
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Accuracy of Singular Vectors Obtained by
Projection-based SVD Methods

Yuji NAKATSUKASA

METR 2016–06 April 2016

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Accuracy of singular vectors obtained by
projection-based SVD methods

Yuji Nakatsukasa

Abstract

The standard approach to computing an approximate SVD of a large-scale matrix
A ∈ Cm×n is to project A onto smaller-dimensional subspaces Û ∈ Cm×m1 , V̂ ∈ Cn×n1

(allowing m1 = m or n1 = n) to obtain a small m1 × n1 matrix Ã := Û∗AV̂ , compute
the SVD Ã = Ũ Σ̂Ṽ ∗, and approximate A ≈ (Û Ũ)Σ̂(V̂ Ṽ )∗. The columns in Û Ũ
and V̂ Ṽ are approximate left and right singular vectors. Similar projection methods
are commonly employed for approximately computing a subset of singular vectors,
not necessarily corresponding to the largest singular values. In this work we assess the
validity of such projection methods from the viewpoint of singular vectors. Specifically,
we give error bounds for a set of approximate singular vectors obtained by projection,
i.e., a subset of columns of Û Ũ and V̂ Ṽ . The projection methods are an analogue of the
Rayleigh-Ritz process for the symmetric eigenvalue problem, for which existing results
are available for the accuracy of a set of computed eigenvectors. This work derives
their SVD analogues, and show that as in Rayleigh-Ritz, the projection method for the
SVD gives approximate singular subspaces that are optimal usually to within a certain
constant factor.

1 Introduction

The SVD plays a central role in a vast variety of applications, primarily due to its best
low-rank approximation property. Often the matrix is too large to compute the full SVD,
and computing a partial and approximate SVD A ≈ U1Σ1V

∗
1 is of interest, where U1, V1 are

tall-skinny matrices.
The standard approach to computing an approximate SVD of a large-scale matrix A ∈

Cm×n is to project A onto smaller-dimensional subspaces Û ∈ Cm×m1 , V̂ ∈ Cn×n1 , compute
the SVD of the small m1× n1 matrix Ã := Û∗AV̂ = ŨΣ̂Ṽ ∗ and obtain an apprxoimate tall-
skinny SVD as A ≈ (Û Ũ)Σ̂(V̂ Ṽ )∗. This process is an analogue of the Rayleigh-Ritz process
for the symmetric eigenvalue problem, sometimes called the Petrov-Galerkin method [1].
For the Rayleigh-Ritz process for the symmetric eigenvalue problem, existing results are
available for bounding the accuracy of the computed eigenvectors, most notably through
results by Saad [14, Thm. 4.6], Knyazev [7, Thm. 4.3] and Stewart [15, Thm. 2]. In a
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nutshell, these results show that the Rayleigh-Ritz process extracts an approximate set of
eigenvectors that are optimal (given the subspace) up to a certain constant factor, which
depends on the residual norm and a gap between exact eigenvalues and Ritz values (i.e.,
approximate eigenvalues).

This work derives analogous results for the SVD by establishing bounds for the computed
left and right singular vectors. In essense, the message is the same as in the Rayleigh-Ritz
process for the symmetric eigenvalue problem: the projection algorithm obtains approximate
sets of left and right singular vectors that are optimal to within a constant factor, again
depending on the residual norm and a gap between exact and approximate singular values.
Somewhat surprisingly (given the importance of SVD and the prominence of projection-based
algorithms for computing an approximate SVD), such extension appears to be unavailable
in the literature. A preliminary version has appeared in the author’s PhD dissertation [11,
Ch. 10].

Let us clarify the problem formulation. Let A be an m× n matrix and Û ∈ Cm×m1 , V̂ ∈
Cn×n1 be subspaces that are hoped to approximately contain a set of k ≤ min(m1, n1) (exact)
singular vectors U1 and V1, corresponding to some of the singular values, usually but not
necessarily the largest ones. Let [Û Û3] ∈ Cm×m and [V̂ V̂3] ∈ Cn×n be square unitary
matrices and (we are using the subscript 3 instead of 2 for consistency with what follows)

(Ã =) [Û1 Û3]
∗A[V̂1 V̂3] =

[
Σ̂1 R
S A3

]
. (1.1)

In practice we do not have access to Û3 and V̂3. Accordingly we do not know R or S, but
their norms can be computed via ‖S̃‖ = ‖AV̂1−Ũ1Σ̂1‖ and ‖R‖ = ‖Û∗1A−Σ̂1V̂

∗
1 ‖, which hold

for any unitarily invariant norm. We will not need to know A3, although the assumptions
made in the results will have implications on its singular values.

