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EIGENVECTOR ERROR BOUND AND PERTURBATION FOR
POLYNOMIAL AND RATIONAL EIGENVALUE PROBLEMS

YUJI NAKATSUKASA∗ AND FRANÇOISE TISSEUR†

Abstract. A computed approximate eigenpair (λ̂∗, x̂) of a polynomial eigenvalue problem

P (λ)x = 0 is usually considered acceptable if the normalized residual P (λ̂∗)x̂ is small, as it in-
dicates the computed solution has a small backward error. The error in the approximate eigenvalue
λ̂∗ can be bounded for example as the error of λ̂∗ as an eigenvalue of a linearization of P . However,
no previous result exists that rigorously bound the error in the computed eigenvector x̂. We derive
a posteriori upper bounds for the angle between x̂ and an exact eigenvector x of P (λ) by showing
that the desired angle ∠(x̂, x) is bounded by ∠(ŷ, y), where y is an exact eigenvectors of a lineariza-

tion and ŷ is its approximation, constructed using x̂ and λ̂∗. The result extends to other nonlinear
eigenvalue problems such as rational matrix eigenproblems, and the bounds can be obtained not
only from linearizations but also from other formulations such as quadratifications and `-ifications.
This work shows that just like for linear eigenvalue problems, the eigenvector error is proportional
to the residual and inversely proportional to the separation between the eigenvalues of P (λ). One
implication of our result is that an eigenvector can be computed accurately even when it corresponds
to several distinct eigenvalues.

Key words. polynomial eigenvalue problem, eigenvector, error bounds, perturbation, nonlinear
eigenvalue problem, rational eigenvalue problem, linearization, quadratification, `-ification

AMS subject classifications. 15A18, 15A22, 65F15

1. Introduction. Polynomial eigenvalue problems P (λ)x = 0 where

P (λ) =

k∑
i=0

λiAi, Ai ∈ Cn×n (1.1)

arise in many areas of scientific computing. A pair (λ∗, x) with x 6= 0 is called an
eigenpair if P (λ∗)x = 0. A number of numerical methods for solving such problems are
known, such as forming a companion linearization and invoking standard algorithms
for linear eigenproblems [10, 20, 31], Jacobi-Davidson type methods [25], and Krylov
subspace methods [2, 22].

We are concerned with quantifying the errors in a computed eigenpair (λ̂∗, x̂) that

approximates an exact eigenpair (λ∗, x), such that the residual r := P (λ̂∗)x̂ is small
but nonzero. In this paper we focus on the forward error of the eigenvector measured
by the angle ∠(x, x̂) rather than the backward errors as discussed in [30]. By angle
between two nonzero vectors x and x̂, we mean

∠(x, x̂) = cos−1 |x̂∗x|
‖x‖2‖x̂‖2

For eigenvalues, bounding the error in λ̂∗ can be done by regarding λ̂∗ as an ap-
proximate eigenvalue of a linearization and then invoke well-established eigenvalue
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perturbation for linear problems [27]. For eigenvectors, however, such techniques can-
not be used directly because the eigenvector y for a linearization is not equal to the
eigenvector x of P (λ).

The main result of this paper is that the error ∠(x̂, x) of an approximate eigen-
vector x̂ can nonetheless be bounded rigorously and accurately by the error ∠(ŷ, y)
for an appropriately constructed approximate eigenvector ŷ of a linearization (and
more general reductions of P (λ), as we explain in Section 2). Bounding ∠(ŷ, y) can
then be done by applying existing perturbation theory for linear eigenproblems.

Previous work exist on the sensitivity and condition number of eigenvectors of
matrix polynomials [4, 7]. However, such studies have dealt only with first-order per-
turbation analysis, leading to the condition numbers of the eigenvector. The resulting
first-order bounds are not applicable to give rigorous error bounds for x̂ in a practical
setting in which the residual r is small but not infinitesimally so. The bounds we
derive are simple involving only the residual and a quantity that measures the sep-
aration between eigenvalues, often denoted “sep”. These are precisely the quantities
used to bound eigenvector errors for linear eigenproblems.

There are infinitely many linearizations of a matrix polynomial P (λ), and many
types that can be constructed explicitly from the coefficients of P (λ) have been pro-
posed. For the standard companion linearization, and more generally for the L1

linearizations introduced in [20], the corresponding eigenvector of L(λ) such that
L(λ)y = 0 has the Vandermonde structure

y =


λk−1x
λk−2x

...
λx
x

 =


λk−1

λk−2

...
λ
1

⊗ x, (1.2)

where ⊗ denotes the Kronecker product [11, § 1.3.6], [14, App. B].

A simple but key result of this paper is that for an approximate (computed)

eigenpair (λ̂∗, x̂) of P (λ), the accuracy of x̂, measured by the angle ∠(x, x̂) between
x and an exact eigenvector x, is at least as good as that of ŷ as an approximation to
an exact eigenvector y of a linearization L(λ), that is,

∠(x, x̂) ≤ ∠(y, ŷ). (1.3)

Here ŷ is defined using the computed pair (λ̂∗, x̂) so as to inherit the Vandermonde
form that y has in (1.2):

ŷ = [λ̂k−1
∗ , λ̂k−2

∗ , . . . , λ̂∗, 1]T ⊗ x̂. (1.4)

The inequality (1.3) shows that an error bound of a computed eigenvector x̂ of
P (λ) can be obtained by quantifying the error of ŷ as an eigenvector of the linearization
L(λ), and bounding ∠(y, ŷ) can be done using classical results on eigenvector pertur-
bation theory for linear eigenvalue problems, such as those in the classical book [27].
Note that ŷ is not equal to the computed eigenvector of L(λ), although x̂ is usually
obtained by extracting a part of it: it is this construction of ŷ forcing it to be in Van-
dermonde form that leads to the crucial inequality (1.3) to connect the eigenvector
angles with respect to P (λ) and L(λ).
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Our results hold not only for L1-type linearizations, but in a more general setting.
For example, sometimes P (λ) is expressed in a polynomial basis {φi(z)}ki=0 that is
not necessarily the standard monomials. Such matrix polynomials have been the
subject of several recent studies, see for example [1, 8, 21]. In this case the exact
and approximate eigenvectors for the companion-like1 (sometimes called comrade)
linearization are in the forms

y = [φk−1(λ), φk−2(λ), . . . , φ0(λ)]T ⊗ x, ŷ = [φk−1(λ̂∗), φk−2(λ̂∗), . . . , φ0(λ̂∗)]
T ⊗ x̂.

(1.5)
The inequality (1.3) still holds with such x, x̂, y, ŷ.

