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Using multiparameter eigenvalues for solving quadratic

programming with quadratic equality constraints

Shinsaku Sakaue∗
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Abstract

We show that multiparameter eigenvalues can solve some optimization problems.
Specifically, we develop an eigenvalue-based algorithm for quadratic programming
with quadratic equality constraints (QECQP). QECQP models various well-known
optimization problems such as the maximum-cut problem, and QECQP is also closely
related to quadratically constrained quadratic programming (QCQP). Recently, for
some special cases of QCQP with one or two constraints, algorithms based on eigen-
value with one or two parameter have been proposed, which can solve some nonconvex
instances, for which ordinary optimization methods often fail.

In this paper, we generalize the aforementioned eigenvalue-based algorithms by
allowing for larger number of constraints; using multiparameter eigenvalue problems,
we propose an algorithm that is applicable to QECQP with an arbitrary fixed number
of constraints. Unfortunately, the algorithm is not proved to find a global solution.
However, we show in experiments that our algorithm works for small-scale instances
and computes a global solution with high accuracy, as long as the effects of singular
matrices are small enough for our algorithm to work well.

Keywords. multiparameter eigenvalue problem, quadratic programming with quadratic
equality constraints, quadratically constrained quadratic programming.

AMS Classification. 15A18, 65F15, 90C20.

1 Introduction

Multiparameter eigenvalue problems have been studied in the literature [4, 13] and various
studies have been conducted on applying them to many types of differential equations [5,
15, 20]. However, aside from these studies, not many applications seem to take advantage
of them. The main message of this paper is that multiparameter eigenvalue problems
can be used to solve some optimization problems. Specifically, in this paper we propose
an algorithm based on multiparameter eigenvalues for solving the following quadratic
programming with quadratic equality constraints (QECQP):

minimize
x

x⊤Q0x+ 2q⊤0 x+ γ0

subject to x⊤Qix+ 2q⊤i x+ γi = 0 (i = 1, . . . ,m)
(1)
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where qi ∈ Rn, γi ∈ R and Qi ∈ Rn×n are symmetric for i = 0, 1, . . . ,m. QECQP models
various optimization problems such as the maximum-cut problem (see [11]) and polyno-
mial optimization problems (see [18]). Taking m as a variable, solving QECQP requires
exponential computation time, and so approximation algorithms and relaxation methods
are extensively studied for QECQP; one of the most famous methods is the approximation
algorithm for the maximum cut problem proposed by Goemans and Williamson [11].

QECQP is also closely related to quadratically constrained quadratic programming
(QCQP), which is a well-known optimization problem of the following form:

minimize
x

x⊤Q0x+ 2q⊤0 x+ γ0

subject to x⊤Qix+ 2q⊤i x+ γi ≤ 0 (i = 1, . . . ,m).
(2)

Actually, by introducing additional m slack variables si ∈ R (i = 1, . . . ,m), QCQP can be
expressed with n+m variables as follows:

minimize
x, s

x⊤Q0x+ 2q⊤0 x+ γ0

subject to x⊤Qix+ 2q⊤i x+ γi + s2i = 0 (i = 1, . . . ,m),
(3)

which can be rewritten as the following QECQP:

minimize
x, s

[
x⊤ s⊤

] [ Q0 On×m

Om×n Om×m

] [
x
s

]
x+ 2

[
q⊤0 0⊤m

] [x
s

]
+ γ0

subject to
[
x⊤ s⊤

] [ Qi On×m

Om×n eie
⊤
i

] [
x
s

]
x+ 2

[
q⊤i 0⊤m

] [x
s

]
+ γi = 0 (i = 1, . . . ,m)

(4)

where Ok×ℓ ∈ Rk×ℓ is the zero matrix, 0m ∈ Rm is the zero vector, and ei ∈ Rm is the
ith column of the m×m identity matrix. This means that a practical global optimization
algorithm for QECQP provides a solution method for QCQP. Solving QCQP also requires
exponential computation time if m is regarded as a variable, and so various relaxation
methods are studied for QCQP (see, e.g., [3]).

One of the well-known special cases of QCQP is the trust region subproblem (TRS),
which has only one convex constraint with positive definite Q1. Though TRS is a noncon-
vex optimization problem since Q0 in the objective function is indefinite, its semidefinite
programming (SDP) relaxation, which can be solved in polynomial-time, provides an op-
timal solution for the original TRS [22]. More generally, QCQP with one constraint can
be solved in polynomial-time via its SDP relaxation [23].

If QCQP has two constraints with positive definite Q1 and positive semidefinite Q2,
then it is called the Celis-Dennis-Tapia (CDT) problem, which was proposed by Celis, Den-
nis and Tapia [9] as a natural extension of TRS. Li and Yuan [17] proposed a Lagrangian-
dual based algorithm for CDT that finds a global solution if the Hessian of Lagrangian
is positive semidefinite at a global solution. As Yuan [25] proved, however, it is possible
that the Hessian of the Lagrangian in the CDT problem has one negative eigenvalue at a
global solution, which means that Li and Yuan’s algorithm does not always find a global
solution. Burer and Anstreicher [8] provided a tighter SDP relaxation by adding some
constraints to the ordinary SDP relaxation, but the resulting problem can still have a
relaxation gap. In general, the complexity of the CDT problem had been open for a long
time until Bienstock’s recent work [7] that proved its polynomial-time solvability.

