
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Scaled and Squared Subdiagonal Padé
Approximation for the Matrix Exponential

STEFAN GÜTTEL and Yuji NAKATSUKASA

METR 2016–03 April 2016

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

SCALED AND SQUARED SUBDIAGONAL PADÉ
APPROXIMATION FOR THE MATRIX EXPONENTIAL

STEFAN GÜTTEL∗ AND YUJI NAKATSUKASA†

Abstract. The scaling and squaring method is the most widely used algorithm for computing the
exponential of a square matrix A. We introduce an efficient variant that uses a much smaller squaring
factor when ‖A‖ � 1 and a subdiagonal Padé approximant of low degree, thereby significantly
reducing the overall cost and avoiding the potential instability caused by overscaling, while giving
forward error of the same magnitude as the standard algorithm. The new algorithm performs well if a
rough estimate of the rightmost eigenvalue of A is available and the rightmost eigenvalues do not have
widely varying imaginary parts, and it achieves significant speedup over the conventional algorithm
especially when A is of large norm. Our algorithm uses the partial fraction form to evaluate the
Padé approximant, which makes it suitable for parallelization and directly applicable to computing
the action of the matrix exponential exp(A)b, where b is a vector or a tall skinny matrix. For this
problem the significantly smaller squaring factor has an even pronounced benefit for efficiency when
evaluating the action of the Padé approximant.

Key words. matrix exponential, scaling and squaring, subdiagonal Padé approximation, stable
matrix, conditioning, matrix function times a vector

AMS subject classifications. 15A23, 65F30, 65G50

1. Introduction. For a given matrix A ∈ Cn×n, the matrix exponential eA is
among the most important matrix functions, one reason being its close connection
to ordinary differential equations; see, e.g., [43, Chapter 8]. We explore the scaling
and squaring method [2, 23] for its computation, which is the most commonly used
in practice, and implemented for example in Matlab’s expm. It is based on a type
(2sm, 2sm) rational approximation to the exponential in a region of the complex
plane containing the eigenvalues Λ(A), where s and m are suitably chosen integer
parameters. The scaling and squaring method computes eA by first choosing an
integer s such that A/2s has norm of order 1, then taking a rational type (m,m) Padé
approximation r(z) to ez, where m is chosen such that eA/2

s ≈ r(A/2s). Typically,
m = 13 is chosen when ‖A‖1 exceeds about 5; see [23]. The method then computes
eA ≈ (r(A/2s))2

s

via repeated squaring of the matrix.
Our work is motivated by the following observation. The standard choice of s

roughly satisfies 2s = O(‖A‖). Therefore the degree of the rational functions under-
lying the scaling and squaring method is 2sm = 2s × 13 = O(‖A‖). When ‖A‖ � 1,
this is a rational function of extremely high degree relative to the degree 16 of the
best uniform rational approximation to the exponential function on the negative real
axis which achieves an error of O(u), where u ≈ 1.1 × 10−16 is the unit roundoff in
double precision arithmetic. The use of such best rational approximants appears to
have been limited to cases where the matrix is Hermitian, or known to have negative
real or nearly real eigenvalues [14, 39]; this is perhaps reasonable as it is nontrivial to
compute the best rational approximant in a complex region.

In this work we investigate the high-degree rational approximant underlying the
scaling and squaring method and observe that in many cases rational functions of

∗School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(stefan.guettel@manchester.ac.uk, http://www.maths.manchester.ac.uk/~stefan).
†Department of Mathematical Informatics, Graduate School of Information Science and

Technology, University of Tokyo, Tokyo 113-8656, Japan (nakatsukasa@mist.i.u-tokyo.ac.jp,
http://www.opt.mist.i.u-tokyo.ac.jp/~nakatsukasa). Supported by JSPS Scientific Research
Grant No. 26870149 and EPSRC grant EP/I005293/1.

1

2 STEFAN GÜTTEL AND YUJI NAKATSUKASA

much lower degree suffice for computing eA in a forward stable manner. The key
facts we are using are the following.

1. Due to the exponential decay of the exponential function, ez ≈ 0 if z has
large negative real part. Consequently, the rational approximant r(z) =
(pk,m(z)/qk,m(z))2

s

is a good approximation for such z if |pk,m(z)/qk,m(z)|
is sufficiently smaller than 1 and 2s is reasonably large. For example, with
|pk,m(z)/qk,m(z)| = 0.1 and s = 4 we have (pk,m(z)/qk,m(z))2

s

= 10−16,
which approximates ez to full machine precision for z with Re(z) ≤ ln 10−16 '
−36.8. We will show that this simple fact makes subdiagonal Padé approxi-
mants computationally more attractive than diagonal Padé approximants.

2. It is known [22, p. 240] that the relative condition number of eA, defined by

(1.1) κexp(A) =
‖Lexp(A)‖‖A‖

‖eA‖
,

has lower and upper bounds

(1.2) ‖A‖ ≤ κexp(A) ≤ e‖A‖‖A‖
‖eA‖

.

Here ‖ · ‖ denotes any consistent matrix norm and Lexp(A) is the Fréchet
derivative of the matrix exponential at A. The lower bound ‖A‖ ≤ κexp(A)
will be of particular interest, as it shows that a forward stable computation is
allowed to have an error of O(u‖A‖), and the algorithm can take advantage
of this for improved efficiency.

3. Due to the low degree of the Padé approximant employed in our algorithm, its
partial fraction form can be evaluated accurately without severe subtractive
cancellation effects. We will also argue in section 4.1.1 that the condition
numbers of the linear systems involved are under control. Moreover, the
partial fraction form allows for some coarse grain parallelism in its evaluation.

Conventionally, the parameters in the scaling and squaring method are chosen
to minimize cost while ensuring that the truncation error of the Padé approximant
is of order unit roundoff [3, 23]. An important aspect here is that this approach
takes no account of the roundoff errors in finite precision arithmetic, and indeed the
stability of the method is still an open problem. The algorithm that we introduce does
not resolve this issue either; however, we show that for normal matrices, for which
the standard scaling and squaring method is known to be forward stable in finite
precision arithmetic, our algorithm is also forward stable. Furthermore, we provide
sufficient conditions under which our method is forward stable, and illustrate through
experiments that the method performs stably for an even larger class of matrices.

Our implementation uses the partial fraction or product form to evaluate the Padé
approximant at a matrix argument, and this allows us to easily adapt the algorithm
for computing eAb for a vector (or tall and skinny matrix) b via solving systems of
linear equations. The reduced scaling parameter s then leads to an even pronounced
efficiency improvement when evaluating the action of the Padé approximant.

Due to the relations with ordinary differential equations, many matrices one wants
to compute the exponential of correspond to discretizations of unbounded differential
operators and are of large norm and matrix size. The resulting large scaling parameter
s and the high degree m of the Padé approximant render the conventional scaling and
squaring method inefficient. On the other hand, specialized methods for the direct

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 3

computation of eAb exist, most prominently, those based on polynomial or rational
Krylov spaces (see, e.g., [14, 15, 17, 29, 32, 40]). However, these methods typically do
not come with the same level of robustness as the conventional scaling and squaring
method, at least if A is non-Hermitian, as various parameters need to be tuned to
make these methods work efficiently (selection of poles, dimension of the Krylov space,
restart lengths, and so on). Methods based directly on rational (best) approximation,
like the Carathéodory–Fejér [34] or contour-based methods [39, 46], are applicable
only if A is (nearly) Hermitian. Our method presented in this paper tries to fill a gap
between these different approaches. We present an efficient method with robustness
for an important class of not-necessarily Hermitian matrices arising often in practice,
namely matrices whose rightmost eigenvalues have moderate imaginary parts. For
example, sectorial matrices have this property. When the rightmost eigenvalues vary
largely in imaginary parts, the direct application of our method may give inaccurate
results. We suggest possible remedies to overcome this issue.

The structure of this paper is as follows. In section 2 we investigate scaled and
squared rational approximation to the exponential. In section 3 we describe our
new algorithm sexpm, with its name derived from the Matlab command expm with
the prefix s, which is a reminder of the four s’s: subdiagonal scaling and squaring
with shifting. We analyze the forward stability in section 4. Section 5 considers the
computation of eAb. In section 6 we compare sexpm with other standard methods.
Numerical experiments in section 7 illustrate the efficiency and performance of sexpm.

Notation. ‖A‖ denotes any consistent matrix norm, κ(A) is the standard 2-norm
condition number, and κexp is the condition number for the exponential. We assume
the use of IEEE double precision arithmetic with unit roundoff u ≈ 1.1× 10−16.

1.1. Initial shifting. It will prove useful to introduce the shift Aσ = A− σI so
that the eigenvalues of Aσ are in the left half-plane. The scalar σ ∈ C can be obtained
as an estimated rightmost eigenvalue of A. We take σ to be real if A is a real matrix
to ensure the computed eA is also real, but otherwise σ can be complex. To obtain
the exponential of the original matrix we use the identity eA = eσeAσ .

We shall make use of ‖A‖, which is a lower bound for κexp(A), cf. (1.2). Hence it
is important that the shift operation does not significantly increase this norm. Fortu-
nately this is guaranteed as can be seen from ‖Aσ‖2 ≤ ‖A‖2 + ‖σI‖2 . 2‖A‖2, using
the fact that σ is an estimate for the rightmost eigenvalue of A and maxi |λi(A)| ≤
‖A‖2.

We note that the idea of shifting the matrix was used by Ward [45] (who also
uses balancing) with the goal of reducing the matrix norm and thereby the scaling
parameter. There is a fundamental difference between the purpose of the shift, as we
shift so that the rightmost eigenvalues are near the origin and ‖eAσ‖ = O(1), allowing
us to examine the quality of the rational approximant being used; see the next section.

Several approaches exist for estimating the rightmost eigenvalues [12, 26] but
these are beyond the scope of this paper and we assume that the user provides an
estimate for σ. We demonstrate in section 7.2.2 that the estimate is allowed to have
error O(2s), where s is the scaling parameter. Note that in many applications where
exponentials play a role, the matrices A are stable with no eigenvalues in the right
half-plane, in which case shifting is not necessary anyway.

