by (7). Hence the value of (8) is also equal to 0. This implies that A(s) is

not of full-column rank.

3 Characterization of Square Blocks in the Kronecker Canon-

ical Form

In Section 2, we have explained that the nilpotent blocks are characterized by (5). In this

section, we characterize the other square blocks Kρ1 , . . . ,Kρc and Hν .

A rational function matrix B(s) = (Bij(s)) is called proper if degBij(s) ≤ 0 for all (i, j).

A square proper rational function matrix is called biproper if it is invertible and its inverse is

also proper.

A polynomial matrix is called unimodular if it is square and its determinant is a nonvan-

ishing constant. This implies that a square polynomial matrix is unimodular if and only if its

inverse is a polynomial matrix. If a polynomial matrix U(s) is unimodular, then U(1/s) is a

biproper Laurent polynomial matrix.

For a matrix pencil D(s), the indices ρ1, . . . , ρc are expressed by ζk(D) as shown in the

following lemma.

Lemma 3.1. For a matrix pencil D(s) = sX + Y of rank r, we have

c = r + min
k≥0

(ζk(D)− k), ρi = ζr−i+1(D)− ζr−i(D) (i = 1, . . . , c).

Proof. Consider a matrix pencil D′(s) = X + sY and its Kronecker canonical form with the

structural indices (ν ′, ρ′1, . . . , ρ
′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′). Then ρi (i = 1, . . . , c) of

D(s) coincides with µ′i (i = 1, . . . , d′) of D′(s).

It clearly holds that rankD′(s) = rankD(s) = r. Hence µ′i = δr−i(D
′) − δr−i+1(D

′) + 1

holds by (5). It follows from (4) that

δk(D
′) = −ζk

(
X +

1

s
Y

)
= −ζk

(
1

s
(sX + Y )

)
= −ζk(D) + k.
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Thus we obtain ρi = µ′i = −ζr−i(D) + ζr−i+1(D).

The former equation is given by

c = d′ = r −max
k≥0

δk(D
′) = r −max

k≥0
(−ζk(D) + k) = r + min

k≥0
(ζk(D)− k),

where the second step is due to (5).

Let A(s) be an m × n polynomial matrix. The kth determinantal divisor dk(A) is defined

to be the greatest common divisor of all the subdeterminants of order k:

dk(A) = gcd{detA[I, J ] | |I| = |J | = k} (k = 0, 1, . . . , rankA), (9)

where dk(A) is chosen to be monic and d0(s) = 1 by convention. The value of dk(A) is

invariant under unimodular equivalence transformations, that is, dk(A) = dk(A
′) if A′(s) =

U(s)A(s)V (s) with unimodular matrices U(s) and V (s). The following lemma characterizes

the sum of Hν block and Kρi blocks.

Lemma 3.2. For a matrix pencil D(s) of rank r, we have ν +
∑c

i=1 ρi = deg dr(D).

Proof. Let D̄(s) be the Kronecker canonical form of D(s). We now have

dν(Hν) = detHν , dρ(Kρ) = sρ, dµ(Nµ) = 1

dε(Lε) = gcd{sε, sε−1, . . . , 1} = 1, dη(L
>
η ) = gcd{sη, sη−1, . . . , 1} = 1.

Hence it holds that dr(D) = dr(D̄) = sρ1+···+ρc detHν . Since Hν is strictly regular, this implies

that

deg dr(D) = ρ1 + · · ·+ ρc + ν

holds.

4 Invariance under Unimodular Equivalence Transformations

For a rational function matrix B(s), it is known that δk(B) (k = 1, 2, . . . ) are invariant un-

der biproper equivalence transformations, that is, δk(B) = δk(B
′) (k = 1, 2, . . . ) if B′(s) =

U(s)B(s)V (s) with biproper matrices U(s) and V (s). Hence, it follows from (5) that µ1, . . . , µd
are invariant under biproper equivalence transformations. The following lemma shows that

ζk(B) is invariant under unimodular equivalence transformations.

Lemma 4.1. Let B(s) be a Laurent polynomial matrix. Then we have ζk(B) = ζk(B
′) (k =

1, 2, . . . ) if B′(s) = U(s)B(s)V (s) with unimodular matrices U(s) and V (s).

Proof. It follows from (4) that

ζk(B
′(s)) = −δk(U(1/s)B(1/s)V (1/s)) = −δk(B(1/s)) = ζk(B(s)),

where the second step is due to the fact that U(1/s) and V (1/s) are biproper.

8



Table 1: The invariance of structural indices under equivalence transformations with unimodu-

lar matrices and nonsingular constant matrices, where
√

represents that the indices are invari-

ant, and — represents that the indices can be different. Here, U(s) and V (s) are unimodular

matrices and U and V are nonsingular constant matrices.