Bienstock in fact proved that general QCQP with an arbitrary fixed number of quadratic
constraints can be solved in polynomial time, employing a polynomial-time feasibility al-
gorithm based on Barvinok’s construction [6]. His algorithm finds an ϵ-feasible solution
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with ϵ-accuracy, or a solution that satisfies relaxed constraints: x⊤Qix+2q⊤i x+γi ≤ ϵ, and
in exact arithmetic the objective value corresponding to the solution is within ϵ from the
optimal value. His algorithm is proved to run in polynomial-time with respect to the num-
ber of bits in the data and log ϵ−1. Unfortunately, however, the polynomial-time feasibility
algorithm looks difficult to implement, and so Bienstock’s polynomial-time algorithm does
not appear to be very practical.

On the other hand, recently, practical algorithms via multiparameter eigenvalues have
been studied for some special cases of QCQP and QECQP. In an algorithm proposed by
Iwata, Nakatsukasa and Takeda [14] for computing the signed distance between overlapping
two ellipsoids, a solution method via two-parameter eigenvalues are developed for a special
case of QECQP with two constraints. Their algorithm is extended for a generalized version
of CDT problem in [21]. For TRS, Adachi et al. [1] proposed an algorithm employing
generalized eigenvalue computation, showing that their algorithm outperforms exiting ones
in accuracy and efficiency, particularly for large-sparse instances.

In this paper we derive an algorithm with multiparameter eigenvalue computation
for QECQP, which is a generalization of algorithms in [1, 14, 21] in that we use an m-
parameter eigenvalue problem instead of one-parameter or two-parameter as in previous
studies.

Our approach is based on the one developed by Iwata, Nakatsukasa and Takeda [14], in
which a special case of QECQP is solved via two-parameter eigenvalues. More specifically,
we consider finding all Karush-Kuhn-Tucker (KKT) points by computing the Lagrange
multipliers satisfying the KKT conditions of QECQP via multiparameter eigenvalues.
The KKT conditions of QECQP are expressed as rational equations of Lagrange mul-
tipliers. We convert these rational equations into polynomial equations by constructing
certain polynomial multivariate matrix pencils whose zeros of determinants are the zeros
of the rational equations. This reduces the problem to a multiparameter linear eigenvalue
problem, which we solve via a single-parameter linear generalized eigenvalue problem of
larger size, for which reliable algorithms are available. Throughout this paper we employ
the QZ algorithm [19] for solving generalized eigenvalue problems since it worked bet-
ter than other algorithms in numerical experiments (considering numerical stability, it is
desirable to apply GUPTRI [10] to singular generalized eigenvalue problems that we see
later, however we observed in our experiments that it did not work well for some reason).

Unfortunately, unlike the algorithms in [1, 14, 21], our algorithm is not guaranteed to
find a global solution for QECQP since it is difficult to deal with some singular matrix
pencils that appear in our algorithm. We provide an efficient solution method for a mul-
tiparameter eigenvalue problem derived from QECQP, and thus improve the performance
and stability of our algorithm. We show in the numerical experiments that our algorithm
works for small-scale instances and computes global solutions with high accuracy as long
as the effects of singular matrices are so small that our algorithm woks well.

This paper is organized as follows. In Section 2, we derive the KKT conditions of
QECQP and express them as a multiparameter linear eigenvalue problem with certain
polynomial matrix pencils, whose solutions include the Lagrange multipliers. Section 3
discusses the solution method of the multiparameter eigenvalue problem. Section 4 pro-
vides the outline and complexity analysis of our algorithm. In Section 5, we present
numerical experiments to demonstrate the performance of our algorithm.

1.1 Notation

Throughout this paper, Rk denotes the k-dimensional real vector space and Rk×ℓ denotes
the space of k × ℓ real matrices. We denote the zero vector in Rk by 0k, or just by 0
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when the dimension is clear. Similarly, we denote the zero matrix in Rk×ℓ by Ok×ℓ, or
just by O when the size is clear. The unit matrix of size k is denoted by Ik. If a matrix
X ∈ Rk×ℓ satisfies rankX = r, then X⊥ ∈ Rk×(ℓ−r) denotes a matrix whose columns form
an orthogonal basis of the null space of X. For a pair of symmetric matrices X and Y , we
write X ≻ Y if X−Y is positive definite and X ⪰ Y if X−Y is positive semidefinite. We
use X •Y to express the Frobenius inner product of X and Y . For two matrices X ∈ Rk×ℓ

and Y ∈ Rm×n, we define the Kronecker product as follows:

X ⊗ Y :=


X11Y X12Y · · · X1lY
X21Y X22Y · · · X2lY

...
...

. . .
...

Xk1Y Xk2Y · · · XklY

 .

Note that the Kronecker product satisfies (X1 ⊗ Y1)(X2 ⊗ Y2) = X1X2 ⊗ Y1Y2.