For notational simplicity in the following we will take A← Aσ, that is, A denotes
the shifted matrix with rightmost eigenvalue ≈ 0.

2. Rational approximants underlying the scaling and squaring method.
The starting point of our investigation is to view the scaling and squaring method as

4 STEFAN GÜTTEL AND YUJI NAKATSUKASA

a global rational approximation to the exponential function. The conventional scaling
and squaring method proceeds as follows:

1. Choose s so that ‖A/2s‖ ' O(1).
2. Evaluate the diagonal Padé approximant rm,m(A/2s). If ‖A‖ � 1, m = 13

is chosen.
3. Obtain an approximation to eA by repeated squaring: eA ≈ (rm,m(A/2s))2

s

.
The last formula clearly reveals the rational function that underlies the method:

ez ≈ (rm,m(z/2s))2
s

, that is, ez is approximated by a scaled and squared Padé ap-
proximant of the exponential. For any two integers k and m, the type (k,m) Padé
approximant of the exponential is explicitly known to be rk,m(z) = pk,m(z)/qk,m(z)
with

(2.1) pk,m(z) =

k∑
j=0

(k +m− j)! k!

(k +m)! (k − j)!
zj

j!
, qk,m(z) =

m∑
j=0

(k +m− j)!m!

(k +m)! (m− j)!
(−z)j

j!
.

Suppose for simplicity that A is diagonalizable and A = Xdiag(λi)X
−1. Then the

method approximates eA = Xdiag(eλi)X−1 by Y := Xdiag((rm1,m(λi/2
s))2

s

)X−1 ≈
eA, and the error satisfies

(2.2) ‖eA − Y ‖2 ≤ κ2(X) max
z∈D

∣∣(ez − r(z/2s))2s ∣∣,
where D is a region in the complex plane containing the eigenvalues Λ(A), and
κ2(X) = ‖X‖2‖X−1‖2 is the 2-norm condition number of the eigenvector matrix.
We may take D = Λ(A), in which case maxi

∣∣eλi − (r(λi/2
s))2

s∣∣ represents the exact
error if A is a normal matrix, and its quality as an estimate of the error may dete-
riorate as κ2(X) grows. A bound ‖eA − Y ‖2 ≤ 11.08 maxz∈W(A)

∣∣ez − (r(z/2s))2
s∣∣

involving the field of valuesW(A) = {x ∗Ax : ‖x‖2 = 1} is also known [9], and it does
not depend explicitly on κ2(X). However, we will not use this bound in what follows
as it can lead to crude overestimations and W(A) is difficult to compute.

We now focus on the term maxi
∣∣eλi − (r(λi/2

s))2
s∣∣, and to do so we examine∣∣ez − (r(z/2s))2

s ∣∣ for complex arguments z. If this error is small in a region D con-
taining the eigenvalues of A, then Y is a good approximation to eA. A similar analysis
is given by Fair and Luke [13], who show that essentially the same argument holds
for general matrices with nontrivial Jordan blocks.

Figures 2.1–2.6 visualize |ez − (rk,m(z/2s))2
s |, s = 4, for three representative

choices of Padé types (k,m):

1. k = 3, m = 4: subdiagonal Padé approximant (Figures 2.1 and 2.2),
2. k = m = 4: diagonal Padé approximant (Figures 2.3 and 2.4), and
3. k = m = 13: diagonal Padé approximant that is usually employed by the

standard method (Figures 2.5 and 2.6).

The right figures show the same function |ez − (rk,m(z/2s))2
s | as the left but in a

larger region, and the red dots are the poles of rk,m(z), shown for reference only (note
that these are not the poles of rk,m(z/2s), which are larger by the factor 2s).

Padé approximants with m ≤ k+ 2 are known to have all their poles in the right
half-plane [42]. If in addition k ≤ m then they are known to be A-acceptable [44],
which means the modulus |rk,m(z)| is bounded by 1 in the left half-plane. A-acceptable
subdiagonal Padé approximants have the stronger property that they are L-acceptable
[18], which means that the modulus decays to 0 as z → −∞ (which is also obvious
from degree consideration).

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 5

−30 −20 −10 0 10
−20

−10

0

10

20

−15

−10

−5

0

Fig. 2.1. k = 3, m = 4 (subdiagonal Padé),
s = 4.

−4000 −2000 0

−2000

0

2000

−15

−10

−5

0

Fig. 2.2. Larger region of left plot.

−30 −20 −10 0 10
−20

−10

0

10

20

−15

−10

−5

0

Fig. 2.3. k = m = 4 (diagonal Padé), s = 4.

−4000 −2000 0

−2000

0

2000

−15

−10

−5

0

Fig. 2.4. Larger region of left plot.

−30 −20 −10 0 10
−20

−10

0

10

20

−15

−10

−5

0

Fig. 2.5. k = m = 13 (standard method), s = 4.

−4000 −2000 0

−2000

0

2000

−15

−10

−5

0

Fig. 2.6. Larger region of left plot.

Comparing Figures 2.1 and 2.2 with Figures 2.3 and 2.4, we clearly see the benefits
of using a subdiagonal Padé approximant instead of a diagonal one. Even though the
diagonal Padé approximant has better accuracy near the origin (as it should since
it has one degree higher accuracy there), globally the subdiagonal Padé approximant
provides a much better approximation to ez when Re(z) is negative with large absolute
value. Indeed, the type (3, 4) Padé approximant is more accurate than the standard
(13, 13) Padé approximant if A has eigenvalues with real part −103 or smaller, as can
be seen in Figures 2.2 and 2.6.

6 STEFAN GÜTTEL AND YUJI NAKATSUKASA

This phenomenon is crucial to the cost savings in our algorithm and hence war-
rants further explanation. With a subdiagonal Padé approximant rm−1,m(z/2s) =
pm−1(z/2s)/qm(z/2s) we have |rm−1,m(z/2s)| � 1 for sufficiently large |z| since
|pm−1(z/2s)| � |qm(z/2s)|. For example, when s = 4 we have

|(rm−1,m(z/2s))2
s

| = |rm−1,m(z/16)|16,

which shows that as long as |rm−1,m(z/16)| < 0.1 we have |(rm−1,m(z/16))16| = O(u).
Moreover, since |ez| = eRe(z), we have |ez| = O(u) for z with large negative real

parts. Indeed if the real part of z satisfies Re(z) < − log 10−16 ' −36.8, then |ez| . u,
which is of negligible size compared with O(1).

Combining the above two observations, we conclude that in the inequality

|(rm−1,m(z/2s))2
s

− ez| ≤ |(rm−1,m(z/2s))2
s

|+ |ez|

both terms on the right are negligibly small provided that Re(z) ≤ −36.8, which we
can verify in Figures 2.1 and 2.2.

3. Scaled and squared subdiagonal Padé approximation for eA. We now
describe our algorithm sexpm. The standard scaling and squaring method is known to
be forward stable for certain types of matrices, including normal matrices [5], and we
aim to design an algorithm that retains this property. Recall that forward stability
means that the forward error is about the same order as that of a backward stable
algorithm [21, Sec. 1.6], so we generally accept forward errors ‖eA − fl(eA)‖ of size
uκexp(A) ‖eA‖ = O(uκexp(A)), recalling from section 1.1 that ||eA|| = O(1) due to
the initial shift. Since by (1.2) the condition number κexp(A) is bounded below by
||A||, we can take u||A|| to be a lower bound for the error accepted in a forward stable
algorithm. The guiding principle for the parameter choice is therefore to control the
approximation error |ez − (rk,m(z/2s))2

s | to be no larger than u||A|| for values of z
including those in the spectrum of A.

3.1. Choice of the parameters. We determine the scaling parameter s and
the Padé degree (k,m) based on the value or estimate of ‖A‖2. Specifically, we choose
the parameters to minimize the cost s+m (which measures the total number of matrix
multiplications and inversions) while ensuring that the approximation error satisfies
|ez − (rk,m(z/2s))2

s | < u‖A‖2 on [−‖A‖2, 0]. Note that this choice is based on the
approximation errors on the real axis, and does not control the error in a complex
region. However, we recall from the figures in the previous section that the error
grows only moderately as the imaginary part of z grows, especially when the real part
of z is large and negative.

We thus obtain the parameters in Tables 3.1 (for ‖A‖2 ≥ 1) and 3.2 (‖A‖2 ≤ 1).

Table 3.1
Parameters s, (k,m) depending on (an estimate of) ‖A‖2 and the corresponding uniform ap-

proximation error on [−‖A‖2, 0] and subtractive cancellation error; both errors should be a moderate
multiple of max(u‖A‖2, u).

‖A‖2 1 ∼ 200 ∼ 104 ∼ 106 ∼ 109 ∼ 1011 ∼ 1012 ∼ 1014 ∼
s, (k,m) 4,(5, 4) 4,(4, 5) 4,(3, 4) 3,(3, 4) 2,(3, 4) 2,(2, 3) 2,(1, 2) 1,(1, 2)
flops/n3 16 18 16 14 12 10 8 6

approx. error 1.5e-14 1.4e-14 1.4e-11 1.7e-9 4.2e-6 1.6e-5 8.3e-4 9.6e-3
subtract. canc. 1.7e-14 9.6e-15 2.7e-15 2.7e-15 2.7e-15 1.1e-15 3.3e-16 3.3e-16

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 7

Table 3.2
Parameters s, (k,m) and errors for ‖A‖ ≤ 1.