If ‖R‖ = ‖S‖ = 0, then Û , V̂ correspond to exact singular subspaces. When R, S are

both small we can expect Ûi, V̂i to be good approximations to some singular vectors.
In practice, it often happens that the whole projection space Û is not very close to

an exact singular subspace, but a subspace of Û is close to an exact singular subspace of
smaller dimension (this is the case e.g. in the Jacobi-Davidson context [6], in which Û , V̂

contain approximate and search subspaces). In view of this, the hope is that if Û contains
rich information in U1 (which is usually of lower dimension k than m1), then the projection

method computes a good approximant Û1 to U1, where Û1 and U1 are both k-dimensional.
From the algorithmic viewpoint, we compute the projection Ã = Û∗AV̂ and its SVD

Ã = Û∗AV̂ = [Ũ1 Ũ2]

[
Σ̂1

Σ̂2

]
[Ṽ1 Ṽ2]

∗,

and defining Ûi = Û Ũi and V̂i = V̂ Ṽi for i = {1, 2}, we have

(Ã =) [Û1 Û2 Û3]
∗A[V̂1 V̂2 V̂3] =

Σ̂1 0 R1

0 Σ̂2 R2

S1 S2 A3

 . (1.2)
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The goal here is to bound the angles ∠(U1, Û1) and ∠(V1, V̂1), the accuracy of the computed

subspaces as approximants to exact singular subspaces, as compared with ∠(U1, Û) and

∠(V1, V̂ ) respectively. Since span(Û1) ⊆ span(Û) we have ∠(U1, Û) ≤ ∠(U1, Û1) (similarly

for the V ’s), the idea is that the projection method is regarded near-optimal if ∠(U1, Û1) ≤
c∠(U1, Û) holds with a modest constant c.

We recall the definition of angles between subspaces. The angles θi between two subspaces
spanned by X ∈ Cm×nX , Y ∈ Cm×nY (nX ≤ nY ) with orthonormal columns are defined
by θi = acos(σi(X

∗Y )); they are known as the canonical angles or principal angles [2,
Thm. 2.5.3]. These are connected to the CS decomposition for orthogonal matrices [2,
Thm. 2.5.3], [12], in which C = diag(cos θ1, . . . , cos θnX

), S = diag(sin θ1, . . . , sin θnX
), and

we write ∠(X, Y ) = diag(θ1, . . . , θnX
).

By a unitary transformation we see that ∠(Û1, U1) = ∠(Ũ1,
[
Ik
0

]
) and ∠(V̂1, V1) =

∠(Ṽ1,
[
Ik
0

]
), where Ũ1, Ṽ1 are matrices of exact singular vectors of Ã in (1.2). We note

that k is an integer that one can choose in 1 ≤ k ≤ min(m1, n1), and the bounds we derive
are applicable to any choice.

Here is the plan of this paper. First in Section 2 we review the results for the Rayleigh-
Ritz process in symmetric eigenvalue problems. We then derive analogous results for the
SVD.

Notation. Û , V̂ always denote the left and right projection subspaces. Û1 and V̂1 are
the approximate subspaces obtained via the projection method and they satisfy span(Û1) ⊆
span(Û), span(V̂1) ⊆ span(V̂ ). U1, V1 are certain exact singular subspaces of A that Û1, V̂1
approximate. A matrix norm ‖ · ‖ without subscripts denotes any unitariliy invariant norm,
and ‖ · ‖2 is the spectral norm, equal to the largest singular value. ‖ · ‖F is the Frobenius

norm ‖A‖F =
√∑

i,j A
2
ij. Identities and inequalities involving ‖ · ‖2,F indicates they hold

for both the spectral norm and the Frobenius norm (not a mixture). σi(A) denotes the ith
largest singular value of A. λ(A) denotes the set of eigenvalues of A.