More generally, our results are applicable not only for linearizations, but for any
reduction of P (λ) into another eigenproblem L(λ)y = 0 as long as the eigenvector y
can be expressed in the Kronecker form

y = [φk−1(λ), φi(λ), . . . , , φ0(λ)]T ⊗ x = Λ(λ)⊗ x, (1.6)

and Λ(λ) = [φk−1(λ), φk−2(λ), . . . , , φ0(λ)]T is a vector whose elements φi(λ) are
functions of λ. The vectors in (1.2), (1.4) and (1.5) are special cases of (1.6). Note
that φi(λ) are not necessarily polynomials, and the only assumption is that the vector

Λ(λ) is nonzero ‖Λ(λ)‖ 6= 0 for every λ. For an approximate eigenpair (λ̂∗, x̂) of P (λ)

we always construct the approximate eigenpair (λ̂∗, ŷ) for a reduction L(λ) by forming
the Vandermonde-like vector

ŷ = Λ(λ̂∗)⊗ x̂. (1.7)

Examples other than linearizations of matrix polynomials for which our results hold
include companion-like linearizations for rational matrix eigenvalue problems and `-
ifications of matrix polynomials introduced in [6], as we discuss in Section 2.

For the sake of generality we present the results mainly in the general form (1.6),
and it often helps to think of the special but important case where L(λ) is the standard
companion linearization of a matrix polynomial P (λ). Generally φi(λ) is determined
from the structure of the eigenvectors of the reduction one chooses, and is allowed to
be different from the basis in which P (λ) is represented.

In Section 2 we review some reductions L(λ) of P (λ) for which our results are
applicable. Section 3 derives a key lemma connecting ∠(x̂, x) and ∠(ŷ, y), and in
Section 4 we derive eigenvector error bounds for matrix polynomials. We discuss
eigenvector perturbation bounds in Section 5, and treat eigenspace corresponding to
a multiple eigenvalue in Section 6. We summarize the results and discuss in Section 7,
and present numerical experiments in Section 8.

Notation. P (λ) represents a matrix whose entries are nonlinear functions of λ

(such as a matrix polynomial), and (λ̂∗, x̂) is an approximate eigenpair such that

the residual P (λ̂∗)x̂ is small but nonzero. L(λ) is a reduced problem of P (λ) (such

as linearization) whose eigenvectors y satisfy (1.6) for some vector function Λ(λ̂∗).

The approximate eigenvector ŷ for L(λ) is always constructed from x̂, λ̂∗ as in (1.7).
We assume throughout that P (λ) is regular, that is, detP (λ) is not identically zero.
We scale the eigenvector x and its computed approximation x̂ to have unit norm
‖x‖2 = ‖x̂‖2 = 1.

1These linearizations can actually be regarded as an L1-type linearization in a nonstandard
polynomial basis φi(λ) [24].
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2. Reductions L(λ) of P (λ) and their eigenvector structures. For most
linearizations L(λ) used in practice and some other reductions for solving nonlinear
eigenproblems P (λ), the eigenvector y of the reduced problem L(λ) is related to the
eigenvector x of P (λ) in a highly structured manner, written as y = Λ⊗x as in (1.5).
Each φi(λ) is a function of λ, usually but not necessarily a polynomial. Our results
hold for any such linearizations, and below we list important examples.

The most well known linearization of a matrix polynomial P (λ) as in (1.1) is the

companion linearization for P (λ) expressed in the monomial basis P (λ) =
∑k
i=0Aiλ

i,
which yields the linear eigenvalue problem

L(λ) = C0 + λC1 =


Ak−1 Ak−2 . . . A0

−I
. . .

−I

+ λ


Ak

I
. . .

I

 . (2.1)

For each eigenpair (λ, x) such that P (λ)x = 0, we have L(λ)y = 0 where the eigen-
vector y is in Vandermonde form y = [λk−1, λk−2, . . . , λ, 1]T ⊗ x, which clearly has
the form (1.6) with φi(λ) = λi.

In some cases P (λ) is expressed as P (λ) =
∑k
i=0 ϕi(λ)Ai, where ϕi(λ) is a poly-

nomial basis that is not necessarily the standard monomials, for example orthogonal
polynomials such as Chebyshev [8] or Legendre [1]. Analogues of companion lin-
earization in the Chebyshev basis is known as the colleague matrix [33, Ch. 18], and
as comrade matrices in other orthogonal bases [3]. In such cases the eigenvector y
of the comrade matrices can be written as (1.5) with φi(λ) = ϕi(λ), which is in
Vandermonde form with respect to the basis {ϕi(x)}ki=0.

A recent work [34] introduces linearization for matrix polynomials obtained by
Lagrange or Hermite interpolation. The linearization there also has the Vandermonde
eigenvector structure (1.6), with φi(λ) being Lagrange polynomials.

Fiedler linearizations [9] can also be seen as an L1 pencil for monic matrix poly-
nomials, where the basis is not the standard monomials. Extensions of the L1,DL
linearization spaces to nonstandard bases is developed in [32]. The right eigenvectors
y of such linearizations are again in the form (1.6).

The remainder of this section discusses examples of reductions L(λ) that are
not standard linearizations of matrix polynomials but still satisfy the Vandermonde
eigenvector structure (1.6).

2.1. Rational eigenvalue problem. Suppose R(λ) is a rational matrix func-
tion, expressed in partial fraction form as

R(λ) = P (λ) +
∑̀
i=1

mi∑
j=1

Rij
(λ− pi)j

 , (2.2)

where P (x) =
∑d
i=0Aiλ

i ∈ C[λ]n×n is a matrix polynomial, Rij ∈ Cn×n, pi are
known scalars and and mi are integers. The goal of a rational eigenvalue problem is
to find λ and x 6= 0 such that R(λ)x = 0. A naive approach is to form the polynomial
r(x)

∏
i(x − pi)mi and find its roots, say by the companion linearization. However,

multiplying
∏
i(x − pi)mi can change the conditioning of the solutions, resulting in
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unnecessary numerical error. A more efficient linearization is introduced in [28] under
the assumption that the rational terms are of low-rank, but that linearization does
not have eigenvectors in the form (1.6), see Section 2.3 below.

An alternative linearization with the eigenvector property (1.6) can be formed
directly from the coefficients Ai and Rij [23]. These can be regarded as companion-
like linearizations [19], in the sense that they can be formed by appropriately arranging
the coefficient matrices and fixed constants 1s and pis.

For simplicity we assume monicity, i.e., the leading coefficient Ad is I. Otherwise
we can left-multiply R(λ) by A−1

d ; we need to work with a generalized eigenproblem
when Ad is singular. The companion-like matrix C is constructed as follows:

C =



−Ad−1 −Ad−2 . . . −A0 −R11 . . . −R1m1 −R21 . . . −R`m`

I
I

. . .

I p1I

. . .
. . .

I p1I
I p2I

I
. . .

I p`I



. (2.3)

One can verify that if R(λ)x = 0 then Cy = λy, with

y =
[
λd−1x, λd−2x, . . . , λx, x, x

λ−p1 , . . . ,
x

(λ−p1)m1
, x
λ−p2 . . . ,

x
(λ−p`)m`

]T
.

This is still in the form (1.6) in which φi(λ) are rational functions

[φk−1(λ), . . . , φ0(λ)] = [λd−1, λd−2, . . . , λ, 1,
1

λ− p1
, . . . ,

1

(λ− p1)m1
,

1

λ− p2
. . . ,

1

(λ− p`)m`
],

where k = d+
∑`
i=1mi.