Hν Kρ Nµ Lε L>η
(1) D(s)→ U(s)D(s)V (s)

√ √
— — —

(2) D(s)→ UD(s)V (s)
√ √

— —
√

(3) D(s)→ U(s)D(s)V
√ √

—
√

—

(4) D(s)→ UD(s)V
√ √ √ √ √

Consider a matrix pencil D′(s) obtained by D′(s) = U(s)D(s)V (s) with some unimodular

matrices U(s) and V (s). Let

(ν ′, ρ′1, . . . , ρ
′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′)

be the structural indices of D′(s). We have p = p′ and q = q′ by (3) and c = c′ by Lemmas 3.1

and 4.1. These lemmas also indicate ρi = ρ′i (i = 1, . . . , c). Since dr(D) = dr(D
′) with

r = rankD(s) = rankD′(s), it then follows from Lemma 3.2 that ν = ν ′.

Table 1 shows whether the size of each block is invariant or not under the following four

kinds of transformations from D(s) into another matrix pencil D′(s).

(1) D′(s) = U(s)D(s)V (s) with unimodular matrices U(s) and V (s)

(2) D′(s) = UD(s)V (s) with a nonsingular constant matrix U and a unimodular matrix V (s)

(3) D′(s) = U(s)D(s)V with a unimodular matrix U(s) and a nonsingular constant matrix

V

(4) D′(s) = UD(s)V with nonsingular constant matrices U and V

The results of (1) in Table 1 follow from the above discussion. The block Nµ is invariant

under biproper equivalence transformations, but not under (1)–(3).

We now consider the Lε block in Table 1. Let A(s) =
∑N

i=0Ais
i be a polynomial matrix,

U(s) =
∑

i Uis
i be a unimodular matrix and V be a nonsingular constant matrix. We denote

the maximum degree of entries in U(s)A(s)V by N ′(≥ N). Then we have

ΨN ′
k (U(s)A(s)V ) = Ũk+N ′−1Ψ

N ′
k (A(s))Ṽk,

where Ũk+N ′−1 is a (k +N ′)m× (k +N ′)m matrix and Ṽk is a kn× kn matrix defined by

Ũk+N ′−1 =


U0 O · · · O

U1 U0
. . .

...
...

. . .
. . . O

Uk+N ′−1 · · · U1 U0

 , Ṽk =


V O · · · O

O V
. . .

...
...

. . .
. . . O

O · · · O V

 .
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We note that U(s)A(s)V does not have entries with degree N ′ + 1, N ′ + 2, . . . , N ′ + k − 1,

because N ′ is the maximum degree of entries in U(s)A(s)V . Since U(s) is unimodular, U0 is

nonsingular, which implies that Ũk+N ′−1 is nonsingular. In addition, Ṽ is also nonsingular by

the nonsingularity of V . Hence we obtain

ψk(U(s)A(s)V ) = ψk(A(s)). (10)

Let D′(s) = U(s)D(s)V be a matrix pencil described in (3) in Table 1. Then it follows

from (10) that

ψk(D
′) = ψk(U(s)D(s)V ) = ψk(D).

Thus, D(s) and D′(s) have the same minimal column indices by Theorem 2.3.

For (2) in Table 1, we can prove that D(s) and UD(s)V (s) have the same minimal row

indices in a similar way. The results of (4) are obvious because D(s) and D′(s) have the same

Kronecker canonical form. Thus, we complete Table 1.

5 Mixed Polynomial Matrices

Let K be a subfield of a field F. A matrix A over F is called a mixed matrix with respect to

(K,F) if A is given by A = Q+ T , where Q and T satisfy the following two conditions.

(M-Q) Q is a matrix over K.

(M-T) T is a matrix over F such that the set of nonzero entries is algebraically independent

over K.

A typical setting of (K,F) is that K and F are the fields of rational and real numbers.

A matrix A(s) is called a mixed polynomial matrix if A(s) is given by A(s) = Q(s) + T (s)

with a pair of polynomial matrices Q(s) over K and T (s) over F that satisfy the following two

conditions.

(MP-Q) The coefficients of nonzero entries of Q(s) belong to K.

(MP-T) The coefficients of nonzero entries of T (s) belong to F, and the set of nonzero coef-

ficients of T (s) is algebraically independent over K.

A layered mixed polynomial matrix (or an LM-polynomial matrix for short) is defined to

be a mixed polynomial matrix such that Q(s) and T (s) have disjoint nonzero rows. An LM-

polynomial matrix A(s) is expressed by A(s) =
(Q(s)
T (s)

)
.

In order to reflect the dimensional consistency in conservation laws of dynamical systems,

Murota [14] introduces the following condition on Q(s), which is a formal version of (DC) in

Section 1.