2 The Rayleigh-Ritz process for Hermitian eigenprob-

lems and theorems of Saad, Knyazev and Stewart

The standard way of computing a part of the eigenvalues and eigenvectors of a large-sparse
Hermitian (or real symmetric) matrix A is to form a low-dimensional subspace represented

by span(X̂) with X̂ having orthonormal columns, which approximately contains the desired
eigenvectors, and then extract approximate eigenpairs (called the Ritz pairs) from it by
means of the Rayleigh-Ritz process. This process computes the eigendecomposition of the
small Hermitian matrix X̂∗AX̂ = Y Λ̂Y ∗, from which the Ritz values are taken as the diag-
onals of Λ̂ and the Ritz vectors as the columns of X̂Y . The Ritz pairs (λ̂, x̂) thus obtained

satisfy x̂ ∈ span(X̂), and Ax̂− λ̂x̂ ⊥ X̂.
A natural question is to ask how accurate the Ritz pairs are as an approximation to the

exact eigenpairs. The starting point is an analogue of (1.2): the partitioning of the projected
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A as

(Ã =)[X̂1 X̂2 X̂3]
∗A[X̂1 X̂2 X̂3] =

Λ̂1 0 R∗1
0 Λ̂2 R∗2
R1 R2 A3

 , (2.1)

where [X̂1 X̂2 X̂3] is an orthogonal matrix. The computable quantities are Λ̂1, Λ̂2 and the

norms of each column of R1, R2. In the context of the Rayleigh-Ritz process, X̂ = [X̂1 X̂2] is

the projection subspace, λ(Λ̂1) and λ(Λ̂2) are the Ritz values, and the goal here is to examine

the accuracy of X̂1 as an approximate eigenspace (or more precisely, invariant subspace) of
A.

We note that bounding the eigenvalue accuracy can be done using standard eigenvalue
perturbation theory: by Weyl’s theorem, the Ritz values Λi match some of those of A to ‖Ri‖2
for i = 1, 2. For individual Ritz values, the corresponding residual norm ‖Ax̂i − λ̂ix̂i‖2 is a
bound for the distance to the closest exact eigenvalue. Moreover, by using results in [8, 9, 13]
one can often get tighter bounds for the eigenvalue accuracy, which scale quadratically with
the norm of the residual.

Now we turn to eigenvectors and discuss the accuracy of the Ritz vectors. In the 1-
dimensional k = 1 case, we bound the angle between approximate and exact eigenvectors
x̂ and x. Saad [14, Thm. 4.6] proves the following theorem, applicable to (2.1) in the case

where Λ̂1 = λ̂ is a scalar and x̂ = X̂1 is a vector (X̂ is still a subspace of dimension > 1).

Theorem 2.1 Let A be a Hermitian matrix and let (λ, x) be any of its eigenpairs. Let (λ̂, x̂)

be a Ritz pair obtained from the subspace span(X̂), such that λ̂ is the closest Ritz value to

λ. Suppose δ > 0, where δ is the distance between λ and the set of Ritz values other than λ̂.
Then

sin∠(x, x̂) ≤ sin∠(x, X̂)

√
1 +
‖r‖22
δ2

,

where r = Ax̂− λ̂x̂.

Recalling that sin∠(x, x̂) ≤ sin∠(x, X̂) holds trivially because x ∈ span(X̂), we see that the

above theorem claims that the Ritz vector is optimal up to the constant

√
1 +

‖r‖22
δ2

. This
does not mean, however, that performing the Rayleigh-Ritz process is always a reliable way
to extract approximate eigenpairs from a subspace; care is needed especially when computing
interior eigenpairs, in which δ can be very small or zero. One remedy is to use the harmonic
Rayleigh-Ritz process. For more on this issue, see for example [10] and [16, § 5.1.4].

2.1 Knyazev and Stewart’s bounds

Knyazev [7, Thm. 4.3] derived an extension of Saad’s result (Theorem 2.1) to approxi-
mate eigenspaces, presenting bounds in the spectral norm applicable in the context of linear
operators in a Hilbert space. Stewart [15, 16] proves an analogous result applicable to non-
Hermitian matrices.
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Here we state and prove a result specializing to Hermitian matrices, slightly improving
existing results in two ways: First, the term ‖R2‖ in the bounds (2.2), (2.3) are ‖[R1 R2]‖ in
the literature. Second, the bound (2.2) for any unitarily invariant norm appears to be new.