2 Finding the KKT points for QECQP

2.1 Assumptions and the constraint qualification

Since we cannot easily check the feasibility of a given QECQP instance, we assume that
QECQP instances we deal with have at least one global solution. Furthermore, we assume
some constraint qualification so that a global solution can be found among all KKT points.
In summary, throughout this paper, we impose the following assumptions on QECQP:

Assumption 2.1.

i) There exists at least one global solution for QECQP.

ii) The linear independence constraint qualification (LICQ) holds.

Assumption ii) implies that the gradients of all constraint ∇gi(x) = 2Qix + 2qi (i =
1, . . . ,m) are linearly independent for every feasible point x, which guarantees that the
KKT conditions are necessary for local optimality. There are various constraint qualifica-
tions (CQ) such as LICQ and Mangasarian-Fromovitz CQ that make the KKT conditions
necessary for local optimality. The LICQ is shown to be the weakest CQ which ensures
the existence and uniqueness of Lagrange multipliers (see [24]).

2.2 The KKT conditions for QECQP

The assumptions i) and ii) imply that a global solution of QECQP can be obtained by
computing all KKT points. In this section, we show the KKT conditions of QECQP and
discuss how to obtain all KKT points.

Let λi ∈ R (i = 1, . . . ,m) be Lagrange multipliers and λ = (λ1, . . . , λm) be a m-
dimensional vector whose ith element is λi. If x ∈ Rn is a local solution of QECQP, then
there exists a vector λ = (λ1, . . . , λm) satisfying the following KKT conditions:

H(λ)x = y(λ),(5)

x⊤Qix+ 2q⊤i x+ γi = 0 (i = 1, . . . ,m),(6)

where

(7) H(λ) := Q0 + λ1Q1 + λ2Q2 + · · ·+ λmQm
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and

(8) y(λ) := −(q0 + λ1q1 + λ2q2 + · · ·+ λmqm).

Note that, once λ is obtained, the matrix H(λ) and the vector y(λ) are fixed. We also
remark that the matrix H(λ) is the Hessian of the Lagrangian.

2.3 Formulation as a pair of bivariate matrix equations

Since solving the equations (5)–(8) directly is difficult, we formulate a pair of matrix
equations that provide appropriate Lagrange multipliers as in [1, 14, 21]; we define matrices
Mi(λ) for i = 1, . . . ,m as follows:

(9) Mi(λ) =

 Qi −H(λ) qi
−H(λ) O y(λ)
q⊤i y(λ)⊤ γi

 .

Lemma 1. For every x that satisfies the KKT conditions (5) and (6) with multipliers
λ1, . . . , λm, we have detMi(λ) = 0 (i = 1, . . . ,m).

Proof. By the equation (5), y(λ) must belong to ImH(λ). Therefore, if H(λ) is singular,
we have rank

[
−H(λ) y(λ)

]
< n, which implies that Mi(λ) is singular. Hence we have

detMi(λ) = 0.
Now suppose that H(λ) is nonsingular. For the computation of detMi(λ), we use the

Schur complement of Mi(λ) with respect to

Ai :=

[
Qi −H(λ)

−H(λ) O

]
.

Since

A−1
i =

[
O −H(λ)−1

−H(λ)−1 −H(λ)−1QiH(λ)−1

]
,

we have

detMi(λ) = (−1)n detH(λ)2 ×
(
γi + 2q⊤i H(λ)−1y(λ) + y(λ)⊤H(λ)−1QiH(λ)−1y(λ)

)
.

Thus, using (5) for the above equation, we obtain

(10) detMi(λ) = (−1)n detH(λ)2
(
x⊤Qix+ 2q⊤i x+ γi

)
.

It then follows from (6) that detMi(λ) = 0.

Lemma 1 suggests computing all possible pairs of Lagrange multipliers λ1, . . . , λm for
the KKT points by solving the determinantal equations

(11) detMi(λ) = 0 (i = 1, . . . ,m).

We will discuss how to solve (11) in Section 3.
For each Lagrange multiplier vector λ = (λ1, . . . , λm) thus obtained, one can compute

x by solving the linear equation (5) if H(λ) is nonsingular. However, unlike the case with
two constraints (i.e., m = 2) shown in [21], if the obtained H(λ) is singular, it is difficult to
compute x satisfying the KKT conditions. This fact is one of the reasons why we cannot
theoretically prove that our algorithm finds a global solution for QECQP. One possible
remedy for such cases is to perturb the original problem so that H(λ) is nonsingular at a
global solution.
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3 Solving the determinantal equations

In this section, we consider solving the determinantal equations (11). We here rewrite
Mi(λ) defined by (9) as the following matrix polynomial form:

(12) Mi(λ) = Ci + λ1D1 + λ2D2 + · · ·+ λmDm

where

(13) Ci :=

 Qi −Q0 qi
−Q0 O −q0
q⊤i −q⊤0 2γi

 , Di :=

 O −Qi 0n
−Qi O −qi
0⊤n −q⊤i 0

 (i = 1, . . . ,m).

By (12) we see that (11) is a multiparameter eigenvalue problem expressed as

detM1(λ) = det(C1 + λ1D1 + λ2D2 + · · ·+ λmDm) = 0,

detM2(λ) = det(C2 + λ1D1 + λ2D2 + · · ·+ λmDm) = 0,

...

detMm(λ) = det(Cm + λ1D1 + λ2D2 + · · ·+ λmDm) = 0.