(MP-DC) Every nonvanishing subdeterminant of Q(s) is a monomial in s over K.

10



We call a mixed polynomial matrix and an LM-polynomial matrix satisfying (MP-DC) a di-

mensionally consistent mixed polynomial matrix (a DCM-polynomial matrix ) and a dimen-

sionally consistent LM-polynomial matrix (a DCLM-polynomial matrix ), respectively. It is

known [14, 16] that an m× n matrix Q(s) satisfies (MP-DC) if and only if

Q(s) =


sp1 0 · · · 0

0 sp2
. . .

...
...

. . .
. . . 0

0 · · · 0 spm

Q(1)


s−q1 0 · · · 0

0 s−q2
. . .

...
...

. . .
. . . 0

0 · · · 0 s−qn

 (11)

for some integers pi (i = 1, . . . ,m) and qj (j = 1, . . . , n).

A mixed polynomial matrix A(s) = Q(s)+T (s) is called a mixed matrix pencil if the degree

of each entry is at most one. If in addition Q(s) and T (s) have disjoint nonzero rows, A(s) is

called a layered mixed matrix pencil (or an LM-matrix pencil for short). A mixed matrix

pencil and an LM-matrix pencil satisfying (MP-DC) are called a dimensionally consistent

mixed matrix pencil (a DCM-matrix pencil) and a dimensionally consistent LM-matrix pencil

(a DCLM-matrix pencil), respectively.

6 Mixed Matrix Pencils and LM-matrix Pencils

This section reveals the relation between a mixed matrix pencil and its associated LM-matrix

pencil. Let DM(s) = s(XQ +XT ) + (YQ + YT ) be an m× n mixed matrix pencil with Q(s) =

sXQ + YQ and T (s) = sXT + YT . We construct an LM-matrix pencil

D(s) = s

(
O XQ

O XT

)
+

(
I YQ
−Z YT

)
, (12)

where Z is a diagonal matrix with the (i, i) entry being a new parameter ti ∈ F. We transform

D(s) into its strictly equivalent matrix(
I O

O Z−1

)
D(s) = s

(
O XQ

O Z−1XT

)
+

(
I YQ
−I Z−1YT

)
.

Each entry of Z−1XT and Z−1YT can be replaced by a new parameter belonging to F. Thus,

we regard Z−1XT and Z−1YT as new matrices X̃T and ỸT such that the set of nonzero entries of

X̃T and ỸT is algebraically independent over K. Hence, D(s) and s

(
O XQ

O X̃T

)
+

(
I YQ
−I ỸT

)
,

as well as D̂(s) = s

(
O XQ

O XT

)
+

(
I YQ
−I YT

)
, have the same Kronecker canonical form.

The following corollary shows that the minimal row indices of DM(s) are the same as those

of D(s), which is derived from Table 1.

Corollary 6.1. Let DM(s) = s(XQ +XT ) + (YQ + YT ) be an m× n mixed matrix pencil and

D(s) its associated LM-matrix pencil defined by (12). Then, the minimal row indices of DM(s)

coincide with those of D(s).

11



Proof. As noted above, D(s) has the same Kronecker canonical form as

D̂(s) = s

(
O XQ

O XT

)
+

(
I YQ
−I YT

)
.

Let us define a nonsingular constant matrix U and a unimodular matrix V (s) by

U =

(
I O

I I

)
, V (s) =

(
I −(sXQ + YQ)

O I

)
.

Then we have

UD̂(s)V (s) =

(
I O

O DM(s)

)
.

This transformation corresponds to (2) in Table 1. Hence, D(s) and UD̂(s)V (s) have the

same minimal row indices. The Kronecker canonical form of UD̂(s)V (s) consists of m copies

of N1 and the Kronecker canonical form of DM(s). Therefore, D(s) and DM(s) have the same

minimal row indices.

According to (2) in Table 1, the indices of nilpotency and the minimal column indices of

DM(s) and D(s) can be different. However, their sum has the following relation.

Theorem 6.2. Let DM(s) = s(XQ +XT ) + (YQ + YT ) be an m× n mixed matrix pencil and

D(s) its associated LM-matrix pencil defined by (12). We denote the structural indices of

DM(s) and D(s) by

(ν ′, ρ′1, . . . , ρ
′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′),

(ν, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq),

respectively. Then we have

m+
d′∑
i=1

µ′i +

p′∑
i=1

ε′i =
d∑
i=1

µi +

p∑
i=1

εi. (13)

Proof. As shown in the proof of Corollary 6.1, the transformation from a mixed matrix pencil

into the associated LM-matrix pencil is regarded as the transformation (2) in Table 1. Hence

we have

c′ = c, q′ = q,

ν ′ = ν, ρ′i = ρi (i = 1, . . . , c), η′i = ηi (i = 1, . . . , q).