‖A‖2 ∼ 1 ∼ 0.5 ∼ 0.3 ∼ 0.15 ∼ 0.07 ∼ 10−2 ∼ 10−4 ∼ 10−5 ∼ 10−8

s, (k,m) 4,(4, 3) 3,(4, 3) 2,(4, 3) 1,(4, 3) 0,(4, 3) 0,(3, 2) 0,(3, 0) 0,(2, 0) 0,(1, 0)
flops/n3 14 12 10 8 6 4 4 2 0

approx. error 3.8e-15 2.1e-15 2.3e-15 1.3e-16 3.3e-16 3.3e-16 4.4e-16 2.2e-16 1.1e-16
subtract. canc. 6.8e-15 6.8e-15 6.8e-15 6.8e-15 2.7e-15 1.8e-15 2.2e-16 2.2e-16 2.2e-16

Note that the flop counts in Table 3.1 decrease as ‖A‖2 grows. This is because
as ‖A‖2 decreases, the lower bound for the condition number κexp(A) also decreases,
which forces the approximation quality to be more stringent. This is in stark contrast
to the standard scaling and squaring method, in which the scaling parameter s needs
to grow with ‖A‖2, resulting in a more expensive method with arithmetic cost about
2(7 + log2 ‖A‖2)n3 flops. Clearly, the larger ‖A‖2 is, the more efficient our method
sexpm becomes relative to the standard method.

Note that when ‖A‖2 = O(1) or smaller, Table 3.1 recommends the use of a su-
perdiagonal Padé approximant, which gives better accuracy near the origin at roughly
the same cost. However, the speedup compared to the standard method is negligible
in this easy case. In fact, even a simple Taylor series approximation would suffice
in this case, not requiring any matrix inverses. For the majority of the paper our
treatment hence focuses on the subdiagonal case for ‖A‖2 � 1.

3.2. Evaluating the Padé approximant. As Table 3.1 shows for ‖A‖2 � 1,
our method requires the evaluation of a subdiagonal Padé approximant rm−1,m at

a matrix argument Ã := A/2s. This can be done in a number of ways summarized
below.

1. Partial fraction. Use the expression

rm−1,m(z) =

m∑
i=1

ai
z − bi

and evaluate

(3.1) rm−1,m(Ã) =

m∑
i=1

ai(Ã− biI)−1.

For superdiagonal Padé we use rm+1,m(z) = α0+α1z+
∑m
i=1

ai
z−bi to evaluate

rm+1,m(Ã) = α0I + α1Ã+
∑m
i=1 ai(Ã− biI)−1.

2. Product form. For the subdiagonal Padé approximant, express rm−1,m(z) =
pm−1(z)/qm(z) as

rm−1,m(z) =

∏m−1
i=1 (z − ti)∏m
i=1(z − bi)

,

and evaluate rm−1,m(z) by the recursion X1 = I,

Xi+1 = (Ã− tiI)(Ã− biI)−1Xi

for i = 1, . . . ,m − 1, and rm−1,m(Ã) = (Ã − bmI)−1Xm. The superdiagonal
case is analogous.

8 STEFAN GÜTTEL AND YUJI NAKATSUKASA

3. Direct evaluation. Compute P = pk(Ã) and Q = qm(Ã) independently, then

obtain rk,m(Ã) = PQ−1.
4. Continued fraction. Use the representation

rm−1,m(z) = b0 +
a1z

b1 +
a2z

b2 +
a3z

b3 +
.. .

and evaluate rm−1,m(Ã) in a bottom-up fashion (top-down reduces to the
direct evaluation).

We argue below that both the partial fraction form and the product form have
desirable stability properties for our method. Among the two, partial fraction form is
usually more efficient and can be implemented in parallel. We use the partial fraction
form unless a relative accuracy of 10−13 or better is desired (when this is possible,
which necessarily means that ‖A‖ ≤ 103).

One downside of both partial fraction and product forms is that they involve
complex arithmetic even when A is real. With the partial fraction form, we can at
least exploit the fact that the poles bi and residues ai in (3.1) appear in complex
conjugate pairs, and that for real A we have

ai(Ã− biI)−1 + āi(Ã− b̄iI)−1 = 2Re(ai(Ã− biI)−1).

This leads to a reduction in evaluation cost by nearly a half.

When A is real, the identity

ai(z − biI)−1 + āi(z − b̄iI)−1 =
ai(z − b̄i) + āi(z − bi)

(z − bi)(z − b̄i)
=

2(zRe(ai)− Re(aibi))

z2 − 2zRe(bi) + |bi|2

circumvents complex arithmetic, however, is not recommended numerically as the
matrix Ã can still be of large norm and hence the squaring in the denominator may
lead to severe subtractive cancellation.

The standard scaling and squaring method uses direct evaluation [22, p. 246].

There are two reasons for this: (i) pk(Ã) and qm(Ã) are closely related, so that for a
type (13, 13) Padé approximant both can be evaluated synchronously using 6 matrix

multiplications; (ii) qm(Ã) is shown to be well conditioned, so there is little danger in
the inversion.

Unfortunately the second argument is not valid in our method because ‖Ã‖ is not
of O(1), which is a consequence of the bounded scaling parameter s ≤ 4. Indeed it is

easy to verify that in our method qm(Ã) is highly ill-conditioned if A has large norm,
resulting in instability of direct evaluation. This instability is avoided by the partial
fraction or product form.

The continued fraction form has the advantage that if A is real then rm−1,m(Ã)
can be computed using real arithmetic only. However, the intermediate inversions are
generally more ill-conditioned than those in the partial fraction form, again giving
inaccurate results [30], which we also observed through experiments. Moreover, con-
tinued fractions are not as amenable to parallelization as partial fractions are. For
these reasons we do not further consider continued fractions.

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 9

3.3. Pseudocode. The pseudocode below summarizes our algorithm sexpm for
computing the matrix exponential1. Recall that the matrix A is assumed to be al-
ready shifted so that the largest real part of all eigenvalues is (approximately) 0. For
completeness, we make explicit the role played by the shift σ.

Algorithm 3.1 sexpm : Compute eA for A ∈ Cn×n.

1 Estimate the rightmost eigenvalue σ of A, and take Aσ = A− σI.
2 Estimate ‖Aσ‖2 and choose s, (k,m) from the second row of Tables 3.1 and 3.2.
3 Evaluate Padé approximant: rk,m(Aσ/2

s) = pk(Aσ/2
s)qm(Aσ/2

s)−1 via partial
fraction or product form.

4 Perform repeated squaring: eσ(rk,m(Aσ/2
s))2

s ≈ eA.

4. Forward stability. Higham [23] established backward stability of scaling and
squaring in exact arithmetic, though backward stability in finite precision arithmetic
remains an open problem. Regarding forward stability, several results exist [5, 10, 11].
Among these, of particular relevance is that the standard scaling and squaring method
is forward stable for normal matrices and essentially nonnegative matrices (matrices
whose off-diagonal elements are nonnegative), as shown by Arioli, Codenotti, and
Fassino [5]; see also [22, p. 248].

Here we examine the stability of our method. As in the analysis of [5] we denote by
fl(x) a computed approximation to x, so the output of sexpm is fl((rk,m(A/2s))2

s

) =:
fl(eA). We ignore the errors resulting from scaling the matrix and shifting, as these
operations are done essentially at the scalar level. Then the errors that arise in a scal-
ing and squaring algorithm can be separated into three components (for definiteness
we use the spectral norm):

1. Truncation (approximation) error. This is the error that results if the method

is executed in exact arithmetic (recall Ã = A/2s):

Et = ‖(rk,m(Ã))2
s

− eA‖2.

2. Error in evaluating the Padé approximant:

Ep = ‖fl(rk,m(Ã))− rk,m(Ã)‖2.

3. Error in the squaring phase:

Es = ‖fl(fl(rk,m(Ã))2
s

)− fl(rk,m(Ã))2
s

‖2.

The subscripts in Es and Ep reflect the relevant parameters that determine the
operations. Using the triangular inequality, the error in the computed fl(eA) =

fl(fl(rk,m(Ã))2
s

) can be bounded as

‖eA − fl(eA)‖2 ≤ ‖eA − (rk,m(Ã))2
s

‖2 + ‖(rk,m(Ã))2
s

− fl(eA)‖2
≤ Et + ‖(rk,m(Ã))2

s

− (fl(rk,m(Ã)))2
s

‖2 + ‖(fl(rk,m(Ã)))2
s

− fl(eA)‖2
= Et + ‖(rk,m(Ã))2

s

− fl(rk,m(Ã))2
s

‖2 + Es.(4.1)

1A Matlab implementation of sexpm is available at http://www.opt.mist.i.u-tokyo.ac.jp/

~nakatsukasa/expmpade.htm

10 STEFAN GÜTTEL AND YUJI NAKATSUKASA

By defining B := rk,m(Ã) and B +∆B := fl(rk,m(Ã)), the second term is

‖B2s − (B +∆B)2
s

‖2 . 2s‖∆B‖2 +O(‖∆B‖22),

where we used ‖B‖2 ≈ 1. Since ‖∆B‖2 = ‖Ep‖2, altogether we conclude that

(4.2) ‖eA − fl(eA)‖2 . Et + 2sEp + Es.

Since in sexpm we have s ≤ 4 and hence 2s = O(1), we conclude that for achieving
forward stability it suffices to ensure that Et, Ep, Es are controlled to be O(u‖A‖2).

4.1. Error analysis in the Padé evaluation. The most intricate of the three
sources of error is the evaluation of the Padé approximant, which we examine in detail.

4.1.1. Inversion of ill-conditioned matrices. Evaluating the Padé approxi-
mant at a matrix argument involves matrix inversions. Since the relative error in a
computed matrix inverse M−1 can be as large as O(uκ2(M)) = O(u‖M‖2‖M−1‖2),
care is needed to avoid the inversion of matrices that are too ill-conditioned.

The standard scaling and squaring method chooses the parameters s and m in a
way that guarantees that the quotient matrix in the type (m,m) Padé approximant
is well conditioned [22, p. 240], so that computing its inverse can be done without
severe numerical error. The new method sexpm, however, does not guarantee this. In
fact the denominator matrix can be highly ill-conditioned; see also section 6.2. Here
we shall argue that this still does not affect the forward stability of the method.