(14)

To solve this, we reduce the multiparameter eigenvalue problem (14) to univariate linear
generalized eigenvalue problems based on [4, 20].

3.1 Reduction to univariate linear eigenvlaue problems

In this section, we see the solution method for the following general form of the multipa-
rameter eigenvalue problem:

A1,0v1 = λ1A1,1v1 + · · ·+ λmA1,mv1,

A2,0v2 = λ1A2,1v2 + · · ·+ λmA2,mv2,

...

Am,0vm = λ1Am,1vm + · · ·+ λmAm,mvm

(15)

where Ai,j ∈ Rn×n for i, j = 1, . . . ,m. λi ∈ R and vi ∈ Rn for i = 1, . . . ,m are eigenvalues
and eigenvectors respectively. As in [4, 20], we consider reducing the problem (15) to
single-parameter linear generalized eigenvalue problems of larger size.

In preparation we define the operator | · |⊗ as in [20]; the operator | · |⊗ has m2 matrices
Ai,j ∈ Rn×n (i, j = 1, . . . ,m) as inputs and returns a matrix of size nm × nm as follows:∣∣∣∣∣∣∣

A1,1 · · · A1,m
...

. . .
...

Am,1 · · · Am,m

∣∣∣∣∣∣∣
⊗

:=
∑
σ∈Sm

sgn(σ)A1,σ(1) ⊗ · · · ⊗Am,σ(m)(16)

where Sm denotes the set of all permutations of {1, . . . ,m}. This operation is analogous to
the determinant expansion; the elements are given by matrices Ai,j and the product of two
elements are defined by the Kronecker product. However, since the Kronecker product is
not commutative, we must be careful about the order in which we calculate the Kronecker
products. Note that, in each term of the right-hand side of (16), the Kronecker products of
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matrices are calculated in row order. Using this operator, we define the following matrices
that are sometimes called m×m operator determinants (see [20]):

∆0 :=

∣∣∣∣∣∣∣
A1,1 · · · A1,m
...

. . .
...

Am,1 · · · Am,m

∣∣∣∣∣∣∣
⊗

,

∆i :=

∣∣∣∣∣∣∣
A1,1 · · · A1,i−1 A1,0 A1,i+1 · · · A1,m
...

. . .
...

...
...

. . .
...

Am,1 · · · Am,i−1 Am,0 Am,i+1 · · · Am,m

∣∣∣∣∣∣∣
⊗

,

(17)

where i = 1, . . . ,m. The following lemma gives a connection between the multiparameter
eigenvalue problem (15) and univariate linear eigenvalue problems with operator determi-
nants (see [4, 20] for details).

Lemma 2. Assume λi and vi (i = 1, . . . ,m) satisfy (15) and define w := v1⊗v2⊗· · ·⊗vm.
Then the following equations hold:

∆1w = λ1∆0w,

∆2w = λ2∆0w,

...

∆mw = λm∆0w.

Proof. Considering the definition (16), one can easily check the following equality holds:∣∣∣∣∣∣∣
A1,1 · · · A1,i · · · A1,m
...

. . .
...

. . .
...

Am,1 · · · Am,i · · · Am,m

∣∣∣∣∣∣∣
⊗

=

∣∣∣∣∣∣∣
A1,1 · · · A1,i + αA1,j · · · A1,m
...

. . .
...

. . .
...

Am,1 · · · Am,i + αAm,j · · · Am,m

∣∣∣∣∣∣∣
⊗

where ∀α ∈ R and i, j ∈ {1, . . . ,m}. Using this, for i = 1, . . . ,m, we get

∆i − λi∆0

=

∣∣∣∣∣∣∣
A1,1 · · · A1,0 − λiA1,i · · · A1,m
...

. . .
...

. . .
...

Am,1 · · · Am,0 − λiAm,i · · · Am,m

∣∣∣∣∣∣∣
⊗

=

∣∣∣∣∣∣∣
A1,1 · · · A1,0 − λ1A1,1 − · · · − λmA1,m · · · A1,m
...

. . .
...

. . .
...

Am,1 · · · Am,0 − λ1Am,1 − · · · − λmAm,m · · · Am,m

∣∣∣∣∣∣∣
⊗

.

Therefore, we have

∆iw−λi∆0w =

∣∣∣∣∣∣∣
A1,1 · · · A1,0 − λ1A1,1 − · · · − λmA1,m · · · A1,m
...

. . .
...

. . .
...

Am,1 · · · Am,0 − λ1Am,1 − · · · − λmAm,m · · · Am,m

∣∣∣∣∣∣∣
⊗

(v1⊗v2⊗· · ·⊗vm).

Considering the determinant expansion of the right-hand side as in (16), we see each term
includes

(Ai,0 − λ1Ai,1 − · · · − λmAi,m)vi = 0.
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Thus ∆iw − λi∆0w = 0 holds for i = 1, . . . ,m.

Lemma 1 suggests solving the generalized eigenvalue problem det(∆i − λi∆0) = 0 to
obtain λi that satisfies (15).