Let r′ and r denote the ranks of DM(s) and D(s), respectively. Due to the proof of Corol-

lary 6.1,

r = rank D̂(s) = rank

(
I O

O DM(s)

)
= m+ r′

holds. It follows from (2) that

d∑
i=1

µi +

p∑
i=1

εi = m+
d′∑
i=1

µ′i +

p′∑
i=1

ε′i.

Thus we obtain (13).
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7 The Combinatorial Canonical Form in Mixed Matrix Theory

In this section, we expound the combinatorial canonical form (CCF) in mixed matrix the-

ory [21]. In particular, we describe the CCF for a DCLM-polynomial matrix D(s) =
(Q(s)
T (s)

)
.

An LM-admissible transformation is defined to be an equivalence transformation in the

form of

Pr

(
W (s) O

O I

)(
Q(s)

T (s)

)
Pc, (14)

where Pr and Pc are permutation matrices, and W (s) is a unimodular matrix. Remark that

the resulting matrix is an LM-polynomial matrix but is not necessarily a matrix pencil even if

D(s) =
(Q(s)
T (s)

)
is an LM-matrix pencil.

We denote the row set and the column set of D(s) =
(Q(s)
T (s)

)
by R and C, and the row sets

of Q(s) and T (s) by RQ and RT . Consider a set function σ : 2C → Z defined by

σ(J) = rankQ(s)[RQ, J ] +
∣∣∣⋃
j∈J
{i ∈ RT | Tij(s) 6= 0}

∣∣∣− |J |, (15)

where Tij(s) denotes the (i, j) entry of T (s). Then the set function σ is known to be submodular,

and the family of minimizers

Lmin(σ) = {J ⊆ C | σ(J) ≤ σ(J ′), ∀J ′ ⊆ C}

forms a sublattice of 2C . Let C : J0 ( J1 ( · · · ( Jb be a maximal chain in Lmin(σ).

Put C0 = J0, Ck = Jk \ Jk−1 for k = 1, . . . , b, and C∞ = C \ Jb to obtain a partition

(C0;C1, . . . , Cb;C∞) of C. Based on this partition, D(s) can be brought into the CCF by an

LM-admissible transformation as follows.

Theorem 7.1 ([17, Lemma 3.1]). Let D(s) =
(Q(s)
T (s)

)
be a DCLM-polynomial matrix. By

an LM-admissible transformation, D(s) can be brought into another LM-polynomial matrix

D̃(s) =
(Q̃(s)

T̃ (s)

)
with the following properties.

(B1) D̃(s) is block-triangularized, i.e.,

D̃[Rk, Cl] = O if 0 ≤ l < k ≤ ∞,

with respect to partitions (R0;R1, . . . , Rb;R∞) and (C0;C1, . . . , Cb;C∞) of the row set

and the column set of D̃(s), where b ≥ 0, Rk 6= ∅ and Ck 6= ∅ for k = 1, . . . , b, and R0,

R∞, C0, and C∞ can be empty.

(B2) The sizes of the diagonal blocks satisfy:

|R0| < |C0| or |R0| = |C0| = 0,

|Rk| = |Ck| > 0 for k = 1, . . . , b,

|R∞| > |C∞| or |R∞| = |C∞| = 0.
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(B3) The diagonal blocks are of full-rank, i.e.,

rank D̃[R0, C0] = |R0|,
rank D̃[Rk, Ck] = |Rk| = |Ck| for k = 1, . . . , b,

rank D̃[R∞, C∞] = |C∞|.

(B4) The diagonal blocks satisfy:

rank D̃[R0, C0 \ {j}] = |R0| (j ∈ C0),

rank D̃[Rk \ {i}, Ck \ {j}] = |Rk| − 1 = |Ck| − 1 (i ∈ Rk, j ∈ Ck)
for k = 1, . . . , b,

rank D̃[R∞ \ {i}, C∞] = |C∞| (i ∈ R∞).

(B5) D̃(s) is the finest proper block-triangular matrix among LM-polynomial matrices con-

nected by an LM-admissible transformation.

The LM-polynomial matrix D̃(s) in Theorem 7.1 is called the combinatorial canonical

form (CCF) of D(s). We call D0(s) := D̃[R0, C0] and D∞(s) := D̃[R∞, C∞] the horizontal tail

and the vertical tail , respectively. Their ranks are denoted by r0 := |R0| and r∞ := |C∞|.
In the special case of D(s) = T (s), the LM-admissible transformations reduce to permuta-

tions, and the CCF decomposition reduces to the Dulmage-Mendelsohn decomposition (DM-

decomposition). In the case of D(s) = Q, the transformation reduces to PrFQPc, and the

CCF decomposition agrees with the ordinary Gauss-Jordan elimination in matrix computa-

tion. Thus, we may interpret the CCF decomposition as a generalized DM-decomposition with

possible numerical computation of accurate numbers.