Recall from section 2 that the poles of the Padé approximant rk,m are in the right

half-plane. Therefore, denoting by Ã = XΛ̃X−1 an eigenvalue decomposition of Ã,
the inversions that we perform are of the form

(Ã− bI)−1 = X−1(Λ̃− bI)X.

As is well known [21, Ch. 4], the relative error in the computed inverse is proportional
to the condition number of the matrix, so we have

(4.3) ‖fl((Ã− bI)−1)− (Ã− bI)−1‖2 = O(uκ2(Ã− bI)‖(Ã− bI)−1‖2).

We first examine the κ2(Ã− bI) term in (4.3). We have

κ2(Ã− bI) ≤ κ2(X) · κ2(Λ̃− bI).

Note that when A (and hence Ã) is normal the eigenvector matrix X can be taken

as unitary, and so κ2(Ã − bI) = κ2(Λ̃ − bI). In general, Re(b) ≥ 1 in all the Padé
approximants that we employ in Table 3.1: the precise values of bi are 3.2128±4.7731i
and 4.7872 ± 1.5675i when m = 4, and other values give similar results with 0 ≤
Re(bi) = O(1), as can be verified from (2.1) by finding the roots of the denominator

polynomial. Recalling that the matrix Ã is initially shifted so that its eigenvalues lie
in the left half-plane, we have mini |λ̃i − b| ≥ 1, and therefore

(4.4) κ2(Λ̃− bI) = O

(
κ2(X)|λ̃max|
mini |λ̃i − b|

)
= O(κ2(X)|λ̃max|) = O(κ2(X)‖Ã‖2),

which shows that the condition number of the matrix to be inverted is bounded
roughly by κ2(X)‖Ã‖2.

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 11

The ‖(Ã− bI)−1‖2 term in (4.3) can be bounded by κ2(X), again using the fact

mini |λ̃i − b| ≥ 1. Overall we conclude that

(4.5) ‖fl((Ã− bI)−1)− (Ã− bI)−1‖2 = O(uκ2(X)2‖Ã‖2).

Recalling that the acceptable forward error in computing eÃ is at least O(u‖Ã‖2),
we see that the inversions cause error of acceptable magnitude as long as κ2(X) is
moderate.

4.1.2. Subtractive cancellation in the partial fraction form. Having com-
puted the inverses (Ã− biI)−1, another source of error in the evaluation of (3.1) is in
the summation. The potential danger is in subtractive cancellation, which may arise

if an intermediate term during the summation
∑k̃
i=1 ai(Ã − biI)−1 for some k̃ has

much larger norm than ‖rm−1,m(Ã)‖2. In our case ‖(Ã− biI)−1‖2 and ‖rm−1,m(Ã)‖2
are both O(κ2(X)) for all i, so when κ2(X) is moderate, problematic cancellation
occurs only if |ai| � 1 for some i.

This is another crucial benefit of using a low-degree Padé approximant: the
residues ai in the partial fraction (3.1) are all moderate, being less than 300 in abso-
lute value. Therefore the summation causes the computed eA to lose only about two
digits of accuracy, which can be interpreted as an O(100u) error. By contrast, the
standard method makes the partial fraction form prohibitively unstable because the
type (13, 13) Padé approximant involves terms as large as O(108)

Nonetheless, there is one situation in which the use of partial fraction does not
give the best possible numerical accuracy: when ‖A‖2 is small, say ≤ 100, so that
κexp(A) is not ruled out to be O(1), and one may want accuracy better than O(100u).
A cure for this is to use the product form, and our experiments indeed confirm that
this gives improved accuracy when ‖A‖2 is small.

It may be rare that an error of O(100u) is unacceptable, and in any case the
subtractive cancellation error gets outsized by the inherent conditioning κexp(A) for
any ‖A‖2 ≥ 100. In our algorithm we therefore choose to use the partial fraction form
by default, and allow an optional tolerance for the desired accuracy. If the desired
accuracy is smaller than the error expected by subtractive cancellation, we switch to
the product form evaluation.

4.2. Proof of forward stability for normal matrices. We now show that for
near-normal matrices that have no rightmost eigenvalues with large imaginary parts,
the forward stability of the scaling and squaring method is preserved in sexpm .

Our goal is to show that each term Ei on the right-hand side of (4.2) is bounded by
u‖eA‖2κexp(A), which indicates that fl(eA) is computed in a forward stable manner.
By (1.2) we have κexp(A) ≥ ‖A‖2 (in fact for normal matrices this is an equality)
and ‖eA‖2 ≈ 1 (since we deal with the “shifted” matrix A with Re(λ(A)) . 0), so it
suffices to prove that Ei ≤ ciu‖A‖2, where ci is a modest constant.

Theorem 4.1. For a normal matrix A ∈ Cn×n satisfying
∣∣(rk,m(z/2s))2

s − ez
∣∣ ≤

u‖A‖2 for all z ∈ Λ(A − σI), Algorithm 3.1 computes an approximant fl(eA) to the
matrix exponential eA in a forward stable manner, that is,

(4.6)
‖fl(eA)− eA‖2

‖eA‖2
= cnκexpu

for a modest constant cn, which is a low-order polynomial in n but otherwise indepen-
dent of A.

12 STEFAN GÜTTEL AND YUJI NAKATSUKASA

Proof. By (4.1), (4.2) and the fact s ≤ 4, it suffices to prove that Et, Ep and Es
are all bounded by cκexpu. Below we examine each term.

Bounding Et. The approximation error Et is precisely equal to

(4.7) Et = max
z∈Λ(A)

∣∣∣(rk,m(z/2s))2
s

− ez
∣∣∣ ,

as we have κ2(X) = 1 in (2.2). By assumption this is bounded by u‖A‖2 by the choice
of parameters s,m in Table 3.1.

Bounding Ep. The Padé approximant evaluation error depends on the evaluation
scheme and needs careful analysis.

Suppose we use the partial fraction form rm−1,m(Ã) =
∑m
i=1 ai(Ã − biI)−1 as

in (3.1). The evaluation of matrix inverses (Ã − biI)−1 is the primary source of

error here, and it is O(u‖Ã‖2) by (4.5). The summation of the m terms introduces

error O(umaxi ‖(Ã− biI)−1‖2 + 100u), where 100u comes from potential subtractive
cancellations. This is O(u‖A‖2) unless ‖A‖2 = O(1).

A similar argument proves the claim for the product form evaluation, noting that
the involved poles are clearly the same as those in the partial fraction form. For the
product form there is no subtractive cancellation, hence the overall error is O(u‖A‖2)
regardless of ‖A‖2.

Bounding Es. The error in the squaring phase is innocuous because the normality
of A ensures that the hump effect does not occur, hence by the same analysis as in [5],

Es = ‖fl(fl(rk,m(Ã))2
s

)− fl(rk,m(Ã))2
s

‖2 = O(ufl(rk,m(Ã))2
s

) = O(u),

where we used the fact ‖rk,m(Ã)‖2 . 1.

Overall we have shown that Et + Ep + Es ≤ cnu‖A‖2, so by (4.2) we conclude
that sexpm is forward stable for a normal matrix A.

The assumption maxz∈Λ(A)

∣∣(rk,m(z/2s))2
s − ez

∣∣ ≤ u‖A‖2 holds clearly if the
eigenvalues are all real, but as discussed in section 2, it holds much more generally,
unless A has a rightmost eigenvalue with large imaginary part.

As the proof indicates, strictly speaking, for ‖A‖2 . 100 the effect of subtractive
cancellation of O(100u) comes into play with the partial fractions evaluation, and the
product form is necessary if accuracy of O(κexpu) ≈ O(u) is required.

4.3. Nonnormal matrices. For highly nonnormal matrices, for which κ2(X)�
1, the standard scaling and squaring method has not been proven to be forward stable,
and the same applies to sexpm. Numerical experiments suggest that sexpm and expm

usually give comparable accuracy. We briefly discuss the conditioning of κexp(A) for
nonnormal A and argue why one can reasonably expect sexpm to be forward stable.

A crucial component in our algorithm is to take advantage of the lower bound
κexp(A) ≥ ‖A‖ for the condition number in (1.2). For nonnormal matrices, κexp(A)
can be much larger than ‖A‖. For diagonalizable A with eigendecomposition A =
XΛX−1, Moler and Van Loan [28, 41] derive an upper bound to first order in uκ2(X),

(4.8) κexp(A) ≤ O(κ2(X)2‖A‖).

This bound is more informative than the upper bound in (1.2), which is extremely
large when ‖A‖ � 1 and the rightmost eigenvalues of A are O(1) or smaller. The

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 13

bound (4.8) shows that the conditioning of the exponential satisfies ‖A‖2 ≤ κexp(A) .
‖A‖2κ2(X)2, and so we can write

(4.9) κexp(A) = κ2(X)αA‖A‖

for some αA ∈ [0, 2]. In practice κexp(A) can be estimated by the algorithm in [1], and
our experiments suggest that αA = 1 is a typical value, that is, κexp(A) ≈ κ2(X)‖A‖.
Hence the acceptable error of a forward stable algorithm is O(uκ2(X)‖A‖).

A straightforward extension of the proof of Theorem 4.1 to bound Et, Ep and Es
for a nonnormal matrix A gives Et = O(uκ2(X)‖A‖), Ep = O(u(κ2(X))2‖A‖), and

Es = O(umax1≤τ≤s fl(rk,m(Ã))2
τ

). Es can grow if the hump effect occurs. It follows
that sexpm is forward stable if (i) Et, Ep, Es = O(u(κ2(X))αA‖A‖‖eA‖) for αA as in
(4.9), and (ii) no hump effect of factor (κ2(X))αA‖A‖‖eA‖ or more takes place in the
repeated squaring phase.

Recalling that in sexpm overscaling is avoided by always taking s ≤ 4, we therefore
argue that sexpm has potential advantage in stability compared with the standard
algorithm. We discuss the overscaling issue further in section 6.1.