Here, assuming an ideal case, we observe that, once one of the m eigenvalue problems
∆iw = λi∆0w (i = 1, . . . ,m) is solved, the remaining m − 1 eigenvalue problems can be
solved easily. For definiteness, we assume all eigenpairs (λ1, w) satisfying ∆1w = λ1∆0w
are obtained, and we show how to compute λ2, . . . , λm. Assume that the eigenvalue
problems ∆iw = λi∆0w (i = 1, . . . ,m) are regular, i.e., there exists λi ∈ R such that
det(∆i−λi∆0) ̸= 0. Note that this regularity assumption ensures ∆0w ̸= 0; this is because
∆0w = 0 means ∆iw = 0 from ∆iw = λi∆0w, and thus w is a common null vector of
∆0,∆i, which contradicts the regularity assumption. In this case, since ∆iw = λi∆0w
holds for i = 1, . . . ,m, we can compute the remaining eigenvalues λ2, . . . , λm as follows:

(18) λi = w⊤∆iw/w
⊤∆0w (i = 2, . . . ,m).

However, in our problem, the matrices∆i (i = 0, . . . ,m) derived from (14) are singular and
thus the generalized eigenvalue problems ∆iw = λi∆0w (i = 1, . . . ,m) can be singular,
i.e., infinitely many λi ∈ R satisfy ∆iw = λi∆0w for some w, which makes it difficult to
compute appropriate eigenvalues λ1, . . . , λm for solving (14). In the following section, we
discuss how to deal with the singularity that arises in our problem.

3.2 Removing the common null space of the matrices ∆i

The multiparameter eigenvalue problem (14) can be expressed as follows with eigenvectors
vi (i = 1, . . . ,m):

−C1v1 = λ1D1v1 + · · ·+ λmDmv1,

−C2v2 = λ1D1v2 + · · ·+ λmDmv2,

...

−Cmvm = λ1D1vm + · · ·+ λmDmvm.

(19)

For this problem, we construct the following m × m operator determinants ∆i (i =
0, . . . ,m) according to the definition (17):

∆0 :=

∣∣∣∣∣∣∣
D1 · · · Dm
...

. . .
...

D1 · · · Dm

∣∣∣∣∣∣∣
⊗

,

∆i :=

∣∣∣∣∣∣∣
D1 · · · Di−1 −C1 Di+1 · · · Dm
...

. . .
...

...
...

. . .
...

D1 · · · Di−1 −Cm Di+1 · · · Dm

∣∣∣∣∣∣∣
⊗

(i = 1, . . . ,m).

(20)

By Lemma 2, for the eigenvalues λ1, . . . , λm and eigenvectors v1, . . . , vm satisfying (19),
we have

(21) ∆iw = λi∆0w (i = 1, . . . ,m)

where w := v1 ⊗ v2 ⊗ · · · ⊗ vm. Therefore, if we obtain all pair of solutions λ1, . . . , λm for
the generalized eigenvalue problems (21), we can find the solutions for (19) among them.

Unfortunately, however, the matrix pencils ∆i−λi∆0 (i = 1, . . . ,m) derived from (20)
are singular, which means infinitely many λi satisfy det(∆i−λi∆0) = 0. To make matters
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worse, the null space of ∆i − λi∆0 cannot be described explicitly; actually some null
vectors can depend on the value of λi, and thus it is hard to remove the null space
completely. Therefore, in what follows, we consider removing some parts of the common
null space of ∆i−λi∆0 (i = 1, . . . ,m) whose basis can be computed relatively easily. More
specifically, we describe a projection procedure that removes the common null space of
∆i (i = 0, . . . ,m), which is always included in the common null space of ∆i − λi∆0 (i =
1, . . . ,m). By this procedure the numerical stability of the eigensolver is expected to
improve and the size of matrices ∆i (i = 0, . . . ,m) can be reduced.

We first compute ∆⊥
0 , an orthogonal basis of the null space of ∆0, via the singular

value decomposition (SVD) as follows. Let ∆0 = UΣV be the SVD of ∆0. Then ∆⊥
0 is

given by the columns of V that correspond to the zero singular values, which we denote
by V0 in what follows.

We then consider computing an orthogonal basis of the common null space of∆0, . . . , ∆m

sequentially. Let Vi be an orthogonal basis of the common null of ∆0, . . . ,∆i. We now
consider how to compute Vi+1 given Vi. Since Vi forms the orthogonal basis of the com-
mon null space of ∆0, . . . ,∆i, there exists some matrix X such that Vi+1 = ViX, i.e., each
column of Vi+1 can be described as a linear combination of the columns of Vi. Now our
purpose is finding the matrix X such that Vi+1 = ViX, which can be obtained by finding
the matrix X such that ∆i+1ViX = 0. We here compute the matrix X as (∆i+1Vi)

⊥ via
SVD as shown above replacing ∆0 by ∆i+1Vi. Since the columns of X obtained via SVD
are orthogonal, the columns of Vi+1 = ViX form an orthogonal basis of the common null
space of ∆0, . . . , ∆i+1.

Considering the above, the common null space of ∆i (i = 0, . . . ,m) can be obtained
as Vm by Algorithm 3.1.

Alternatively the common null space Vm can be obtained by computing the SVD

(22)

∆0
...