Recall the definition of dk(A) in (9). We now have the following lemma.

Lemma 7.2 ([19, Theorem 6.3.4 and Remark 6.3.7]). LetD(s) =
(Q(s)
T (s)

)
be a DCLM-polynomial

matrix of rank r. The rth monic determinantal divisor dr(D) can be expressed by

dr(D) = αr · g(s) ·
b∏
l=1

det D̃(s)[Rl, Cl], (16)

where αr ∈ F is a constant, g(s) is a monomial in s, and D̃(s)[Rl, Cl] (l = 1, . . . , b) are the

square blocks which appear in the CCF of D(s).

If D(s) is a DCLM-matrix pencil, we can construct a CCF such that the horizontal tail

D0(s) is also a DCLM-matrix pencil. In the expression (11) of Q(s), we can assume that

p1 ≤ p2 ≤ · · · ≤ pm, q1 ≤ q2 ≤ · · · ≤ qn

without loss of generality. We now briefly describe the algorithm for computing D0(s), which

is given in [17, §3.2].

Step 1 Determine the partition (C0;C1, . . . , Cb;C∞) of C with reference to the set function σ

defined by (15).
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Step 2 Find a basis of the row vectors of the submatrix Q(1)[RQ, C0] by collecting independent

row vectors according to the ordering with reference to pi in such a manner that p1 ≤
p2 ≤ · · · ≤ pm. This ordering guarantees that W (s) of (14) is a unimodular matrix. We

denote the basis by RQ0.

Step 3 Output R0 = RQ0 ∪RT0 and C0, where

RT0 = {i ∈ RT | Tij(s) 6= 0, j ∈ C0}.

In Step 2, we have assumed that an ordering of rows h and h′ with ph = ph′ is arbitrary.

By determining this ordering based on q1, q2, . . . , qn, we prove the following lemma.

Lemma 7.3. If D(s) =
(Q(s)
T (s)

)
is a DCLM-matrix pencil, one can construct a CCF of D(s)

such that the horizontal tail D0(s) is also a DCLM-matrix pencil.

Proof. Since Q(s) is a matrix pencil, Q(1)[RQ, C0] is in the form of

Q0 =



Col(0) Col(1) · · · Col(γ − 2) Col(γ − 1)

Row(0) ∗ O · · · · · · O

Row(1) ∗∗ ∗ . . .
...

Row(2) O ∗∗ . . .
. . .

...
...

...
. . .

. . . ∗ O
...

...
. . . ∗∗ ∗

Row(γ) O · · · · · · O ∗∗


for some γ, where Row(h) = {i ∈ RQ | pi = h} and Col(h) = {j ∈ C0 | qj = h}. Here, ∗ and ∗∗
denote a constant matrix and a coefficient matrix of s, respectively.

We can find a basis of the row vectors of the submatrix Q0[RQ, C0] by collecting independent

row vectors from the top row to the bottom row, as explained below. We first find R0
∗ ⊆ Row(0)

satisfying rankQ0[R0
∗,Col(0)] = rankQ0[Row(0),Col(0)], which means that R0

∗ is a basis of

Row(0). By row transformations, we obtain Q1 from Q0 such that

Q1[Row(0) ∪ Row(1), C0] =


← Col(0) → Col(1) · · ·

R0
∗ I ∗ ∗ O O

Row(0) \R0
∗ O O O O O

Row(1) O ∗∗ ∗∗ ∗ O

,
because the row vectors of Q0[Row(0)\R0

∗, C0] can be expressed as linear combinations of those

of Q0[R0
∗, C0].

Next, we find R1
∗∗ ⊆ Row(1) satisfying rankQ1[R1

∗∗,Col(0)] = rankQ1[Row(1),Col(0)].

Then we obtain Q2 from Q1 such that

Q2[Row(0) ∪ Row(1), C0] =


← Col(0) → Col(1) · · ·

R0
∗ I ∗ ∗ O O

Row(0) \R0
∗ O O O O O

R1
∗∗ O I ∗∗ ∗ O

Row(1) \R1
∗∗ O O O ∗ O


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by row transformations. Then, we apply the same procedure to Q2[RQ \ (Row(0) ∪R1
∗∗), C0 \

Col(0)].

As a result, we obtain

Q′ =



Col(0) Col(1) · · · Col(γ − 2) Col(γ − 1)

Row(0)
I ∗ ∗
O O O

O · · · · · · O

Row(1)
O I ∗∗
O O O

O O O

∗ ∗ ∗
I ∗ ∗
O O O

. . .
...