2.2. Quadratification and `-ifications. Linearizations are not the only method
to reduce a polynomial eigenproblem to a lower degree eigenproblem. For example,
an n × n polynomial eigenproblem P (λ) of degree k` can be reduced to a nk × nk
polynomial eigenproblem of degree `, called `-ifications [6]. The eigenvectors are in
the form (1.6) in which Λ(λ) is a k × 1 vector polynomial. We illustrate this with an
example of a quartic polynomial eigenvalue problem

P (λ) = Aλ4 +Bλ3 + Cλ2 +Dλ+ E.

We can construct a quadratification Q(λ) of size 2n× 2n defined by

Q(λ) =

[
A C
0 I

]
λ2 +

[
B D
0 0

]
λ+

[
0 E
−I 0

]
. (2.4)

We can verify that for every eigenpair (λ, x) of P (λ) such that P (λ)x = 0 we have

Q(λ)y = 0, y =

[
λ2

1

]
⊗ x.

Observe that y is in the form (1.6) with Λ =
[
λ2

1

]
.
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2.3. Inapplicable reductions. It is worth noting that there are reductions for
which our results cannot be used to give bounds for ∠(x, x̂).

One example is the quadratification of an even-degree matrix polynomial given in
[12, Example 2.6], [17], which reduces a polynomial eigenvalue problem to a quadratic
eigenvalue problem in a form different from (2.4). The resulting quadratic eigenprob-

lem has eigenvectors of the form y =
[ λx

(λ2I+A0)x

]
where A0 is the coefficient matrix

for the constant term. Note that y does not have the form Λ ⊗ x, so our results are
inapplicable unless A0 is a multiple of I.

Another inapplicable example is the linearization for rational eigenproblems in-

troduced in [28], in which the eigenvector structure is y =
[ Λ(λ)⊗x
C(λ)x

]
for some matrix

function C(λ), which is not in the form (1.6) unless C(λ) is a multiple of I.

3. Bounding ∠(x̂, x) via ∠(ŷ, y) of a reduction. Since a linearization L(λ) =
λM + N is a linear eigenproblem there are several known ways to bound ∠(ŷ, y),
where ŷ is an approximate eigenvector of L(λ). A natural question is, therefore, how
is ∠(x̂, x), the angle between the approximate and exact eigenvectors of P (λ), related
to ∠(ŷ, y), that of a linearization ∠(x̂, x)? This section addresses this question.

We start with a simple but important result that relates ∠(x̂, x) with ∠(ŷ, y)
where y, ŷ are as defined in (1.5) for any x and λ.

Lemma 3.1. Let φi(z), i = 0, . . . , k − 1 be functions of z such that for any z,

at least one φi(x) is nonzero. Then for any vectors x, x̂ and scalars λ, λ̂∗, defining

y = Λ(λ)⊗ x and ŷ = Λ(λ̂∗)⊗ x̂ as in (1.6) and (1.7), we have

∠(x̂, x) ≤ ∠(ŷ, y). (3.1)

Proof. We prove that cos∠(ŷ, y) ≤ cos∠(x̂, x). Recalling y = Λ(λ)⊗x =

[
φk−1(λ)x

...
φ0(λ)x

]

and ŷ = Λ(λ̂∗)⊗ x̂ =

 φk−1(λ̂∗)x̂

...
φ0(λ̂∗)x̂

, we have

cos∠(ŷ, y) =
|ŷ∗y|
‖ŷ‖2‖y‖2

=
|Λ(λ̂∗)

∗Λ(λ)||x̂∗x|
‖Λ̂(λ)‖2‖x̂‖2‖Λ(λ)‖2‖x‖2

=
|Λ(λ̂∗)

∗Λ(λ)|
‖Λ(λ̂∗)‖2‖Λ(λ)‖2

cos∠(x̂, x)

= cos∠(Λ(λ),Λ(λ̂∗)) cos∠(x̂, x) ≤ cos∠(x̂, x). (3.2)

�

We immediately have the following theorem.

Theorem 3.2. For a nonlinear matrix function P (λ), let (λ̂∗, x̂) be an approx-

imate eigenpair with nonzero residual ‖P (λ̂∗)x̂‖. Let L(λ) be another eigenproblem
such that for each eigenpair (λ, x) of P (λ) we have L(λ)y = 0, where y is in the form
y = Λ(λ)⊗ x for some vector function Λ(λ), as in (1.5). Then

∠(x̂, x) ≤ ∠(ŷ, y).

Theorem 3.2 shows the accuracy of the approximate eigenvector ∠(x̂, x) of P (λ) is
always at least as good as ∠ (ŷ, y) of a reduction L(λ). The theorem is stated in
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general form, and it is helpful to think of the important case where P (λ) is a matrix
polynomial and L(λ) is a linearization such as the companion form.

In practice λ̂∗ is an approximation to λ so we usually have λ̂∗ ' λ, which means
typically cos∠(Λ̂,Λ) ' 1 and the last inequality in (3.2) becomes nearly an equality,
and hence so is (3.1). It follows that using Theorem 3.2 to obtain a bound for ∠(x̂, x)
is a reliable approach that gives sharp bounds. The same holds for other reductions
as described in Section 2.2.

Lemma 3.1 and Theorem 3.2 hold for any reduction mentioned in Section 2. In
what follows we mainly treat linearizations for its practical importance and because
known results for bounding ∠(y, ŷ) are available only in that context.

3.1. Eigenvector corresponding to eigenvalue at infinity. In the above
discussion we treated λ∗, λ̂∗ as finite scalars, but the result readily extends to the
case where λ∗ = ∞. Eigenvalues at ∞ and their partial multiplicities for a matrix
polynomial P (λ) of degree k are defined as those of the eigenvalues of the reversal
λkP (1/λ). Similarly, for rational eigenvalue problems (2.2) we can define them as the
eigenvalues at infinity of a polynomialized function obtained by multiplying out the
denominators. In this case y is still in the form (1.5), but by normalizing such that
‖y‖ = ‖Λ(∞)‖ = 1, all the elements of Λ(∞) becomes zero expect the leading terms
in the limit λ → ∞. For example, in the companion linearization in the monomial
basis (1.4) we have Λ(∞) = [1, 0, . . . , 0]T . No other complication arises for eigenvalues
at infinity for the statement of Theorem 3.2.

4. Eigenvector error bound for the linearization. The results in the pre-
vious section indicate that we can obtain a bound for ∠(x̂, x) in terms of P (λ) if we
have an upper bound for ∠(ŷ, y) in terms of the linearization L(λ). Here we discuss
deriving upper bounds for ∠(ŷ, y) via existing perturbation theory for eigenvectors of
linear eigenvalue problems.

Since the bounds for ∠(ŷ, y) are generally expressed roughly in the form “(residual

‖L(λ̂∗)ŷ‖)/(eigenvalue separation)” as we make precise below, we first quantify the

residual in terms of the linearization ‖L(λ̂∗)ŷ‖ with respect to the residual for the

original ‖P (λ̂∗)x̂‖.