∆m

 = UΣV

and extracting the columns of V that correspond to the zero singular values. However,
the matrix in left-hand side of (22) tends to be too large in practice. Therefore we employ
the above sequential method for computing Vm to save memory space.

Algorithm 3.1 Finding the common null space of ∆0, . . . , ∆m.

1: Compute SVD of ∆0 to get V0.
2: for i = 1 to m do
3: Compute X = (∆iVi−1)

⊥ using SVD and let Vi = Vi−1X.
4: end for
5: Return Vm.

Finally, we get the projected ∆i (i = 0, . . . ,m) as

(23) ∆̃i := (Vm
⊥)⊤∆iVm

⊥.

Note that, as a consequence of the above projection procedure, we may project out some
parts of null space that are necessary for finding the Lagrange multipliers. This means the
solution method for QECQP presented here may fail to find a global solution, and this
is one of the reasons why our algorithm is not theoretically guaranteed to find a global
solution.



USING MULTIPARAMETER EIGENVALUES FOR SOLVING QECQP 10

3.3 Solving the generalized eigenvalue problems with projected matrices

We discuss how to compute the eigenvalues satisfying the following eigenvalue problems:

(24) ∆̃iw̃i = λi∆̃0w̃i (i = 1, . . . ,m)

where ∆̃i is as defined in (23) and w̃i (i = 1, . . . ,m) are eigenvectors.
First, as shown for the eigenvalue problems (21), we observe that the eigenvalue prob-

lems (24) have common eigenvectors, i.e., there exists eigenvectors of (24) whose entries
are independent of i = 1, . . . ,m. Let vi (i = 1, . . . ,m) be eigenvectors satisfying (19) and
w := v1⊗v2⊗· · ·⊗vm. Note that w satisfies ∆iw = λi∆0w for i = 1, . . . ,m. Furthermore,
this vector w can be expressed with some vectors α, β as

w = Vm
⊥α+ Vmβ

where Vm is the output of Algorithm 3.1, i.e., the orthogonal basis of the common null
space of ∆i (i = 0, . . . ,m). Therefore we have

∆iw = λi∆0w ⇔ ∆i(Vm
⊥α+ Vmβ) = λi∆0(Vm

⊥α+ Vmβ)

⇔ ∆iVm
⊥α = λi∆0Vm

⊥α

⇒ ∆̃iα = λi∆̃0α

for i = 1, . . . ,m. This means the generalized eigenvalue problems (24) have the common
eigenvector α for i = 1, . . . ,m. Consequently the problems (24) can be written as follows:

(25) ∆̃iw̃ = λi∆̃0w̃ (i = 1, . . . ,m)

where w̃ is the common eigenvector of reduced size.
We now consider solving (25). We first consider computing λ1 satisfying ∆̃1w̃ = λ1∆̃0w̃

and then we see how to compute the remaining eigenvalues λ2, . . . , λm.
Although ∆̃i (i = 0, . . . ,m) have no common null space due to the projection proce-

dure in Section 3.2, for the particular eigenvalue problem ∆̃1w̃ = λ1∆̃0w̃, there may still
exist common null space of ∆̃0, ∆̃1. Therefore, before computing λ1, we do the following
projection procedure to obtain matrices ∆̂0, ∆̂1 that have no common null space; we apply
Algorithm 3.1 to ∆̃0, ∆̃1 to obtain their common null space Ṽ1, and then we project out
the null space as follows:

∆̂0 = (Ṽ1
⊥
)⊤∆̃0Ṽ1

⊥
, ∆̂1 = (Ṽ1

⊥
)⊤∆̃1Ṽ1

⊥
.

Now we compute the eigenvalue λ1 by solving the generalized eigenvalue problem

(26) ∆̂1ŵ1 = λ1∆̂0ŵ1

where ŵ1 is the eigenvector. A standard algorithm for solving the generalized algorithm
is the QZ algorithm, which we used in our experiments.

We then compute the remaining eigenvalues λ2, . . . , λm that correspond to the value of
λ1. More precisely, for each value of λ1 obtained by solving (26), we show how to compute
λ2, . . . , λm that satisfy (25) with a common eigenvector w̃.

We first consider expressing the vector w̃ in (25) with some vectors r, s as follows:

(27) w̃ = Ṽ1
⊥
r + Ṽ1s
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where Ṽ1 is an orthogonal basis of the common null space of ∆̃0, ∆̃1. Note that the vector
r can be obtained as the eigenvector ŵ1 in (26), i.e., r = ŵ1, since

∆̃1w̃ = λ1∆̃0w̃ ⇔ ∆̃1(Ṽ1
⊥
r + Ṽ1s) = λ1∆̃0(Ṽ1

⊥
r + Ṽ1s)

⇔ ∆̃1Ṽ1
⊥
r = λ1∆̃0Ṽ1

⊥
r

⇒ ∆̂1r = λ1∆̂0r.