Remark. The standard scaling and squaring algorithm is known to be forward
stable for essentially nonnegative matrices [5], and a natural question is whether this
also applies to sexpm. We are currently unable to give an answer: the difficulty lies
in the fact that the evaluation phase of sexpm involves complex arithmetic. Crucial
to establishing forward stability for essentially non-negative matrices is the fact that
there is no subtractive cancellation in the polynomial evaluation, and unfortunately
this property seems to get lost with sexpm. We leave the stability analysis of sexpm

for essentially nonnegative matrices as an open problem.

5. Computing the action on a vector. Here we consider computing eAb, the
action of the matrix exponential on a vector (or a tall skinny matrix) b ∈ Cn×`. The
goal is to compute eAb without forming eA explicitly, and our method allows this
with no major modification. Using the partial fraction form of rk,m, the action of
rk,m(A) on a vector b is readily computable as

(5.1) rk,m(A)b =

m∑
i=1

ai(A− biI)−1b =

m∑
i=1

aixi,

which corresponds to summing the m solutions to the (block) linear systems (A −
biI)xi = b. We obtain eAb ≈ (rk,m(A))2

s

b by repeating (5.1) 2s(≤ 16) times.

An analogous evaluation is possible using the product form, and as was the case
with computing the whole matrix eA, the product form has slightly better stability
than partial fraction when ‖A‖ = O(100).

Algorithm 5.1 sexpmv: Computing eAb for A ∈ Cn×n and b ∈ Cn×`.
1 Estimate ‖A‖2 and choose s,m from Tables 3.1 and 3.2.
2 Initialize b0 = b.
3 Via partial fraction or product form evaluate

bi = rk,m(A)bi = pk(A)qm(A)−1bi−1, i = 1 : 2s.

4 Output b2s ≈ eAb.

14 STEFAN GÜTTEL AND YUJI NAKATSUKASA

The method requires m ≤ 5 solutions of linear systems, each of which is repeated
2s times where s ≤ 4. Therefore the overall cost is about 2smM ≤ 80M , where M
denotes the cost of solving a linear system. However, it should be noted that the 2s

repetitions of linear system solves are with the same shifted matrices. Hence, if direct
solvers are employed for their solution, LU factorizations need to be computed only
once for each i in (3.1), and can be reused for all 2s repetitions, hence requiring only
m factorizations, where m ≤ 5 is the denominator degree.

The amenability for computing eAb is in stark contrast to the standard method,
which uses direct evaluation to form pk(A)qm(A)−1. This can be overcome by us-
ing the product form (recall that the partial fraction form is highly unstable in the
standard (13, 13) Padé function evaluation because of subtractive cancellation), but
since the scaling parameter s is such that 2s ≈ ‖A‖, the cost is O(2sM) = O(‖A‖M),
which is clearly prohibitive unless ‖A‖ = O(1). Indeed the method in [3] relies on the
Taylor series approximant instead of Padé approximants, and it is efficient only for A
of moderate norms (or more generally when ‖Ak‖1/k � ‖A‖ is moderate for some k),
see Figure 7.7 in the experiments.

The stability results in section 4 for sexpm carry over to the vector problem sexpmv

with essentially the same analysis.

6. Comparison with conventional scaling and squaring and other meth-
ods. We have already highlighted some differences between our sexpm and the stan-
dard expm [23] (or its improved version expm new [2]). Here we discuss further aspects
that contrast the methods.

6.1. Overscaling issue. The great cost saving in our algorithm stems from the
observation that the exponential is negligible in magnitude at eigenvalues sufficiently
far to the left of the rightmost ones (by more than ln 10−16 ' 36.8), making it ac-
ceptable to use scaling parameters s ≤ 4. The issue of overscaling, which refers to an
unnecessarily large s, has long been known as a possible cause for instability in the
scaling and squaring method [2, 10, 24, 28]. Our method almost completely solves
this issue, leading to benefits in stability as discussed in section 4.3 and observed in
our numerical experiments.

The expm new algorithm developed in [2] also attempts to attenuate overscaling,
but from a different standpoint of measuring the nonnormality of A via the quantities
‖Ap‖1/p for p = 1, 2, . . ., which are all bounded by ‖A‖ but can be significantly smaller
for nonnormal matrices. Detecting this can result in much smaller scaling factor
than the conventional expm while maintaining stability in the Padé phase, but for
normal matrices this makes no difference. sexpm reduces scaling based on a rational
approximation viewpoint, and is effective whether or not the matrix is normal.

6.2. On previous arguments to prefer diagonal Padé approximants.
Most existing approaches for computing the matrix exponential via Padé approxi-
mation use diagonal approximants. There are two main reasons for this [28, Sec. 3]:

1. Efficiency. Evaluating an (m,m) Padé approximant can be done at the same
computational cost as for type (m − 1,m). Since a higher-order approxi-
mant is expected to give a better approximation, the diagonal (m,m) Padé
approximant is preferred.

2. Stability. Evaluating a nondiagonal Padé approximant can lead to an ill-
conditioned denominator matrix, leading to inversion of an ill-conditioned
matrix. The denominator matrix is well-conditioned in the standard method.

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 15

We explain why our new method still uses a type (m− 1,m) Padé approximant.
First, regarding efficiency, we have observed that m much smaller than that used by
the standard algorithm is sufficient to maintain the accuracy of the rational approxi-
mant. Put another way, even though near the origin a type (m,m) approximant has
smaller error, in a wider region (the region that contains the eigenvalues) the type
(m − 1,m) approximant gives smaller error. Since an absolute accuracy of O(u‖A‖)
is sufficient (or the best we can hope for), a dramatic reduction in m and s is possible
when the real parts of the eigenvalues vary widely.

Regarding stability, as discussed in section 4.1.1, the condition numbers of the
matrices to be inverted in sexpm are bounded by O(κ2(X)‖A‖2), indicating that the
inversions do not cause error of unacceptable magnitude provided κ2(X) = O(1).

6.3. “Best” rational approximation. We argued that the parameters s and
m in Table 3.1 are sufficient for our accuracy requirements, resulting in the use of a
rational function of much lower degree compared to the choice O(2sm) ≈ 13O(‖A‖2)
in the standard scaling and squaring method. However, our rational approximant has
not necessarily the lowest degree possible to be a sufficient accurate approximation
on some spectral region D of A. It is therefore natural to consider the use of best
rational approximants, like, e.g., the lowest-degree rational function r(z) for which
supz∈D |ez − r(z)| is bounded by O(u‖A‖).

When the matrix has only real eigenvalues, the best rational approximant is a well
studied subject, and the best type (m,m) rational function on (−∞, `] for any ` ≥ 0
is known to have an error O(9.28−m) [34]. The rational function can be computed
numerically (essentially exactly) by the Carathéodory–Fejér method [37, Ch. 20],[38].
In double precision arithmetic m = 13 is sufficient to obtain approximation error O(u)
for ` = 0, and indeed for Hermitian matrices, the use of best rational approximants
to the exponential has been successfully implemented [14],[22, Sec. 10.7.1],[34].

By contrast, for general A with complex eigenvalues, the construction of computa-
tionally practical best or near-best rational approximants is more involved and seems
to have received less attention. This work can be regarded as a first step towards
filling this gap by using a rational function that is much closer to optimal than that of
the standard scaling and squaring method. It is worth noting that the Carathéodory–
Fejér approximation on (−∞, 0] has the property that the error |ez − r(z)| is small if
Re(z) < 0 and |Re(z)| � 1 (see [39] for an error plot). It can be implemented using m
matrix inversions (linear system solves for the eAb problem), but the approximation
error grows quickly as Re(z) becomes positive, and so the choice of the initial shift is
more crucial than in our method. Moreover, the approximation quality deteriorates
rapidly as the imaginary parts of the eigenvalues grow.

6.4. Schur decomposition-based algorithms. Another contender for eA is
the algorithm based on the Schur decomposition A = QTQ∗, commonly called the
Schur–Parlett algorithm [22, Ch. 9]; see [22, Sec. 10.4] for its specialization to eA.

For sexpm, computing the Schur decomposition prior to the algorithm has two
potential benefits: (i) it provides the eigenvalues, which informs us about the optimal
shift σ and whether the rightmost eigenvalues with large imaginary parts are present,
and (ii) the problem essentially reduces to computing eT for the triangular matrix T ,
for which the matrix inversions in (3.1) are stable and efficient. Therefore, when there
is possibility for rightmost eigenvalues with large imaginary parts, we recommend first
computing the Schur decomposition. Furthermore, if the Schur decomposition reveals
the presence of such eigenvalues, we can use one of remedies discussed in section 7.2.

16 STEFAN GÜTTEL AND YUJI NAKATSUKASA

6.5. Rational Krylov methods. These methods are applicable for the problem
of computing eAb, when b ∈ Cn×1. They are based on extracting an approximation
to eAb from a d-dimensional rational Krylov space [33]

Qd(A, b) = span
{

(A− b1I)−1b, (A− b1I)−2b, . . . , (A− b1I)−s1b, (A− b2I)−1b,

(A− b2I)−2b, . . . , (A− b2I)−s2b, . . . , (A− bmI)−1b, . . . , (A− bmI)−smb
}
,

defined for a set of distinct shifts b1, b2, . . . , bm ∈ C of multiplicities s1, s2, . . . , sm,
with d = s1 + s2 + · · ·+ sm. The popular rational Arnoldi method for extracting an
approximation fd ≈ eAb from Qd(A, b) proceeds as follows: compute an orthonormal
basis Vd = [v1, v2, . . . , vd] ∈ Cn×d of Qd(A, b), and define fd = Vde

AdV ∗d b, where
Ad = V ∗d AVd typically is much smaller than A. The choice of optimal shifts for ra-
tional Krylov spaces for the approximation of matrix functions is an active research
area. It is important to note here that the approximant (rm−1,m(A/2s))2

s

b com-
puted by our method sexpmv is an element of Qd(A, b), provided that the shifts
and multiplicities have been chosen identical to the poles of the underlying squared
Padé approximant. Another popular parameter choice is to use just a single repeated
shift b1 with multiplicity s1 = d. The resulting method is then closely related to the
shift-and-invert Arnoldi method and so-called restricted-denominator rational approx-
imants [29]. For a Hermitian negative definite matrix A an optimal choice of b1 based
on uniform scalar rational approximation of ez on (−∞, 0] has been proposed in [40].
For further information about the choice of parameters in rational Krylov methods
we refer to [17] and the references therein.