Theorem 2.2 Let A be a Hermitian matrix. Let (Λ̂1, X̂1) be a set of Ritz pairs as in (2.1)

with Λ̂1 ∈ Rk×k. Let (Λ1, X1) with Λ1 ∈ Rk×k be a set of exact eigenpairs of whose eigenvalues

lie in the interval [λ0−d, λ0+d] for some λ0 and d > 0. Suppose that δ = min |λ(Λ̂2)−λ0|−d >
0, where Λ̂2 is as in (2.1) Then for any unitarily invariant norm∥∥∥sin∠(X1, X̂1)

∥∥∥ ≤ ∥∥∥sin∠(X1, X̂)
∥∥∥(1 +

‖R2‖2
δ

)
, (2.2)

and for the spectral and Frobenius norms,∥∥∥sin∠(X1, X̂1)
∥∥∥
2,F
≤
∥∥∥sin∠(X1, X̂)

∥∥∥
2,F

√
1 +
‖R2‖22
δ2

. (2.3)

Note that when applicable, (2.3) is slightly tighter than (2.2).

proof. Let X̃ =

[
X̃1

X̃2

X̃3

]
be a set of eigenvectors Ã with orthonormal columns. Note by

the CS decomposition that we have

‖ sin∠(X1, X̂)‖ = ‖σi((X⊥1 )∗X̂)‖ =
∥∥∥[X̃3

]∥∥∥ (2.4)

and

‖ sin∠(X1, X̂1)‖ = ‖σi((X⊥1 )∗X̂1)‖ =

∥∥∥∥∥
[
X̃2

X̃3

]∥∥∥∥∥ . (2.5)

The second block of ÃX̃ = X̃Λ1 gives

Λ̂2X̃2 +R∗2X̃3 = X̃2Λ1,

which is equivalent to
Λ̂2X̃2 − X̃2Λ1 = −R∗2X̃3. (2.6)

We now use the following fact [17, p. 251]: Let A and B be square matrices such that

1/‖A−1‖ − ‖B‖ = δ > 0. Define C = AX − XB. Then we must have ‖X‖ ≤ ‖C‖
δ

(many
results in eigenvector perturbation theory use this fact [17]).

Using this fact in (2.6), we have

‖X̃2‖ ≤
‖R∗2X̃3‖

δ
.

Hence using the fact [5, p. 327] that ‖XY ‖ ≤ ‖X‖2‖Y ‖ for any unitarily invariant norm we
have

‖X̃2‖ ≤
‖R2‖2
δ
‖X̃3‖. (2.7)
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Therefore, recalling (2.4) and (2.5) we have

‖ sin∠(X1, X̂1)‖ =

∥∥∥∥∥
[
X̃2

X̃3

]∥∥∥∥∥ ≤ ‖X̃2‖+ ‖X̃3‖

≤ (1 +
‖R2‖2
δ

)‖X̃3‖ = (1 +
‖R2‖2
δ

)‖ sin∠(X1, X̂)‖, (2.8)

which is (2.2). In the spectral or Frobenius norm we can use the inequality ‖
[
A
B

]
‖2,F ≤√

‖A‖22,F + ‖B‖22,F ; note that this does not necessarily hold for other unitarily invariant

norms, e.g. the nuclear (or trace) norm ‖A‖∗ =
∑

i σi(A). We thus obtain the slightly
tighter bound

‖ sin∠(X1, X̂1)‖2,F ≤
√
‖X̃2‖22,F + ‖X̃3‖22,F =

√
1 +
‖R2‖22
δ2
‖X̃3‖2,F

=

√
1 +
‖R2‖22
δ2
‖ sin(X1, X̂)‖2,F , (2.9)

which is (2.3). �
It is perhaps worth emphasizing that the “gap” δ is the gap between some of the Ritz

values and exact eigenvalues. In particular, the gap does not involve the eigenvalues of A3,
in contrast to the gap that arises in the context of quadratic eigenvalue perturbation bounds
[8, 9]. The same holds for the results for the SVD as we describe next.

3 Accuracy bounds for approximate singular subspaces

We now turn to the main subject SVD and derive accuracy bounds for approximate singular
vectors or singular subspaces (just as in the symmetric eigenproblem, accuracy of singular
values can be bounded using standard perturbation theory; most importantly Weyl’s bound;
bounds that scale quadratically with the residual are also known [8]). We derive the SVD
analogues of Theorem 2.2 by employing the technique used in the proof given above.

3.1 Main result

Let Ûi, V̂i, Σ̂i, Ri, Si, A3 be as defined in (1.2), and let
(

Σ1, Ũ1, Ṽ1

)
be exact singular triplets

of Ã and let Ṽ1 =

Ṽ11Ṽ21
Ṽ31

 , Ũ1 =

Ũ11

Ũ21

Ũ31

. We shall prove the following, which is the main result

of this paper.