Row(2) O
O I ∗∗
O O O

. . .
. . .

...

...
...

. . .
. . .

∗ ∗ ∗
I ∗ ∗
O O O

O

...
...

. . .
O I ∗∗
O O O

O O O

∗ ∗ ∗
I ∗ ∗
O O O

Row(γ) O · · · · · · O
O I ∗∗
O O O



,

where the row sets of I in Q′[Row(h),Col(h)] and Q′[Row(h),Col(h−1)] correspond to Rh∗ and

Rh∗∗, respectively. This transformation preserves Q′[Row(h),Col(l)] = O for any h, l satisfying

0 ≤ h ≤ γ, 0 ≤ l ≤ γ − 1, and h− l 6= 0, 1. We define

RQ0 =

γ⋃
i=1

(Ri−1∗ ∪Ri∗∗).

Then RQ0 is a basis of the row vectors of Q′ as well as Q(1)[RQ, C0] = Q0.

Let W be a nonsingular constant matrix such that Q′ = WQ0. We define W (s) in (14) by

W (s) =


sp1 0 · · · 0

0 sp2
. . .

...
...

. . .
. . . 0

0 · · · 0 spm

W


s−p1 0 · · · 0

0 s−p2
. . .

...
...

. . .
. . . 0

0 · · · 0 s−pm

 .

The horizontal trail D0(s) is given by

D0(s) =

(
W (s)Q(s)[RQ0, C0]

T (s)[RT0, C0]

)
,

where RT0 is defined in Step 3 in the algorithm for computing D0(s).

To prove that D0(s) is a matrix pencil, it suffices to show that W (s)Q(s)[RQ0, C0] is also a

matrix pencil, because T (s) is a matrix pencil. We now have

W (s)Q(s) =


sp1 0 · · · 0

0 sp2
. . .

...
...

. . .
. . . 0

0 · · · 0 spm

WQ(1)


s−q1 0 · · · 0

0 s−q2
. . .

...
...

. . .
. . . 0

0 · · · 0 s−qn


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and WQ(1)[RQ, C0] = WQ0 = Q′. Hence W (s)Q(s)[RQ, C0] is a matrix pencil, which implies

that the submatrix W (s)Q(s)[RQ0, C0] of W (s)Q(s)[RQ, C0] is also a matrix pencil. Moreover,

D0(s) satisfies (MP-DC), because W (s)Q(s) satisfies (MP-DC).

8 The Kronecker Canonical Form via CCF

In this section, we investigate the Kronecker canonical form of DCLM-matrix pencils via the

CCF decomposition. For a DCLM-matrix pencil D(s) =
(Q(s)
T (s)

)
of rank r, we construct its CCF

D̃(s) so that the horizontal tail D0(s) is also a DCLM-matrix pencil. The existence of such

CCF is assured by Lemma 7.3. The rank of D0(s) is denoted by r0.

Lemma 8.1. We have ψk(D) = ψk(D0) + k(r − r0).

Proof. We define D∗(s) = D̃(s)[R \ R0, C \ C0]. Since D∗(s) is of full-column rank, it holds

that

ψk(D∗) = k|C \ C0| = k(r − r0)

by Lemma 2.4. We also have ψk(D̃) = ψk(D0) + ψk(D∗) by D̃(s)[R \ R0, C0] = O. By (10)

and the definition of an LM-admissible transformation (14), ψk(D̃) = ψk(D) holds. Thus we

obtain ψk(D) = ψk(D0) + k(r − r0).

We now investigate the Kronecker canonical form of D0(s).

Lemma 8.2. The monic determinantal divisor dr0(D0) is a monomial in s.

Proof. By rankD0(s) = r0, we can apply Lemma 7.2 to dr0(D0). Since the CCF of D0(s) has

no square blocks, dr0(D0) is a monomial in s by Lemma 7.2.

We now obtain the following theorem on the sum of the minimal column indices.

Theorem 8.3. The sum of the minimal column indices of a DCLM-matrix pencil D(s) is

obtained by
p∑
i=1

εi = δr0(D0)− ζr0(D0). (17)

Proof. The horizontal tail D0(s) has the Kronecker canonical form, because D0(s) is a matrix

pencil by Lemma 7.3. By Theorem 2.3 and Lemma 8.1, the minimal column indices of D(s)

coincide with those of the horizontal tail D0(s). Let D̄0(s) be the Kronecker canonical form of

D0(s). Since D0(s) is of full-row rank, D̄0(s) contains no rectangular blocks L>η . In addition,

D̄0(s) does not contain a strictly regular block by Lemma 8.2. Hence we obtain (17) by

Lemma 2.2.