In view of the above discussion it is justified to interpret sexpmv as a rational
Krylov method, however, without the need for orthogonalization of rational Krylov
basis vectors or the evaluation of eAd . Moreover, sexpmv is non-iterative in nature
and has the choice of the parameters bi and si built into it. It can therefore be viewed
as a black-box method. One advantage of the rational Arnoldi method over sexpmv is
its ability to approximate etAb for multiple time parameters t from the same rational
Krylov space, which is of interest for example in geophysical simulations [8, 47]. In this
case Vd is constructed only once for extracting multiple time-dependent approximants
fd(t) = Vde

tAdV ∗d b. Although sexpmv is not directly suited for such problems, it can
still be used within the rational Arnoldi method for the evaluation of the small matrix
exponentials etAd . In this case the estimation of ‖tAd‖2 = t‖Ad‖2 and the potential
shifting need to be done only once.

Another advantage of the rational (and polynomial) Arnoldi method, described
and analyzed in [25, 6], is its potential for spectral adaptivity. This means that iso-
lated eigenvalues are implicitly deflated by some of the eigenvalues of Ad (the so-called
rational Ritz values) and hence do not contribute to the approximation error. While
such effects can lead to considerable convergence speedup of the rational Arnoldi
method, they are matrix-dependent and not well-understood for non-Hermitian ma-
trices. Besides that, the rational Arnoldi method is not straightforwardly parallelized
[35] and has a higher memory consumption (for storing of Vd) than sexpmv. We will
compare sexpmv with a rational Krylov method in section 7.3.2.

7. Numerical experiments. All experiments are conducted in Matlab ver-
sion R2013a on a Core i7 machine with 16GB RAM. We refer to the spread of A as
the largest distance between any two eigenvalues. We use random numbers generated
by randn in Matlab, seeded with rng(0) for reproducibility. We test sexpm on a
collection of problems of dimensions ranging from 10 to above 104. Although matrices

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 17

of dimension as small as 10 are not our main focus, we are able to compute the “ex-
act” exponentials of such matrices using Matlab’s variable precision features. We
compare sexpm with Matlab’s expm and its improved version expm new [2].

In our experiments the shifts are chosen so that the rightmost eigenvalue is 0.
The results are nearly identical as long as the rightmost eigenvalue is O(1), as we
demonstrate in section 7.2.2. To obtain an estimate of ‖A‖2, we always use the
Matlab command normest(A,0.3). Such rough estimate is sufficient for choosing
the parameters and the cost for the estimation is typically negligible.

7.1. Computing the full matrix exponential eA.

7.1.1. Varying eigenvalue spread. We generate fifty test matricesA = X−1ΛX,
where X ∈ C50×50 is fixed and obtained by randsvd with κ2(X) = 10, and Λ forms
a geometric sequence so that the eigenvalues have widely varying spread 10i/5 for
i = 1 : 50 with the rightmost eigenvalue 0. We set the imaginary parts of each
eigenvalue to be randn/20 times the real part.

Figure 7.1 shows the errors and costs, in which the x-labels represent the matrices,
arranged in increasing order of κexp(A). The “exact” solution eA was computed by
Matlab’s variable precision arithmetic vpa at 32 digit precision. Here and below
the solid black lines show uκexp(A), a measure of the error accepted from a forward
stable algorithm. We computed κexp(A) by the code funm condest1 available at [20]
(see [1] for the algorithm). We also show u‖A‖2, which by (1.2) is a lower bound for
κexp(A) up to the difference in the choice of norms.

10
0

10
2

10
4

10
6

10
8

10
10

10
−15

10
−10

10
−5

10
0

spread

er
ro

r

expm
expm_new
sexpm
u||A||

10
0

10
2

10
4

10
6

10
8

10
10

0

20

40

60

80

fl
o
p
s/
n
3

spread

expm
expm_new
sexpm

Fig. 7.1. Results with matrices with near-real eigenvalues. Left: error ‖fl(eA)− eA‖F /‖eA‖F ,
along with the accepted error from a forward stable algorithm uκexp(A) (solid black line). Right:
arithmetic cost/n3.

The error plot illustrates that all the methods perform in a forward stable manner,
except when ‖A‖2 is O(100). The error plot of sexpm shows a stagnation for matrices
40–50 at about 10−13, which have small norms. This is due to subtractive cancellation
effects, as described in section 4.1.2. As we explained there, this could be cured by
using the product form instead of partial fractions, at the expense of increased cost.

The error plot of sexpm exhibits small jumps, which correspond to the values of
‖A‖2 at which the Padé parameters are reduced. One may wonder what happens if
the parameters are fixed at the largest degree (4, 5) Padé. With such choice the errors
become nearly identical to those of expm and expm new. However, sexpm chooses the
smallest s and m to reduce the cost without losing its forward stability (as the errors
are never significantly above the black solid line uκexp(A)).

18 STEFAN GÜTTEL AND YUJI NAKATSUKASA

The cost plot shows that sexpm is much more efficient than expm and expm new

when ‖A‖2 � 1.

7.1.2. Varying condition number of eigenvector matrix. Here we generate
test matrices A = X−1ΛX of size n = 50, where now Λ is fixed to have spread 100 and
X is obtained by gallery(’randsvd’,n,k) with widely varying condition numbers
k taking logspaced values between 1 and 106.

10
0

10
2

10
4

10
6

10
−15

10
−10

10
−5

10
0

κ2(X)

er
ro

r

 expm
expm_new
sexpm
u||A||
u||A||κ

2
(X)

10
0

10
2

10
4

10
6

10

20

30

40

50

60

fl
o
p
s/
n
3

κ2(X)

expm
expm_new
sexpm

Fig. 7.2. Results with matrices with real eigenvalues. Left: error ‖fl(eA)−eA‖F /‖eA‖F , along
with the accepted error from a forward stable algorithm uκexp(A) (solid line), together with u‖A‖2
(dashed line) and u‖A‖2κ2(X) (dash-dotted line). Right: arithmetic cost/n3.

The error plot also shows u‖A‖2κ2(X), and observe the remarkable agreement
between the condition number κexp(A) and u‖A‖2κ2(X). Recalling from (4.9) that
‖A‖2 ≤ κexp(A) . ‖A‖2κ2(X)2, these experiments suggest that in practice αA ≈ 1 is
typically observed. Recalling the discussion in section 4.3, here we typically observe
‖eA‖ ≈ κ2(X), and so αA & 1 would indicate the forward stability of sexpm for
diagonalizable matrices, provided no severe hump effect occurs. In this typical-case
scenario sexpm is indeed behaving in a forward stable manner. We do not have a
precise explanation for this observation, and leave it as an open problem.

7.1.3. Larger matrices. The previous experiments showed the costs in flops
as the matrices were too small to measure runtime reliably. We now present run-
time results for matrices of size n = 2000. The test matrices A = X−1ΛX have
varying spread as described in section 7.1.1 and fixed eigenvectors with κ2(X) = 10.
Here computing the ’exact’ eA via variable precision arithmetic is infeasible, so we
compute X−1eΛX instead. The results are given in Figure 7.3, in which we also
show the results with the “naive” diagonalization-based method, which computes the
eigendecomposition A = X−1ΛX via Matlab’s eig, and then takes X−1eΛX.

When ‖A‖2 � 1, sexpm is clearly the most efficient method giving about the
same accuracy as the others, which all have a relative efficiency worsening with ‖A‖2.

Conversely, when ‖A‖2 = O(1), the performance of the three methods does not
differ much although sexpm is slightly slower than the other two. This is because
when ‖A‖2 is small the standard methods also use a small scaling parameter and a
low-degree Padé approximant, while sexpm involves complex arithmetic and does not
employ an efficient scheme to evaluate the low-order Padé approximant.

7.1.4. Test matrices from Matrix Computation Toolbox. The previous
experiments represented cases where sexpm is expected to work well, as those matrices

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 19

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

spread

er
ro

r

expm
expm_new
sexpm
diag
u||A||

10
0

10
5

10
10

10
15

0

10

20

30

40

50

tim
e(

s)

spread

 expm
expm_new
sexpm
diag

Fig. 7.3. 2000× 2000 matrices of varying spread. Left: Error. Right: Runtime(s).

are diagonalizable and have eigenvalues with small imaginary parts. We next test it
with 10×10 matrices generated with the function matrix of the Matrix Computation
Toolbox [19]. This set of test matrices includes difficult matrices such as those with
nontrivial Jordan blocks, κ2(A) � 1, or eigenvalues with large complex parts. The
results are given in Figure 7.4.

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

er
ro

r

expm
expm_new
sexpm

0 10 20 30 40 50
0

10

20

30

40

50

60

fl
o
p
s/
n
3

expm
expm_new
sexpm

Fig. 7.4. Test matrices from the toolbox. Left: error ‖fl(eA)−eA‖F /‖eA‖F . Right: flop count
(accounting for O(n3) terms only) divided by n3.

Our method sexpm works fine for all matrices but one, for which it clearly gives
an unstable result. We will discuss this problematic case in section 7.2.

Here again, using the product form instead of the partial fraction form reduces
the errors of sexpm from about 10−13 to 10−15.

7.2. Dealing with rightmost eigenvalues with large imaginary parts.
The reason why sexpm failed for matrix 15 in the previous test is that this matrix
has rightmost eigenvalues with widely varying imaginary parts as shown in Figure 7.5
(left), and it is impossible to approximate ez via low-degree rational functions across
such a region. This is an inherent difficulty for any method based on (relatively)
low-degree rational approximation, and sexpm is no exception. For example, if (after
shifting so that Re(λ(A)) ≤ 0) A has an eigenvalue at λ0 = 2000πi, then in order to
approximate the exponential in a convex region that contains both the origin and λ0,
the rational approximation needs to be of type (m,n) where m+ n ≥ 2000.