4.1. Relation between residuals ‖P (λ̂∗)x̂‖ and ‖L(λ̂∗)ŷ‖. For virtually all
the linearizations (and reductions) that we have discussed, the norm of the residuals

‖P (λ̂∗)x̂‖ and ‖L(λ̂∗)ŷ‖ have a direct connection with many choices of reductions
L(λ). Since the particular connection depends on the particular choice of the reduction
L(λ), we specify them for each example we gave in Section 2.

For many linearizations, such as the companion linearization, colleague lineariza-
tion, the linearization (2.3) for rational functions, we have L(λ̂∗)ŷ = [(P (λ̂∗)x̂)T , 0, 0, . . . , 0]T ,

therefore the simplest connection between ‖P (λ̂∗)x̂‖ and ‖L(λ̂∗)ŷ‖ holds:

‖L(λ̂∗)ŷ‖ = ‖P (λ̂∗)x̂‖. (4.1)

For the quadratification (2.4), writing L(λ) = Q(λ) it can be verified that L(λ̂∗)ŷ =[
P (λ̂∗)x̂

0

]
, hence ‖L(λ̂∗)ŷ‖ = ‖P (λ̂∗)x̂‖. Similarly, with the linearization for the ratio-

nal eigenproblem (2.3) we have L(λ̂∗)ŷ = [0, 0, . . . , 0]T ⊗P (λ̂∗)x̂, so again ‖L(λ̂∗)ŷ‖ =

‖P (λ̂∗)x̂‖.
7



For L1 linearizations with ansatz vector v we have [20, 32]

L(λ)(Λ(λ)⊗ x) = v ⊗ P (λ)x

for any λ and x. Since ŷ = Λ(λ)⊗ x̂, it immediately follows that

‖L(λ̂∗)ŷ‖ = ‖v‖‖P (λ̂∗)x̂‖. (4.2)

In summary, for each L(λ) the residual ‖L(λ̂∗)ŷ‖ is proportional to ‖P (λ̂∗)x̂‖ and

can be computed without forming L(λ̂∗)ŷ.

4.1.1. Bounding ∠(ŷ, y). We now discuss how to obtain a bound for ∠(ŷ, y).
The derivation is a straightforward application of the existing theory, but we include
it for completeness and to shed light on when an eigenvector of P (λ) is difficult to
compute accurately.

Theorem 4.1. Let P (λ) be a matrix polynomial and (λ̂∗, x̂) its approximate

eigenpair with residual P (λ̂∗)x̂ 6= 0. Suppose L(λ) = λM + N is a linearization of
P (λ) with eigenvector structure (1.6), and L(λ) has a generalized Schur form [11,
Ch. 7.7.2]

Q∗MZ =

[
α v∗1
0 M1

]
, Q∗NZ =

[
β v∗2
0 N1

]
, λ∗ = −β

α
, (4.3)

in which M1, N1 are both upper-triangular and P (λ∗)x = 0 with x 6= 0. Denote

Q = [q1 Q2], Z = [y Z2] where y = Λ(λ∗) ⊗ x, ŷ = Λ(λ̂∗) ⊗ x̂ as in (1.5). Then we
have

sin∠(x̂, x) ≤ sin∠(ŷ, y) ≤ ‖L(λ̂∗)ŷ‖2
sep(λ̂∗, (N1,−M1))‖ŷ‖2

, (4.4)

where sep(λ̂∗, (N1,−M1)) = ‖(λ̂∗M1 +N1)−1‖2 = σmin((λ̂∗M1 +N1)−1).

Proof. Following [16, proof of Lem. 2.2] we have

Q∗2L(λ̂∗)ŷ = Q∗2(λ̂∗M +N)ŷ

= Q∗2Q

(
λ̂∗

[
α v∗1
0 M1

]
+

[
β v∗2
0 N1

])
Z∗ŷ

=
[
0 Ikn−1

](
λ̂∗

[
α v∗1
0 M1

]
+

[
β v∗2
0 N1

])[
y∗

Z∗2

]
ŷ

= (λ̂∗M1 +N1)Z∗2 ŷ.

Hence, using ‖Q∗2L(λ̂∗)ŷ‖2 ≤ ‖L(λ̂∗)ŷ‖2 we obtain

‖Z∗2 ŷ‖2 ≤ ‖(λ̂∗M1 +N1)−1‖2‖L(λ̂∗)ŷ‖2 ≤ ‖(λ̂∗M1 +N1)−1‖2‖L(λ̂∗)ŷ‖2.

Since ‖Z∗2 ŷ‖2/‖ŷ‖2 = sin∠ (y, ŷ), we conclude that

sin∠ (y, ŷ) ≤ ‖(λ̂∗M1 +N1)−1‖2
‖L(λ̂∗)ŷ‖2
‖ŷ‖

=
‖L(λ̂∗)ŷ‖2

sep(λ̂∗, (N1,−M1))‖ŷ‖2
, (4.5)

completing the proof.
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We note that sep(λ̂∗, (N1,−M1)) = ‖(λ̂∗M1+N1)−1‖−1
2 is a quantity that roughly

measures the separation between the eigenvalue λ̂∗ and those of the pencil λM1 +N1

(the eigenvalues of L(λ) and P (λ) other than λ∗ = −β/α), as commonly used in the
literature for eigenvector perturbation theory, see for example [26, 27]. In the special
case where λM +N is a standard symmetric eigenproblem λI+N with N = NT , sep
reduces to the difference between λ̂∗ and λI +N1, known as the gap.

Two remarks regarding Theorem 4.1 are in order.

• The theorem indicates that an approximate eigenvector x̂ is accurate if two
conditions are satisfied:

1. The residual ‖P (λ̂∗)x̂‖2 is small, and hence so is ‖L(λ̂∗)ŷ‖2.

2. λ̂∗ is well separated from the rest of the eigenvalues of P (λ).
Note that these are precisely the conditions required for an approximate eigen-
vector to be accurate in a standard linear eigenproblem, see e.g. [27, Ch. 4].

• The theorem holds regardless of which generalized Schur form is chosen, and
indeed the top-left corner can be any eigenvalue of P (λ), not necessarily the

λ∗ = −α/β closest to λ̂∗. Of course, useful information is obtained only when

the eigenvalue −α/β is the eigenvalue close to λ̂∗, and if one starts with a
“wrong” generalized Schur form then (4.5) still gives a bound on sin∠ (y, ŷ),

but then the denominator sep(λ̂∗, (N1,−M1)) in (4.4) is small, so the bound
is likely to be larger than 1, a useless bound.

For ease of reference, we state the implication of Theorem 4.1 when applied to
companion and L1 linearizations of a matrix polynomial P (λ), for which the bounds
can be stated purely in terms of P (λ).

Corollary 4.2. Under the assumptions in Theorem 4.1,

1. When L(λ) = λM +N is the companion linearization,

sin∠(x̂, x) ≤ ‖P (λ̂∗)x̂‖2
‖Λ(λ̂∗)‖2sep(λ̂∗, (N1,−M1))

. (4.6)

2. When L(λ) = λM +N is a L1 linearizations with ansatz vector v,

sin∠(x̂, x) ≤ ‖v‖2‖P (λ̂∗)x̂‖2
‖Λ(λ̂∗)‖2sep(λ̂∗, (N1,−M1))

. (4.7)

In both (4.6) and (4.7), Λ(λ̂∗) = Λ(λ) = [λ̂k−1
∗ , λ̂k−2

∗ . . . , λ̂∗, 1]T as in (1.6) with

monomials, hence ‖Λ(λ̂∗)‖2 =

√
1 + λ̂2

∗ + . . .+ λ̂
2(k−1)
∗ .