Theorem 8.3 indicates that the computation of the sum of the minimal column indices for

a DCLM-matrix pencil D(s) reduces to that of δr0(D0) and ζr0(D0). Here, D0(s) is smaller

(and sometimes much smaller) than D(s). Several efficient algorithms for δk and ζk have been

developed [9, 18, 26]. Furthermore, since D0(s) satisfies (MP-DC), the computation of δk and
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ζk is reduced to a weighted matroid intersection problem [19, Remark 6.2.10]. Thus, one can

compute efficiently the sum of the minimal column indices of a DCLM-matrix pencil.

Theorem 8.3 combined with Theorem 6.2 enables us to compute the sum of the minimal

column indices of a DCM-matrix pencil, as explained below. Let DM(s) = s(XQ+XT )+(YQ+

YT ) be an m×n DCM-matrix pencil and D(s) its associated LM-matrix pencil defined by (12).

We denote the structural indices of DM(s) and D(s) by

(ν ′, ρ′1, . . . , ρ
′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′),

(ν, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq),

respectively. It follows from Theorem 6.2 that

p′∑
i=1

ε′i =

p∑
i=1

εi +

d∑
i=1

µi −
d′∑
i=1

µ′i −m.

In the right-hand side,
∑p

i=1 εi of the LM-matrix pencil D(s) can be computed by Theo-

rem 8.3. We can also find
∑d

i=1 µi of D(s) and
∑d′

i=1 µ
′
i of DM(s) based on (5), because δk is

computed efficiently as already mentioned. It should be noted that, in the computation of δk,

the transformation from a mixed matrix pencil into an LM-matrix pencil is different from (12).

Thus we can obtain
∑p′

i=1 ε
′
i of the DCM-matrix pencil DM(s).

In order to compute the sum of the minimal row indices, we apply Theorems 6.2 and 8.3

to D(s)>, because the minimal row indices of D(s) coincide with the minimal column indices

of D(s)>.

We conclude this section with an example.

Example 8.4. Consider a DCM-matrix pencil

DM(s) =

(
t1 0 0

0 s t2s+ 1

)
.

Its associated LM-matrix pencil are given by

D(s) =


1 0 0 0 0

0 1 0 s 1

−t3 0 t1 0 0

0 −t4 0 0 t2s

 .

The Kronecker canonical forms of DM(s) and D(s) are given by

(
1 0 0

0 s 1

)
,


1 0 0 0 0

0 1 0 0 0

0 0 s 1 0

0 0 0 s 1

 , (18)

respectively. As described below, we can compute the sums of the minimal column indices

efficiently based on Theorems 6.2 and 8.3, even if they are different between DM(s) and D(s).
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Since the CCF of D(s) is 
1 s 1 0 0

−t4 0 t2s 0 0

0 0 0 1 0

0 0 0 −t3 t1

 ,

we have the horizontal tail D0(s) =

(
1 s 1

−t4 0 t2s

)
. It follows from Theorem 8.3 that

∑
i

εi = δ2(D0)− ζ2(D0) = 2− 0 = 2.

We can obtain
∑

i µi = 2 and
∑

i µ
′
i = 1 by executing any of the algorithms given in [9, 18, 26]

or reducing to a weighted matroid intersection problem [19, Remark 6.2.10]. Thus we have∑
i

ε′i = 2 + 2− 1− 2 = 1

by Theorem 6.2. We can check the correctness of these values by (18).

9 Application to Controllable Subspace

In this section, we present an application of our main result to controllability analysis of

dynamical systems.

Consider a linear time-invariant dynamical system in a descriptor form

F ẋ(t) = Ax(t) +Bu(t), (19)

where F and A are n × n matrices and B is an n × l matrix. For the unique solvability, we

assume that A− sF is a regular matrix pencil.

Van Dooren [29] introduced the controllable subspace of the system (19) defined by

C = inf{S | dim(FS +AS) = dimS, imB ⊆ FS +AS},

where the infimum can be proven to exist. In fact, the controllable subspace C is obtained as

follows. With an appropriate nonsingular constant matrix S, one can transform
(
A− sF | B

)
into

S
(
A− sF | B

)
=

(
A0 − sF0 O

∗ B0

)
so that B0 is of full-row rank. Since A0 − sF0 is of full-row rank, its Kronecker canonical form

does not contain a rectangular block L>η . Therefore one can further transform A0 − sF0 with

an appropriate pair of nonsingular constant matrices U and V into

U
(
A0 − sF0

)
V =

(
A1 − sF1 O

O A2 − sF2

)
,

where A1−sF1 is a regular matrix pencil and the Kronecker canonical form of A2−sF2 consists

only of rectangular blocks Lε. Then the column set of A2− sF2 corresponds to the controllable

subspace C, and the number of columns is equal to dim C.
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The system (19) is controllable iff dim C = n. Murota [15] presented a matroid-theoretic

algorithm for testing the controllability of a dynamical system (19) described by a DCM-

matrix pencil
(
A− sF | B

)
. The algorithm, however, does not provide the dimension of the

controllable subspace.