Now our purpose is to find λi with some vector s such that λi and w̃ = Ṽ1
⊥
ŵ1+ Ṽ1s satisfy

(25) for i = 2, . . . ,m. Plugging w̃ = Ṽ1
⊥
ŵ1 + Ṽ1s into (25), we have

∆̃i(Ṽ1
⊥
ŵ1 + Ṽ1s) = λi∆̃0(Ṽ1

⊥
ŵ1 + Ṽ1s)

⇔ ∆̃iṼ1
⊥
ŵ1 + ∆̃iṼ1s = λi∆̃0Ṽ1

⊥
ŵ1

⇔
[
∆̃0Ṽ1

⊥
ŵ1 −∆̃iṼ1

] [λi

s

]
= ∆̃iṼ1

⊥
ŵ1.

Therefore, by solving the linear equations

(28)
[
∆̃0Ṽ1

⊥
ŵ1 −∆̃iṼ1

] [λi

s

]
= ∆iṼ1

⊥
ŵ1 (i = 2, . . . ,m)

for
[
λi s

]⊤
, we get λi (i = 2, . . . ,m) as the first elements of the solutions.

We remark that our algorithm may fail to find appropriate λ1 if the generalized eigen-
value problem (26) is singular. Moreover, if the matrix in the right-hand side of (28) is
singular, it is hard to compute appropriate λi (i = 2, . . . ,m). These issues make it difficult
to guarantee that our algorithm finds a global solution. In practice these problems appear
to arise often, although our algorithm still can find a global solution in most cases as
shown in Section 5.

4 Summary and analysis of the algorithm

In this section, we summarize the entire algorithm for solving QECQP and give complexity
analysis.

4.1 Outline of the algorithm

We here show the pseudocode for the whole algorithm for solving QECQP.

Algorithm 4.1 Outline of algorithm for solving QECQP.

1: Construct the operator determinants ∆i (i = 0, . . . ,m) according to (20).
2: Remove the common null space of ∆i (i = 0, . . . ,m) to get ∆̃i (i = 0, . . . ,m).
3: Remove the common null space ∆̃0, ∆̃1 to get ∆̂0, ∆̂1.
4: Solve ∆̂1ŵ1 = λ1∆̂0ŵ1 to get eigenpairs (λ1, ŵ1) using QZ.
5: For each eigenpairs (λ1, ŵ1), solve (28) to get λ2, . . . , λm.
6: For every λ = (λ1, . . . , λm) thus obtained, solve (5) to get x.
7: For every x thus obtained, check the feasibility (6) and rule out infeasible x.
8: For every feasible x thus obtained, compute the objective function values. The vector

x corresponding to the smallest value is a global solution.
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4.2 Complexity analysis

We here examine the computational costs of some major parts in Algorithm 4.1.
First, in Step 2, the projection procedure for ∆i (i = 0, . . . ,m) requires O((m+1)(2n+

1)3m) computational cost. This is because the complexity of SVD for a M × N matrix
is O(MN2 + N3) [12, §8.6] and the size of matrices ∆i (i = 0, . . . ,m) is bounded by
(2n+ 1)m × (2n+ 1)m.

In Step 4 the algorithm requires eigenpairs of the linear generalized eigenvalue problem
∆̂1ŵ1 = λ1∆̂0ŵ1, whose size is bounded by (2n+1)m. Since the standard QZ algorithm for
computing the eigenpairs of anN×N linear generalized eigenvalue problem requires O(N3)
floating point operations [12, §7.7.7], the computational cost for solving ∆̂1ŵ1 = λ1∆̂0ŵ1

is O((2n+ 1)3m) flops.
Furthermore, assuming that the generalized eigenvalue problem ∆̂1ŵ1 = λ1∆̂0ŵ1 is

regular, the number of eigenpairs (λ1, ŵ1) obtained in Step 4 is at most (2n+ 1)m. Since
the computational cost for solving (28) for λ2, . . . , λm is bounded by O((m−1)(2n+2)3m),
the total complexity of Step 5 is O((m− 1)(2n+2)4m), which is the dominant cost in our
algorithm.

Note that, if m is fixed, the complexity of our algorithm is polynomial time, which is
consistent with the result shown by Bienstock [7].

5 Numerical experiments

In this section, we present numerical experiments to show the performance of our algo-
rithm for finding a global solution of QECQP. Since the performance of similar algorithms
for quadratic programming with two constraints has already studied in [14, 21], we imple-
mented our algorithm for QECQP with three constraints. To compare with our algorithm,
we also consider solving QECQP (1) via the following ordinary SDP relaxation:

minimize
x

Q0 •X + 2q⊤0 x+ γ0

subject to Qi •X + 2q⊤i x+ γi = 0 (i = 1, . . . ,m),

X − xx⊤ ⪰ O.

(29)

We compare these two methods regarding the runtime, the number of solved instances and
the accuracy of computed solutions. All experiments were conducted in Matlab R2014b
on a Core i7 machine with 16GB RAM. We solved SDP (29) by SeDuMi 1.3, fixing its
desired accuracy (pars.eps) to 0 so that it computes solutions as accurately as possible.

In this experiment we consider QECQP instances given by the following form so that
we can easily check whether a computed solutions is optimal or not:

minimize
x

f(x) = (x− x∗)⊤Q0(x− x∗)

subject to gi(x) = (x− x∗)⊤Qi(x− x∗) = 0 (i = 1, 2, 3)
(30)

where x∗ ∈ Rn is a given vector. We generated x∗ and Qi (i = 1, 2, 3) randomly. Q0

is randomly generated to satisfy Q0 ≻ 0. Apparently x = x∗ is a feasible solution and
f(x∗) = 0 is the smallest objective value, which means x∗ is a global solution for (30).