Note that (4.7) appears to be proportional to ‖v‖2, and in particular taking
v ← cv for a scalar c > 0 appears to give a different bound. The explanation is that
sep(λ̂∗, (N1,−M1)) also gets multiplied by c.

5. Eigenvector perturbation bounds. We now turn our attention to a differ-
ent but closely related problem: suppose (λ∗, x) is an exact eigenpair of P (λ). Can we
bound the angular perturbation ∠(x, x̃) where x̃ is an exact eigenvector of a perturbed

matrix polynomial P̃ (λ) = P (λ) + E(λ) of the same degree as P (λ), where E(λ) is
small?

We note that in the limit E → 0 the problem reduces to conditioning analysis of
the eigenvector x, which has been studied previously for matrix polynomials [4, 7].
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Here the focus is to obtain rigorous bounds on ∠(x, x̃) when E(λ) is small but not
infinitesimally so.

The basic idea is to follow the argument of Stewart [26, § 4.2.3], which is to view

(λ∗, x) as an approximate eigenpair of P̃ (λ) with corresponding residual P̃ (λ∗)x, and
invoke the residual error bounds in the previous sections to give bounds on ∠(x, x̃).
Note that the residuals are related by

P̃ (λ∗)x = (P (λ∗) + E(λ∗))x = E(λ∗)x,

Hence

‖P̃ (λ∗)x‖2 = ‖E(λ∗)x‖2 ≤ ‖E(λ∗)‖2,

where we suppose x is normalized so that ‖x‖2 = 1. Therefore it follows that we can
directly invoke the previous results, such as Theorem 4.1, with residual ‖E(λ∗)‖2.

Recall that the residuals ‖L(λ̂∗)ŷ‖ and ‖v‖‖P (λ̂∗)x̂‖ are usually related as in (4.1)

and (4.2). Below we assume L(λ) and L̃(λ) are linearizations, obtained via the same
linearizations process (e.g., companion or DL with the same ansatz vector) applied

to P (λ) and P̃ (λ) respectively. We summarize these and derive two bounds for the
perturbation in x in the next theorem.

Theorem 5.1. Let P (λ), E(λ) be matrix polynomials of the same degrees and let

(λ, x) be an eigenpair such that P (λ)x = 0. Let L(λ) = λM+N and L̃(λ) = λM̃+Ñ =

λ(M + ∆M) + (N + ∆N) be linearizations of P (λ) and P̃ (λ) = P (λ) +E(λ) with the

same Vandermonde eigenvector structures y = Λ(λ)⊗x and ỹ = Λ(λ̃)⊗ x̃ as in (1.5),
and a generalized Schur form of L(λ) with the eigenvalue λ∗ located at the top is

QMZ =

[
α v∗1
0 M1

]
, QNZ =

[
β v∗2
0 N1

]
, λ∗ = −β/α. (5.1)

Similarly, let a generalized Schur form of λM̃ + Ñ be

Q̃M̃Z̃ =

[
α̃ ṽ∗1
0 M̃1

]
, Q̃Ñ Z̃ =

[
β̃ ṽ∗2
0 Ñ1

]
, λ̃ = −β̃/α̃. (5.2)

Then the eigenpair (λ̃, x̃) of P̃ (λ) satisfies

∠(x̃, x) ≤ ∠(ỹ, y), (5.3)

and sin∠(x̃, x) is bounded by

sin∠(x, x̃) ≤ ‖(λ∗M̃ + Ñ)y‖2
sep(λ∗, (Ñ1,−M̃1))‖y‖2

, (5.4)

and

sin∠ (x, x̃) ≤ ‖(λ∗∆M + ∆N)‖2 + ‖(λ∗ − λ̃)M̃‖2
sep(λ∗, (N1,−M1))

. (5.5)

Proof. The inequality (5.3) is a direct consequence of Lemma 3.1, applied with

λ̂∗ ← λ̃, x̂← x̃.
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To obtain (5.4) and (5.5) we shall derive a bound for ∠(ỹ, y), which by (5.3) is also

a bound for ∠(x̃, x). For (5.4), by the same argument as Theorem 4.1 with P ← P̃ ,

Q̃∗2(λ∗M̃ + Ñ)y = Q̃∗2Q̃

(
λ∗

[
α̃ ṽ∗1
0 M̃1

]
+

[
β̃ ṽ∗2
0 Ñ1

])
Z̃∗y

=
[
0 Ikn−1

](
λ∗

[
α̃ ṽ∗1
0 M̃1

]
+

[
β̃ ṽ∗2
0 Ñ1

])[
ỹ∗

Z̃∗2

]
y

= (λ∗M̃1 + Ñ1)Z̃∗2y.

Since sin∠ (y, ỹ) = ‖Z̃∗2y‖2/‖y‖2, we conclude that

sin∠ (y, ỹ) ≤ ‖(λ∗M̃1 + Ñ1)−1‖2‖(λ∗M̃ + Ñ)y‖2/‖y‖2

=
‖(λ∗M̃ + Ñ)y‖2

sep(λ∗, (Ñ1,−M̃1))‖y‖2
,

which is (5.4).

To obtain (5.5), we have

Q∗2(λ∗M̃ + Ñ)ỹ

= Q∗2(λ∗M +N + (λ∗∆M + ∆N))ỹ

= Q∗2Q

(
λ∗

[
α v∗1
0 M1

]
+

[
β v∗2
0 N1

])
Z∗ỹ +Q∗2(λ∗∆M + ∆N)ỹ

=
[
0 Ikn−1

](
λ∗

[
α v∗1
0 M1

]
+

[
β v∗2
0 N1

])[
y∗

Z∗2

]
ỹ +Q∗2(λ∗∆M + ∆N)ỹ

= (λ∗M1 +N1)Z∗2 ỹ +Q∗2(λ∗∆M + ∆N)ỹ.

Hence

‖Z∗2 ỹ‖2 ≤ ‖(λ∗M1 +N1)−1‖2(‖(λ∗∆M + ∆N)ỹ‖2 + ‖(λ∗M̃ + Ñ)ỹ‖2).

Since sin∠ (y, ỹ) = ‖Z∗2 ỹ‖2/‖ỹ‖2, we conclude that

sin∠ (y, ỹ) ≤ ‖(λ∗M1 +N1)−1‖2(‖(λ∗∆M + ∆N)ỹ‖2 + ‖(λ∗M̃ + Ñ)ỹ‖2)

‖ỹ‖2

=
‖(λ∗∆M + ∆N)ỹ‖2 + ‖(λ∗M̃ + Ñ)ỹ‖2

sep(λ∗, (N1,−M1))‖ỹ‖2
.