20 STEFAN GÜTTEL AND YUJI NAKATSUKASA

0 2 4 6 8
−30

−20

−10

0

10

20

30

Re(λ)

Im
(λ

)

0 2 4 6 8
−30

−20

−10

0

10

20

30

Re(λ)

Im
(λ

)

Fig. 7.5. Left: eigenvalues of test matrix 15 for which sexpm fails. Note the presence of large
imaginary parts in the rightmost eigenvalues. Right: same plot but with reduced imaginary parts of
the rightmost eigenvalues, shown as red crosses. For this matrix the accuracy of sexpm is ≈ 10−13.
The x, y-axes are not scaled equally in these plots.

Here we mention three possible remedies for this difficulty. The first two are based
on the fact that if A = Xdiag(λ1, . . . , λn)X−1, then eA is equal to eB for any matrix
B of the form B = A+ 2πiXdiag(k1, . . . , kn)X−1, where ki are integers.

Computing such B can be done as follows. Suppose that yi and xi are left
and right eigenvectors of A corresponding to a simple eigenvalue λi, i.e., Axi =
λixi, y

∗
i A = λiy

∗
i . Then the matrix

(7.1) A+∆λi
xiy
∗
i

y∗i xi

has the same eigenvalues as A except that λi is moved to λi+∆λi, and the eigenvectors
are all preserved. Verifying this is easy using the orthogonality of left and right
eigenvectors corresponding to distinct eigenvalues: y∗j xi = 0 if λi 6= λj . The above
formula is well-defined so long as λi is a simple eigenvalue, for then y∗i xi 6= 0.

For the purpose of our algorithm, it is desirable to find ∆λi = 2πkii such that the
rightmost eigenvalues of B have small imaginary parts. Shifting them by multiples of
2πi we can concentrate them within the strip (−π, π]. By (7.1), this can be done by
computing the rightmost eigenvalues and their corresponding eigenvectors, both left
and right. For example, the right plot of Figure 7.5 shows the eigenvalues after moving
four rightmost eigenvalues to within the strip (−π, π]. This involves computing four
eigenpairs, and improves the accuracy of sexpm to about 10−13 (we get ≈ 10−11

accuracy by moving two rightmost eigenvalues).
This process is effective when there are just a few rightmost eigenvalues with

large imaginary parts, and computing their corresponding left and right eigenvectors
is feasible (for example via a sparse eigenvalue solver, or from the Schur decomposition
if available).

The second remedy is based on recent work by Aprahamian and Higham [4] which
investigates the matrix unwinding function U(A), the matrix analogue of the scalar
unwinding number, and shows that the exponentials of A and A − 2πiU(A) are the
same, and the imaginary parts of the eigenvalues of A − 2πiU(A) lie in the interval
(−π, π]. This effectively carries out the strategy just described for all eigenvalues. If
we had an efficient method to compute U(A), computing the exponential of any A
reduces to computing the exponential of a matrix whose eigenvalues have imaginary
parts bounded by π in absolute value, leading to an ideal situation for sexpm . A
similar idea was implemented by Ng [31]. The algorithm in [4] for computing U(A) is

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 21

based on the Schur–Parlett recurrence and requires at least 28n3 flops, making this
method of initial argument reduction the dominant cost. Its flop count will only be
competitive with the standard expm if ‖A‖ ≥ O(214), as each increase in scaling s
results in 2n3 additional flops.

The third and probably simplest remedy is to use sexpm for computing eA/s
′

and then form (eA/s
′
)s

′
. This corresponds to implicitly increasing the scaling factor;

alternatively we can take s larger until the leftmost eigenvalues have imaginary parts
O(1) (but ‖A/2s‖ � 1 is still allowed). In the vector case one may run sexpmv s′ times,
effectively computing eA/s

′
(· · · (eA/s′(eA/s′b))). As this increases the computational

cost by the factor s′, it is only practical for moderate s′.

7.2.1. A problem from Cleve Moler’s blog. Another difficult problem where
expm gives completely inaccurate results with error 1018 is discussed by Moler [27].
This is due to overscaling, and expm new resolves this problem giving error ≈ 2.2 ×
10−13. This matrix has norm ‖A‖2 ≈ 2.8× 1010, and sexpm yields error ≈ 9.5× 10−5

with scaling parameter s = 2 and a type (3, 4) Padé approximant, which is still a
forward stable result:

>> A = [0 , 1/100000000 , 0 ; ...

-60200000000/3 , -3 , 20000000000 ; ...

200/3 , 0 , -200/3];

>> sexpm(A)

ans =

4.468493164532867e-01 1.540441841318744e-09 4.628116081523461e-01

-5.742573897307440e+06 -1.528323594233649e-02 -4.527038378149220e+06

4.477214802251823e-01 1.542705360507822e-09 4.634821497409599e-01

In experiments not reported here we have observed that sexpm would give an error
of 1.8 × 10−12 if we choose s = 4, but as discussed in the previous sections, this is
artificially accurate for a matrix of such large norm.

7.2.2. Accuracy dependence on the shift parameter. As noted in sec-
tion 1.1, we employ an initial shifting A← A− σI so that the rightmost eigenvalues
of A have real part approximately 0. This requires an estimate or prior knowledge of
the rightmost eigenvalues of the matrix, which may not be readily available. Here we
examine the effect of misestimating σ on the accuracy of the computed eA.

We take n = 100 and fixed the eigenvector matrix to have κ2(X) = 103. The
eigenvalues have a spread of 10i for i = 3 : 7, with the rightmost eigenvalue being 0.
This leads to 5 matrices Ai with norms ‖Ai‖2 ≈ 200× 10i. We vary σ over take 100
equispaced points on [−10, 10] and run sexpm on Ai−σI. Figure 7.6 shows the errors
of the computed solutions.

Observe that for each i, the error does not deteriorate until |σ| ' 3. This in-
dicates that the shift σ does not have to be an accurate estimate of the rightmost
eigenvalue, but an O(2s) = O(1) estimate is sufficient. Moreover, due to the condi-
tioning κexp(A) ≥ ‖A‖, a lower accuracy in σ becomes acceptable when ‖A‖ � 1.

7.3. Vector problem. We now test sexpmv for computing the action on a vector
eAb. For this problem we mainly compare with expmv from [3].

7.3.1. Varying spread. We take test matrices as in section 7.1.1. The right
part of Figure 7.7 illustrates the cost in logarithmic scale as follows: For sexpmv and
expmv, it shows the number of matrix-vector products and linear system solves. For

22 STEFAN GÜTTEL AND YUJI NAKATSUKASA

−10 −5 0 5 10

10
−10

10
−5

10
0

rightmost eigenvalue after shift

||A||

2
=2e+09

||A||
2
=2e+08

||A||
2
=2e+07

||A||
2
=2e+06

||A||
2
=2e+05

Fig. 7.6. Errors as the initial shift is varied.

expm new, it shows the number of total matrix-matrix multiplications and inversions
(this is for reference only as full matrix inversions are to be avoided for computing
eAb). We recall that only m ≤ 4 LU factorizations are required for sexpmv.

While matrix-vector multiplication is usually much cheaper than solving a linear
system (depending on the structure or sparsity of A), the cost of expmv generally
grows rapidly with ‖A‖, while that of sexpmv does not. Hence sexpmv is recommended
whenever ‖A‖ � 1 and solving shifted linear systems (A− bI)x = b is feasible.

10
0

10
5

10
10

10
−15

10
−10

10
−5

10
0

spread

er
ro

r

expmv
expm_new
sexpmv
u||A||

10
0

10
5

10
10

10
2

10
4

spread

(c
os

t)

expmv
expm_new
sexpmv

Fig. 7.7. Left: error ‖fl(eAb)−eAb‖F /(‖eA‖F ‖b‖2). Right: for expm new, the number of total
matrix-matrix multiplications and inversions. For sexpmv and expmv, the number of matrix-vector
products and linear system solves. Note the logarithmic scale.

7.3.2. A convection–diffusion problem. We consider the convection–diffusion
problem described in [36], which has become a popular benchmark for discretiza-
tions of convection-dominated problems. The problem involves the computation of
exp(−M−1K)b, where {K,M} ∈ Rn×n are finite element matrices of size n = 2912
(these matrices have been created for a similar test in [16, sec. 9.3]). The gener-
alized eigenvalues of (K,M) are shown on the left of Figure 7.8. They all lie in
the left half-plane. It is straightforward to modify sexpmv to deal with a matrix
A = −M−1K without inverting M by noting that (A − biI)x = b is equivalent to
(K + biM)x = Mb. In all reported timings we reuse matrix LU factorizations of
(K + biM) whenever possible.

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 23

Table 7.1
Comparison of different methods for the convection–diffusion problem.

runtime relative error

expmnew*b 38 2.5e-13
expmv × ×
sexpmv 0.2 1.6e-10

sexpmv (x2) 0.4 8.1e-13
rat krylov (all shifts bi = 10) 0.9 1.3e-10
rat krylov (all shifts bi = 100) 0.9 2.9e-12

rat krylov (Padé shifts) 0.6 1.0e-12

The runtimes and relative errors ‖eAb−fl(eAb)‖2/‖eAb‖2 achieved by the tested
methods are shown in Table 7.1. Here expmv is not efficient because ‖A‖2 = ‖M−1K‖2 ≈
1.76 ·104 � 1, balancing does not reduce the norm, and the quantity ‖Ap‖1/p2 does not
decrease much as p grows. The function expmnew*b computes the whole matrix eA

and hence is much slower than sexpmv for this problem. On the other hand, sexpmv
gives slightly less accuracy than expmnew*b. This is due to the presence of eigenvalues
≈ −11.96 ± 18.64i. This issue can be resolved by any of the techniques discussed in
section 7.2. We have tried the third technique which is to effectively halve the imag-
inary parts by using the identity eAb = eA/2(eA/2b); this roughly doubles the cost
but gives an accurate solution as Table 7.1 shows.