For n = 4, 5 we thus generated 100 instances, and solved them by our algorithm and
by the SDP relaxation method. We measured the runtime of our algorithm and the SDP
relaxation method. Table 1 shows the runtime of both algorithms by the average and
standard deviation over 100 instances for each dimension.
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We then counted the number of instances solved by our algorithm and by the SDP
relaxation method respectively. We regard a problem is solved if the computed solution
x satisfies ∥x− x∗∥2/∥x∗∥2 < 10−3. Table 2 indicates the number instances solved by our
algorithm and by the SDP relaxation for each dimension.

Finally, we compared the accuracy of solutions computed by both algorithms. Table 3
indicates the average and standard deviation of the relative error ∥x−x∗∥2/∥x∗∥2 over all
solved instances for n = 4, 5. Note that the instances our algorithm failed to solve were
ruled out on calculating its accuracy.

We observe that the SDP relaxation method outperforms our algorithm regarding
the runtime and the number of solved instances. However, for the instances where our
algorithm works well, it computes global solutions much more accurately than the SDP
relaxation method.

Table 1: Runtime (s) of our algorithm and the SDP relaxation method for n = 4, 5. The
results are shown by average (± standard deviation) over 100 instances.

Our algo. SDP

n = 4 11.4 (±1.23) 0.106 (±3.41× 10−2)
n = 5 158 (±14.5) 0.109 (±2.89× 10−2)

Table 2: Number of instances solved by our algorithm and SDP for n = 4, 5.

Our algo. SDP

n = 4 98 100
n = 5 97 100

Table 3: Rerative error ∥x − x∗∥2/∥x∗∥2 of solutions x computed by our algorithm and
SDP for n = 4, 5. The results are shown by average (± standard deviation) over solved
instances.

Our algo. SDP

n = 4 1.19× 10−15(±4.29× 10−15) 3.53× 10−6(±6.15× 10−6)
n = 5 3.63× 10−15(±1.39× 10−14) 2.27× 10−6(±2.82× 10−6)

Remarks on the duality gap For the SDP relaxation method, we confirmed that the
duality gap is bounded by [2 × 10−14, 3 × 10−6] in all instances tested above, implying
that all generated instances are relatively easy for the SDP relaxation method to solve.
Probably, by the positive definiteness of Q0, the Hessian of Lagrangian tends to be positive
semidefinite at a global solution; in the CDT problem, it is known to be a necessary and
sufficient condition for a given instance to have no duality gap [2], and it seems that similar
situation is happening in the case of QECQP.

As one can see from the derivation of our algorithm, the presence of duality gap does
not affect the performance of our algorithm, while the singularity of matrices is problematic
as mentioned later. Therefore, our algorithm can be effective for QECQP instances with
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nonsingular matrices and having duality gap, which is hard to solve for the SDP relaxation
method because of the duality gap.

Remarks on the instances with singular matirces We also observed via experi-
ments that our algorithm often fail to solve QECQP instances (30) with low-rank matrices
Qi, e.g., diagonal matrices with only one or two nonzero entries. This is probably because
low-rank matrices Qi spawn singular matrices in many parts of our algorithm (e.g., the
generalized eigenvalue problem (26) and the linear equation (28)), and thus causes numer-
ical difficulties in our algorithm.

6 Conclusion and discussion

In this paper we have developed an algorithm for QECQP. Our algorithm solves QECQP
as follows: find all Lagrange multipliers by solving a system of multivariate determinantal
equations, compute the KKT points corresponding to the multipliers and then obtain a
global solution with the smallest objective value among the KKT points. The key step
of our algorithm is to convert the KKT conditions into the multiparameter eigenvalue
problem, which is reduced to the m linear generalized eigenvalue problems of larger size.

We also proposed a projection method that removes the common null space of the
operator determinants to improve the performance and stability of the eigenvalue compu-
tation. We also showed that, once one of the generalized eigenvalue problems is solved,
the remaining eigenvalues can be obtained without solving the large-size generalized eigen-
value problems. Although our algorithm is not theoretically guaranteed to find a global
solution of QECQP, the numerical experiments show that, for QECQP instances where
our algorithm works well, it computes a global solution with high accuracy.

A possible future work is to prove that our algorithm finds a global solution for QECQP
by modifying some procedures of our algorithm or imposing some assumptions on QECQP
instances. One promising approach is to generalize Theorem 1.1 of [16], which shows the
connection between two-parameter eigenvalue problems and Bézoutian (a counterpart of
the operator determinant for the two-parameter case), so that we can clarify the relation-
ship between the multiparameter eigenvalue problem and the operator determinant. It is
also important to study how the presence of singular matrices and the projection process
affect the solvability of the original QECQP instance. Additionally, considering the numer-
ical stability, it is desirable if we can apply GUPTRI [10] for solving singular generalized
eigenvalue problems that appear in our algorithm. Although our straightforward imple-
mentation of replacing QZ with GUPTRI resulted in failure to find a solution for some
reason, it is possible that GUPTRI would work better than QZ with some appropriate
modification.
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