Now since (λ̃M̃ + Ñ)ỹ = 0, we have ‖(λ∗M̃ + Ñ)ỹ‖2 = ‖(λ∗ − λ̃)M̃ỹ‖2. Hence

sin∠ (y, ỹ) ≤ ‖(λ∗∆M + ∆N)ỹ‖2 + ‖(λ∗ − λ̃)M̃ỹ‖2
sep(λ∗, (N1,−M1))‖ỹ‖2

≤ ‖(λ∗∆M + ∆N)‖2 + ‖(λ∗ − λ̃)M̃‖2
sep(λ∗, (N1,−M1))

,

as required.
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Between the two bounds (5.4) and (5.5), (5.4) looks simpler, but (5.4) involves

sep(λ∗, (M̃1,−Ñ1), the separation of λ∗ from the spectrum of M̃1 + Ñ1, which is a

quantity in terms of P̃ (λ). The separation with respect to P̃ (λ) is nontrivial to bound
(see [26, eq. (4.2.29)], [27, Thm. VI.2.13] for related discussions). By contrast, the
sep in (5.5) is defined for λM1 + N1 of the original P (λ), and although the bound

involves the perturbation in the eigenvalue λ∗ − λ̃, this can be bounded or estimated
using existing results on linear eigenvalue perturbation.

Sometimes one might want to obtain perturbation bounds without specifying E
other than a rough estimate such as the norm ‖E‖. Such bounds are treated in the
next subsection.

We note that the bounds (5.5) and (5.4) are not necessarily attainable: in par-
ticular, the bounds depend on the choice of the linearization used to obtain bounds
on ∠(x, x̃). One approach would be to try many linearizations and take the smallest
bound.

For simplicity we have focused on the case where P (λ) and P (λ) + E(λ) are
matrix polynomials, but it is straightforward to extend the argument to rational
eigenproblems as in Section 2.1, as long as the original and perturbed problems are
of the same forms so that their linearization are of the same size.

5.1. Error bounds without ỹ or sep in P̃ (λ). As indicated by (5.3), any

bound for ∠(y, ỹ) of the linear matrix pencils L(λ) and L(λ̃) is a bound for the desired
quantity ∠(x, x̃). A number of results are available for bounding the eigenvector
perturbation of linear eigenvalue problems in the literature, and below we treat the
case where L(λ) is a monic linearization L(λ) = λI +N (this restriction is due solely
to apparent lack of results in the literature for bounding the angle of the eigenvector
perturbation for generalized eigenproblems that are straightforward to apply in our
context; for example, the bounds in [27] examine the perturbation in all eigenvectors,
instead of a specified one x). The result applies for example when a companion
linearization is used for a monic matrix polynomial.

Theorem 5.2. Let P (λ), E(λ) be matrix polynomials of the same degrees and

let (λ, x) be an eigenpair such that P (λ)x = 0. Let L(λ) = λI + N and L̃(λ) =

λI + Ñ be linearizations of P (λ) and P̃ (λ) = P (λ) + E(λ) respectively, both with
Vandermonde eigenvector structure (1.5). Let y, z be the right and left eigenvectors
of N corresponding to −λ∗ such that Ny = −λ∗y, zTN = −λ∗zT , and let N have
spectral decomposition N = −λ∗yz∗ − Y2N2Z

∗
2 such that[

z∗

Y ∗2

]
N [y Y2] = −

[
λ∗

N2

]
,

[
z∗

Y ∗2

]
[y Y2] = [y Y2]

[
z∗

Y ∗2

]
= I.

Define θ = arccos yT z
‖y‖‖z‖ . Then there exists an exact eigenpair (λ̃, x̃) of P̃ (λ) such

that

tan∠(x, x̃) ≤ tan∠(y, ỹ) ≤ ‖N − Ñ‖2
sep(λ∗, (−N2, I))− 2(tan θ + sec θ)‖N − Ñ‖

, (5.6)

where sep(λ∗, (−N2, I)) = ‖(λ∗I +N2)−1‖−1
2 .

Proof. The first inequality is (5.3), and the second is a direct consequence of [26,

Cor. 2.14] applied to the matrix N and its perturbation Ñ .
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Note that the bound (5.6) is defined purely in terms of the original P (λ) and the
norm of the perturbation, unlike those in Theorem 5.1.

6. Angles between subspaces. When λ∗ is a multiple eigenvalue of L(λ) (and
hence of P (λ)) or λ∗ belongs to a cluster of eigenvalues, the corresponding eigenvector
y of L(λ) is known [26, § 4.2] to be sensitive to perturbation in the coefficient matrices,
and hence so is x, the corresponding eigenvector of P (λ). This generally makes it
difficult or impossible to numerically compute x or y accurately. This difficulty is
present even in the simplest case of standard symmetric eigenvalue problems, and
manifests itself as a small denominator sep in (5.4). A well known remedy to such
difficulty is to instead compute a subspace corresponding to the cluster. Hence it is of
interest to compare two subspaces spanned by the columns of n×k matrices X and X̂,
where X contains a set of exact eigenvectors and X̂ contains approximate eigenvectors
of P (λ). As in the previous sections, we wish to relate ∠(X̂,X) to ∠(Ŷ , Y ), the
canonical angles between approximate and exact eigenspaces of a linearization λM +
N .

Nonetheless, when a target eigenpair is exactly multiple a direct analogue of
Lemma 3.1 holds:

Lemma 6.1. Let the columns of X ∈ Rn×` form an orthonormal subspace cor-
responding to a multiple eigenvalue λ∗. Then for an approximate set of eigenpairs
(λ̂∗, X̂) where X̂ ∈ Rn×` is orthonormal, taking Λ = λ∗I` and Λ̂ = λ̂∗I` we have

∠i(X̂,X) ≤ ∠i(Ŷ , Y ), i = 1, . . . , `. (6.1)

where

Y =


Xφk−1(Λ)

...
Xφ1(Λ)
Xφ0(Λ)

 , Ŷ =


X̂φk−1(Λ̂)

...

X̂φ1(Λ̂)

X̂φ0(Λ̂)

 (6.2)

Proof. Recall that the angles between two subspaces X1, X2 are defined by the
singular values of orth(X1)T orth(X2), where orth denotes the orthonormal column
space (e.g., the Q factor in the QR factorization).

By the assumptions, we have

orth (Y ) =
1√∑k−1

i=0 φk−1(λ)2

Y, orth(Ŷ ) =
1√∑k−1

i=0 φk−1(λ̂∗)2

Ŷ .

Therefore we have

orth(Y )T orth(Ŷ ) =
Y T Ŷ√∑k−1

i=0 φk−1(λ∗)2

√∑k−1
i=0 φk−1(λ̂∗)2

=

∑k−1
i=0 φk−1(λ∗)φk−1(λ̂∗)√∑k−1

i=0 φk−1(λ∗)2

√∑k−1
i=0 φk−1(λ̂∗)2

XT X̂.