The dimension of C is characterized by the rank of the (n+ 1)n× (n2 + nl + l) matrix

Σ(F,A,B) =



B −F O O · · · O O O O

O A B −F . . .
...

...
...

...

O O O A
. . . O O O O

O O O O
. . . −F O O O

...
...

...
...

. . . A B −F O

O O O O · · · O O A B


,

as shown in the following lemma.

Lemma 9.1. It holds that

dim C = rank Σ(F,A,B)− n2.

Proof. We denote the row sets of A1−sF1, A2−sF2, and B0 by R1, R2, and R3. Since A1−sF1

is a regular matrix pencil, we have dim C = n− |R1|.
The rank of Σ(F,A,B) is invariant under the above equivalence transformation. By putting

Â =

A1 O

O A2

∗ ∗

 , F̂ =

F1 O

O F2

∗ ∗

 , B̂ =

O

O

B0

 ,

we have rank Σ(F,A,B) = rank Σ(F̂ , Â, B̂). Since B0 is of full-row rank, we have

rank Σ(F̂ , Â, B̂) = (n+ 1)|R3|+ rank Ψn

((
A1 O

O A2

)
− s

(
F1 O

O F2

))

= (n+ 1)|R3|+ rank

(
Ψn(A1 − sF1) O

O Ψn(A2 − sF2)

)
.

Since A1 − sF1 is regular, it follows from Lemma 2.4 that ψn(A1 − sF1) = n|R1|. By

Theorem 2.3, we have

ψn(A2 − sF2) = n|R2|+
p′∑
i=1

min{n, ε′i} = n|R2|+
p′∑
i=1

ε′i,

where ε′1, ε
′
2, . . . , ε

′
p′ denote the minimal column indices of A2 − sF2. Since the Kronecker

canonical form of A2− sF2 consists only of rectangular blocks Lε, it holds that
∑p′

i=1 ε
′
i = |R2|.

Thus we obtain

rank Σ(F,A,B) = (n+ 1)|R3|+ n|R1|+ (n+ 1)|R2| = n2 + dim C

by n = |R1|+ |R2|+ |R3| and dim C = n− |R1|.
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The following theorem states that if F is nonsingular, the computation of dim C is reduced

to the computation of the sum of the minimal column indices of
(
A− sF | B

)
.

Theorem 9.2. Let C be the controllable subspace of the system (19), and ε1, ε2, . . . , εp be the

minimal column indices of a matrix pencil D(s) =
(
A− sF | B

)
. If F is nonsingular, the

dimension of C is given by

dim C =

p∑
i=1

εi.

Proof. Since

Ψn+1(D) =


−F O · · · O

A

O
...

O

Σ(F,A,B)

 ,

we have ψn+1(D) = n + rank Σ(F,A,B) by the nonsingularity of F . Then it follows from

Theorem 2.3 and rankD(s) = n that

ψn+1(D) = n(n+ 1) +

p∑
i=1

min{n+ 1, εi} = n2 + n+

p∑
i=1

εi

holds. Thus we obtain

dim C = rank Σ(F,A,B)− n2 = ψn+1(D)− n− n2 =

p∑
i=1

εi

by Lemma 9.1.

By Theorem 9.2, if F is nonsingular, the computation of the dimension of the controllable

subspace C is reduced to that of the sum of the minimal column indices ofD(s) =
(
A− sF | B

)
.

If in addition D(s) is a DCM-matrix pencil, one can obtain the dimension of C by solving a

weighted matroid intersection problem as described in Section 8.

10 Conclusion

For mixed matrix pencils satisfying the assumption on dimensional consistency, we have char-

acterized the sum of the minimal row/column indices of the Kronecker canonical form. An

efficient matroid-theoretic algorithm for computing them is derived from this characterization.

As an application example of our results, we describe the dimension of the controllable subspace

of dynamical systems. In analysis of the controllable subspace, we have assumed that a coef-

ficient matrix F of ẋ(t) is nonsingular. The computation of the dimension of the controllable

subspace with singular F is left for future work.

The computation of the minimal row/column indices is difficult even under the genericity

assumption, as discussed in [7, Section 7]. Our ultimate target is to present an algorithm based

on structural approach for computing the minimal row/column indices. We anticipate that the

characterization of the sums is useful for design of such algorithms.
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