We also compare with the rational Arnoldi method (see section 6.5) using the
orthogonalization algorithm rat krylov implemented in the Rational Krylov Tool-
box [7]. We try three different choices for the shift parameters bi. The first and second
choices correspond to the shift-and-invert Arnoldi method with constant shifts bi = 10
or bi = 100 (i = 1, . . . , 64), respectively. In the third choice we use as shifts the
64 poles of the scaled-and-squared Padé approximant rk,m(z/2s)2

s

with parameters
k = 3, m = 4, and s = 4. These are exactly the parameters employed by sexpmv for
this problem. With this choice of shift parameters, the vector rk,m(A/2s)2

s

b com-
puted by sexpm will be an element of the rational Krylov space Q64(A, b). Note from
Table 7.1 that rat krylov is slightly faster with the Padé poles than with the con-
stant choice of poles. Although in the latter case only one matrix factorization of the
real matrix (K−bM) is required, and in the former case two complex-valued matrices
(K − b1M) and (K − b2M) need to be factorized, rat krylov can exploit that the
Padé shifts appear in complex conjugate pairs. This effectively halves the number of
required linear system solves to 32.

The convergence of the three rational Arnoldi variants is shown on the right of
Figure 7.8. It is interesting to see that both the constant choice bi = 100 and the
Padé shifts require almost the full 64 iterations to reach the stagnation accuracy. We
do not claim that bi = 100 is an optimal choice for a single shift, but by varying
this shift manually we could not identify a choice that would lead to much faster
convergence. This exemplifies the difficulty encountered with rational Krylov methods
when choosing the shift parameters (at least for non-Hermitian A), and also shows that
our subdiagonal Padé approximant is good in the sense that it is not outperformed by
the shift-and-invert Arnoldi method. In terms of timings shown in Table 7.1, sexpmv is
in fact slightly faster than rat krylov as it does not require vector orthogonalizations.

8. Conclusion. By reexamining the rational approximant employed by the scal-
ing and squaring method, we developed a new method sexpm for computing eA and

24 STEFAN GÜTTEL AND YUJI NAKATSUKASA

−10
4

−10
2

−10
0

−60

−40

−20

0

20

40

60
generalized eigenvalues of (K,M)

0 10 20 30 40 50 60

10
−10

10
−5

10
0

dimension of rational Krylov space

re
la

tiv
e

er
ro

r

all shifts = 10
all shifts = 100
Pade shifts

Fig. 7.8. Left: generalized eigenvalues of (K,M) for the convection–diffusion problem. Right:
convergence of the rational Arnoldi method for three different choices of the shift parameters.

eAb based on subdiagonal Padé approximants. sexpm and its vector variant sexpmv

are effective when the rightmost eigenvalues do not have widely varying imaginary
parts, and is efficient especially when ‖A‖ � 1. In Table 8.1 we summarize the
recommended algorithm depending on (i) whether n is large (so a Schur decomposi-
tion is infeasible) and (ii) whether |Im(eig(A))| � 1 or not (or more specifically the
imaginary parts of the rightmost eigenvalues).

Table 8.1
Recommended algorithm for eA depending on size and |Im(eig(A))| of the rightmost eigenvalues.

|Im(eig(A))| small |Im(eig(A))| large

n small to medium sexpm or Schur+sexpm reduce + sexpm or Schur–Parlett
n large sexpm reduce + sexpm

We established the forward stability of our algorithm for normal matrices. Our
experiments indicated that it performs in a forward stable manner for a variety of
nonnormal test matrices, although a precise statement is an open problem.

Acknowledgements. We thank Mary Aprahamian and Nick Higham for read-
ing the manuscript and providing many helpful suggestions. We also thank the two
referees, as well as Nick Trefethen and Charles Van Loan for their insightful comments,
and Sam Relton for his help with the condition number estimation.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Computing the Fréchet derivative of the matrix exponen-
tial, with an application to condition number estimation, SIAM J. Matrix Anal. Appl., 30
(2009), pp. 1639–1657.

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[3] , Computing the action of the matrix exponential, with an application to exponential
integrators, SIAM J. Sci. Comp., 33 (2011), pp. 488–511.

[4] M. Aprahamian and N. J. Higham, The matrix unwinding function, with an application to
computing the matrix exponential, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 88–109.

[5] M. Arioli, B. Codenotti, and C. Fassino, The Padé method for computing the matrix
exponential, Linear Algebra Appl., 240 (1996), pp. 111–130.

[6] B. Beckermann and S. Güttel, Superlinear convergence of the rational Arnoldi method for
the approximation of matrix functions, Numer. Math., 121 (2012), pp. 205–236.

SUBDIAGONAL PADÉ FOR THE MATRIX EXPONENTIAL 25

[7] M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB, MIMS EPrint 2014.56,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2014.
Available for download at http://guettel.com/rktoolbox/.

[8] R.-U. Börner, O. G. Ernst, and S. Güttel, Three-dimensional transient electromagnetic
modeling using rational Krylov methods, Geophys. J. Int., 202 (2015), pp. 2025–2043.

[9] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Func. Anal., 244
(2007), pp. 668–690.

[10] L. Dieci and A. Papini, Padé approximation for the exponential of a block triangular matrix,
Linear Algebra Appl., 308 (2000), pp. 183–202.

[11] , Conditioning of the exponential of a block triangular matrix, Numer. Algorithms, 28
(2001), pp. 137–150.

[12] H. C. Elman and M. Wu, Lyapunov inverse iteration for computing a few rightmost eigenval-
ues of large generalized eigenvalue problems, Tech. Report TR-5009, University of Mary-
land Department of Computer Science, 2012.

[13] W. Fair and Y. L. Luke, Padé approximations to the operator exponential, Numer. Math., 14
(1970), pp. 379–382.

[14] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approxima-
tion methods, SIAM J. Sci. Stat. Comp., 13 (1992), pp. 1236–1264.

[15] V. Grimm, Resolvent Krylov subspace approximation to operator functions, BIT, 52 (2012),
pp. 639–659.

[16] S. Güttel, Rational Krylov Methods for Operator Functions, PhD thesis, TU Bergakademie
Freiberg, Germany, 2010.

[17] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and opti-
mal pole selection, GAMM-Mitt., 36 (2013), pp. 8–31.

[18] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations, vol. 2,
Springer, 1991.

[19] N. J. Higham, The Matrix Computation Toolbox. Available online at http://www.ma.man.ac.

uk/~higham/mctoolbox.
[20] , The Matrix Function Toolbox. http://www.ma.man.ac.uk/~higham/mftoolbox.
[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, USA,

second ed., 2002.
[22] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA,

USA, 2008.
[23] , The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51

(2009), pp. 747–764.
[24] C. S. Kenney and A. J. Laub, A Schur–Fréchet algorithm for computing the logarithm and

exponential of a matrix, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 640–663.
[25] L. Knizhnerman, Adaptation of the Lanczos and Arnoldi methods to the spectrum, or why the

two Krylov subspace methods are powerful, Chebyshev Digest, 3 (2002), pp. 141–164.
[26] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost eigenval-

ues of large sparse non-symmetric eigenvalue problems, IMA J. Numer. Anal., 16 (1996),
pp. 297–346.

[27] C. Moler, A balancing act for the matrix exponential, July 2012. http://blogs.mathworks.

com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/.
[28] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,

twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.
[29] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44

(2004), pp. 595–615.
[30] M. Mori, Approximation of exponential function of a matrix by continued fraction expansion,

Publications of the Research Institute for Mathematical Sciences, 10 (1974), pp. 257–269.
[31] K. C. Ng, Contributions to the Computation of the Matrix Exponential, PhD thesis, University

of California, Berkeley, 1984.
[32] P. Novati, Using the restricted-denominator rational Arnoldi method for exponential integra-

tors, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1537–1558.
[33] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, IMA Vol. Math.

Appl., 60 (1994), pp. 149–164.
[34] T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integra-

tors via Carathéodory–Fejér approximation and contour integrals, Electron. Trans. Numer.
Anal, 29 (2007), pp. 1–18.

[35] D. Skoogh, A parallel rational Krylov algorithm for eigenvalue computations, in Applied Paral-
lel Computing Large Scale Scientific and Industrial Problems, B. K̊agström, J. Dongarra,
E. Elmroth, and J. Wasniewski, eds., vol. 1541 of Lecture Notes in Computer Science,

26 STEFAN GÜTTEL AND YUJI NAKATSUKASA

Springer Berlin Heidelberg, 1998, pp. 521–526.
[36] R. M. Smith and A. G. Hutton, The numerical treatment of advection: A performance

comparison of current methods, Numer. Heat Transfer, 5 (1982), pp. 439–461.
[37] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
[38] L. N. Trefethen and M. H. Gutknecht, The Carathéodory-Fejér method for real rational

approximation, SIAM J. Numer. Anal., 20 (1983), pp. 420–436.
[39] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational

approximations, BIT, 46 (2006), pp. 653–670.
[40] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix

exponential, SIAM J. Sci. Comp., 27 (2006), pp. 1438–1457.
[41] C. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977),

pp. 971–981.
[42] H. Van Rossum, On the poles of Padé approximations to ez , Nieuw Archief voor Wiskunde,

19 (1971), p. 37.
[43] R. S. Varga, Matrix Iterative Analysis, vol. 27, Springer, 2009.
[44] G. Wanner, E. Hairer, and S. Nørsett, Order stars and stability theorems, BIT, 18 (1978),

pp. 475–489.
[45] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM

J. Numer. Anal., 14 (1977), pp. 600–610.
[46] J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing

the Bromwich integral, Math. Comp., 76 (2007), pp. 1341–1356.
[47] M. Zaslavsky, V. Druskin, and L. Knizhnerman, Solution of 3D time-domain electromag-

netic problems using optimal subspace projection, Geophysics, 76 (2011), pp. F339–F351.