Now by Cauchy-Schwarz we have∑k−1
i=0 φk−1(λ∗)φk−1(λ̂∗)√∑k−1

i=0 φk−1(λ∗)2

√∑k−1
i=0 φk−1(λ̂∗)2

≤ 1,
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so it follows that σi(orth(Y )T orth(Ŷ )) ≤ σi(XT X̂) for all i. This implies ∠i(Ŷ , Y ) ≥
∠i(X̂,X), as required.

Theorem 6.2. Let P (λ) =
∑k
i=0 φi(λ)Ai ∈ C[λ]n×n and λM+N be its lineariza-

tion with Vandermonde eigenvector structure (1.6). Let the columns of X̂ ∈ Cn×` be
approximations to the eigenvectors corresponding to an eigenpair (λ,X) of multiplic-

ity `, with approximate eigenvalue λ̂∗. Define Y, Ŷ as in Lemma 6.1, so that (Λ̂, Ŷ )
and (Λ, Y ) are approximate and exact sets of ` eigenpairs of L(λ). Let a generalized
Schur form [11, § 7.7.2] of L(λ) = λM +N be

Q∗MZ =

[
M0 V ∗1
0 M1

]
, Q∗NZ =

[
N0 V ∗2
0 N1

]
, (6.3)

in which the eigenvalues of λM0+N0 are all λ∗, and M1, N1 ∈ C(nk−`)×(nk−`). Denote
Q = [Q1 Q2], Z = [Y Y2] where Y = Λ(λI`)⊗X as in (6.2). Then we have

sin∠i(X̂,X) ≤ sin∠i(Ŷ , Y ) ≤ ‖L(λ̂∗)Ŷ ‖2
sep(λ̂∗, (N1,−M1))

, (6.4)

where sep(λ̂∗, (N1,−M1)) = ‖(λ̂∗M1 +N1)−1‖2 = σmin((λ̂∗M1 +N1)−1).

Proof. The proof is much the same as in Theorem 4.1. Using the block residual
L(λ̂∗)Ŷ we have

Q∗2L(λ̂∗)Ŷ = Q∗2(λ̂∗M +N)Ŷ

= Q∗2Q

(
λ̂∗

[
M0 V ∗1
0 M1

]
+

[
N0 V ∗2
0 N1

])
Z∗Ŷ

=
[
0 Ikn−`

](
λ̂∗

[
M0 V ∗1
0 M1

]
+

[
N0 V ∗2
0 N1

])[
y∗

Z∗2

]
ŷ

= (λ̂∗M1 +N1)Z∗2 Ŷ .

Hence

‖Z∗2 Ŷ ‖2 ≤ ‖(λ̂∗M1 +N1)−1‖2‖Q∗2L(λ̂∗)Ŷ ‖2 ≤ ‖(λ̂∗M1 +N1)−1‖2‖L(λ̂∗)Ŷ ‖2.

Since σi(Z
∗
2 Ŷ ) = sin∠i(Y, Ŷ ) for i = 1, . . . , `, we conclude that

sin∠i(Y, Ŷ ) ≤ ‖(λ̂∗M1 +N1)−1‖2‖L(λ̂∗)Ŷ ‖2 =
‖L(λ̂∗)Ŷ ‖2

sep(λ̂∗, (N1,−M1))
. (6.5)

It is worth noting that the results of this subsection are not as general as one might
like. Most importantly, they assume that λ is an exactly multiple (nondefective) eigen-
value, excluding the case where λ is simple but belongs to a cluster. Unfortunately,
we are currently unable to derive bounds (e.g., an analogue of Lemma 3.1) that allow
for such situations.

Another restriction is that the results here assume that the computed approximate
eigenvalue λ̂∗ is also multiple, although this is a somewhat minor assumption as we can
perturb the approximants (λ̂i, x̂i) so that λ̂i = λ̂∗ for λ̂i corresponding to a cluster.
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7. Discussion. Several remarks are in order regarding the eigenvector error and
perturbation bounds we obtained.

• It is worth recalling that matrix polynomials P (λ) can have distinct eigenval-
ues λ∗ and µ belonging to a single eigenvector x, that is, P (λ∗)x = P (µ)x.
One might imagine that this may cause complications in the behavior of λ∗, µ
and x, in particular the accuracy of their approximation. However, our anal-
ysis above makes no special reference to µ when assessing the accuracy of
(λ∗, x). The (perhaps surpriging) implication is that as far as the eigenpair
(λ∗, x) is concerned, the presence of an eigenvalue µ sharing the same eigen-
vector, or even the sensitivity of the pair (µ, x), plays no role. It may well be
that (λ∗, x) is insensitive to perturbation and so can be computed accurately,
while µ belongs to a cluster of eigenvalues and so (µ, x) is highly sensitive to
perturbations.
On the other hand, when (µ, y) and (λ∗, x) are eigenpairs with µ ≈ λ∗ and
∠(x, y) ' 0, that is, if both the eigenvalues and eigenvector are close, the cor-
responding eigenvectors in terms of the linearization are also nearly parallel,
so computing them numerically necessarily becomes a challenge.

• Kressner and Betcke [5, 18] deal with invariant pairs instead of a subspace
spanned by eigenvectors for nonlinear eigenvalue problems (including matrix
polynomials). Szyld and Xue [29] develop first-order perturbation of invariant
pairs. One advantage of invariant pairs is that they are distinct for eigenpairs
(λ1, x), (λ2, x) that share an eigenvector. Here we took the more classi-
cal approach of subspaces spanned by eigenvectors, given that two distinct
eigenvalues having the same eigenvector does not seem to cause any difficulty
as we just discussed.

• In practice a common way of obtaining x̂ is to solve a linearized eigenproblem
and take a n×1 part of the nk×1 computed eigenvector ŷ of the linearization
L(λ). Note that the above result does not mean the accuracy of the computed
eigenvector x̂ of P (λ) is at least as good as that of y

∧

of L(λ) (note that y

∧

is
different from both ŷ and ỹ), because y

∧

is generally not in the form of ŷ as

in (1.4). In particular, the residual ‖L(λ̂∗)y

∧‖2 of (λ̂∗, y

∧

) as an approximate

eigenpair of the lineraization can be smaller than ‖L(λ̂∗)x̂‖2.
• From a practical viewpoint, the bounds derived here depend on the choice

of linearization L(λ). It would be of interest to examine finding an optimal
choice of linearization in terms of minimizing the bounds, e.g. in Theorem 4.1.
Generally, given a polynomial eigenproblem, there is a plethora of lineariza-
tions available today, and the choice of linearization depends on many aspects,
including efficiency and eigenvalue conditioning [15].

8. Numerical experiments. We present numerical experiments to illustrate
our results. All experiments were performed in MATLAB version R2013a on a desktop
machine with an Intel Xeon 3.20GHz Processor with four cores, and 16GB RAM, using
IEEE double precision arithmetic.

8.1. ∠(x, x̂) and ∠(y, ŷ). To illustrate our error bounds, we generate 10 sets of

10×10 quadratic matrix polynomials P (λ) =
∑k
i=0 λ

iAi, and obtained the nk approx-

imate eigenpairs (λ̂∗, x̂) computed by MATLAB’s polyeig, and quadeig developed

in [13]. We then form ŷ =
[
λ̂∗x̂
x̂

]
as in (1.4).
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We then obtained the “exact” eigenpairs (λ∗, x) by computing the eigenvalue
decomposition of the companion form C of P (λ) in variable precision arithmetic using
Matlab’s vpa command. From the eigenpairs (λ∗, y) of C we obtain x as the larger
part (in norm) of the two n × 1 blocks of y; this selection is made to minimize the
effect of numerical errors.

Randomly generating the coefficient matrices Ai gives computed results that have
accuracy in the order of machine precision, so in order to examine the results also
with difficult cases we also formed a set of 10× 10 quadratic matrix polynomials that
have near-multiple eigenvalues with clusters of seven eigenvalues, and also containing
λ∗ =∞.

Figure 8.1 shows the scatterplot of ∠(x, x̂) and ∠(y, ŷ), along with the boundary
of ∠(x, x̂) ≤ ∠(y, ŷ) in Lemma 3.1. The left plot is for randomly generated Ai, and
the right shows the results with difficult matrices. Observe that scatterplot lies just
below the dashed line, illustrating that ∠(x, x̂) ≤ ∠(y, ŷ), and that this bound is often
a remarkably sharp bound. This indicates that assessing the error in x̂ by that of ŷ is
reliable and does not result in severe overestimation. We observed the same behavior
for matrix polynomials of higer degree k ≥ 3.
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Fig. 8.1. ∠(x, x̂) vs. ∠(y, ŷ) log-log plot for 10 sets of quadratic eigenvalue problems, random-
easy case (left) and difficult case with multiple and infinite eigenvalues (right). The dashed black
line shows ∠(x, x̂) = ∠(y, ŷ).

Shared eigenvalue or eigenvector. In Section 7 we noted that the possible pres-
ence of a (nearly) shared eigenvector should not impair the accuracy of the computed

eigenpair (λ̂∗, x̂), while a shared eigenvalue does indicate an ill-conditioned eigenvec-
tor. Here we verify this observation by constructing quadratic eigenvalue problems
P (λ) with prescribed eigenvalues and eigenvectors as follows.

We first form a diagonal matrix D = diag(d1, . . . , dnk), whose diagonal elements
will be the eigenvalues of P (λ). Then generate X ∈ Cn×nk, whose columns (which
are clearly not linearly independent) form the eigenvectors. We then form

C =


XDk−1

...
XD
X

D

XDk−1

...
XD
X


−1

. (8.1)
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It can be easily verified that C must be in the companion form C =


−Ak−1 −Ak−2 . . . −A0

I

. . .

I

,

from which the coefficient matrices of the monic matrix polynomial P (λ) = Iλk +
Ak−1λ

k−1 + · · ·+A0 can be obtained directly. P (λ) has prescribed eigenvalues di and
eigenvectors X = [x1, . . . , xkn].

With such process for degree k = 2, we perform two sets of experiments:

• Shared eigenvector. We set di = i for i = 1, . . . , nk and generate X randomly
except for the last column of X, which is equal to its first column. The
resulting P (λ) has distinct eigenvalues, with d1 and dn sharing an eigenvector
X(:, 1) (using MATLAB notation).

• Shared eigenvalue. We set X randomly and set di = i for i = 1, . . . , nk − 1
and dnk = d1. The resulting P (λ) has one non-defective multiple eigenvalue
of multiplicity two.

For each set of experiments Figure 8.2 shows the scatterplots of ∠(x, x̂) and ∠(y, ŷ).
Observe that in the left plot (shared eigenvector) all the eigenvectors are computed
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Fig. 8.2. ∠(x, x̂) vs. ∠(y, ŷ) plots in log-log scale for 10 sets of quadratic eigenvalue problems
with a shared eigenvector (left) or eigenvalue (right). The dashed black line shows ∠(x, x̂) = ∠(y, ŷ).

with smaller than 10−10 accuracy. This is the same order of error that we get without
the constraint X(:, 1) = X(:, nk), verifying that a shared eigenvector does not cause
numerical issues. By contrast, the right plot shows that in the presence of shared
eigenvalues, some eigenvectors are not computed accurately. We confirmed that all the
inaccurate eigenpairs with ∠(x, x̂) > 10−10 correspond to (λ̂∗, x̂) with λ̂∗ ≈ d1 = dn,
verifying that eigenvectors are ill-conditioned if the eigenvalue is (nearly) multiple,
which is true also in linear eigenvalue problems. In any case, the bound ∠(x, x̂) ≤
∠(y, ŷ) by Lemma 3.1 is always satisfied.

On a sidenote, we observe that quadeig tends to give more accurate results than
polyeig (since the blue dots tend to lie above the red), reflecting the claim in [13].

8.2. Error bounds. We now examine the error bounds obtained in Theorem 4.1
and Corollary 4.2. We generate quadratic matrix polynomials as in the above example
using (8.1).

To obtain the bounds for ∠(x, x̂) we compute the Schur form of the companion

matrix C, then compute the bound (4.6) for (λ̂∗, x̂) approximating the 2n eigenpairs.
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Figure 8.3 shows the results for 10 sets of quadratic eigenvalue problems, again
with shared eigenvector (left) and eigenvalue (right). We confirm that (4.6) is always
an upper bound for ∠(x, x̂), although they are not as tight as the bound ∠(x, x̂) ≤
∠(y, ŷ) that we saw above.
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Fig. 8.3. Error bound (4.6) vs. ∠(x, x̂) in log-log scale, quadratic P (λ) with a shared eigenvector
(left) and shared eigenvalue (right). The dashed black line shows ∠(x, x̂) = Bound.

8.3. Perturbation bounds. To illustrate the perturbation bounds in Section 5
we test with a randomly generated quadratic matrix polynomial P (λ) =

∑k
i=0 λ

iAi
and its perturbed variant P̂ (λ) =

∑k
i=0 λ

iÂi with k = 2. We then normalized each

coefficient matrix Ai so that ‖Ai‖2 = 1 and defined Âi = Ai + Ei where Ei are

randomly generated matrices. We then took x, x̂ to be the eigenvector of P (λ), P̂ (λ)
respectively, corresponding to the eigenvalue of largest absolute value, which were
computed by quadeig. The vector x̂ is therefore an eigenvector of a perturbed matrix
polynomial. We then obtain the corresponding y, ŷ by forming a companion lineariza-
tion C−λI of P̃ (λ), form the Schur form C = QTQ∗ and compute the bound (5.4) in

Theorem 5.1, which in this case reduces to ‖P (λ̂∗)x̂‖2√
1+λ̂2

∗‖(Ñ1−λ̂∗I)−1‖2
, where N1 is obtained

from T by removing the first column and row.

We tested with eight such examples, in which in the jth example the perturbation
norm ‖Ei‖2 was set to ‖Ei‖2 = 10−j−2 for j = 1, . . . , 8. Figure 8.4 shows the log-log
scatterplots of the perturbation ∠(x, x̂) and its bound (5.4). There are eight clusters
of points, and the jth cluster from the right corresponds to the jth test example.
Again, we verify that the perturbation bounds correctly (and quite sharply) bound
the actual perturbation in the eigenvector.
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