Theorem 3.1 Let A ∈ Cm×n. Let Û = [Û1 Û2] ∈ Cm×m1 and V̂ = [V̂1 V̂2] ∈ Cn×n1 have

orthonormal columns with Û1 ∈ Cm×k and V̂1 ∈ Cn×k, and let Ã, Σ̂i, Ri, Si, A3 be as defined
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in (1.2). Let

A = [U1 U2 U3]

Σ1

Σ2

Σ3

 [V1 V2 V3]
∗ (3.1)

be an (exact) SVD, with singular values arranged in an arbitrary (not necessarily decreasing)
order. Define

δ = max(σmin(Σ1)− ‖Σ̂2‖2, σmin(Σ̂2)− ‖Σ1‖2). (3.2)

If δ > 0, then

max(‖ sin∠(U1, Û1)‖, ‖ sin∠(V1, V̂1)‖)

≤
(

1 +
max(‖R2‖2, ‖S2‖2)

δ

)
max(‖ sin∠(U1, Û)‖, ‖ sin∠(V1, V̂ )‖) (3.3)

and

‖ sin∠(U1, Û1)‖+ ‖ sin∠(V1, V̂1)‖

≤
(
1 +

max(‖R2‖2, ‖S2‖2)
δ

)(
‖ sin∠(U1, Û)‖+ ‖ sin∠(V1, V̂ )‖

)
(3.4)

in any unitarily invariant norm, and in the spectral and Frobenius norms

max(‖ sin∠(U1, Û1)‖2,F , ‖ sin∠(V1, V̂1)‖2,F )

≤
√

1 +
max(‖R2‖2, ‖S2‖2)2

δ2
max(‖ sin∠(U1, Û)‖2,F , ‖ sin∠(V1, V̂ )‖2,F ), (3.5)

proof. As in (2.4), (2.5) we have

‖ sin∠(U1, Û1)‖ =

∥∥∥∥∥
[
Ũ21

Ũ31

]∥∥∥∥∥ , ‖ sin∠(V1, V̂1)‖ =

∥∥∥∥∥
[
Ṽ21
Ṽ31

]∥∥∥∥∥ , (3.6)

and recalling that Û = [Û1 Û2] and V̂ = [V̂1 V̂2],

‖ sin∠(U1, Û)‖ = ‖Ũ31‖, ‖ sin∠(V1, V̂ )‖ = ‖Ṽ31‖. (3.7)

To establish the results we attempt to bound ‖Ũ21‖ with respect to ‖Ũ31‖, and similarly

‖Ṽ21‖ with respect to ‖Ṽ31‖.

From the second block of

Σ̂1 0 R1

0 Σ̂2 R2

S1 S2 A3


Ṽ11Ṽ21
Ṽ31

 =

Ũ11

Ũ21

Ũ31

Σ1 we obtain

Σ̂2Ṽ21 +R2Ṽ31 = Ũ21Σ1, (3.8)
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and also from the second block of
[
Ũ∗11 Ũ

∗
21 Ũ

∗
31

]Σ̂1 0 R1

0 Σ̂2 R2

S1 S2 A3

 = Σ1

[
Ṽ ∗11 Ṽ

∗
21 Ṽ

∗
31

]
we get

Ũ∗21Σ̂2 + Ũ∗31S2 = Σ1Ṽ
∗
21. (3.9)

Now suppose that δ = σmin(Σ1)− ‖Σ̂2‖2 > 0. Then, taking norms and using the triangular
inequality and the fact ‖XY ‖ ≤ ‖X‖2‖Y ‖ in (3.8) and (3.9) we obtain

‖Ũ21‖σmin(Σ1)− ‖Ṽ21‖‖Σ̂2‖2 ≤ ‖R2Ṽ31‖,
‖Ṽ21‖σmin(Σ1)− ‖Ũ21‖‖Σ̂2‖2 ≤ ‖Ũ∗31S2‖.

By adding the first inequality times σmin(Σ1) and the second inequality times ‖Σ̂2‖ we

eliminate the ‖Ṽ21‖ term, and assuming that σmin(Σ1) > ‖Σ̂2‖2 we get

‖Ũ21‖ ≤
σmin(Σ1)‖R2Ṽ31‖+ ‖Σ̂2‖2‖Ũ∗31S2‖

(σmin(Σ1))2 − ‖Σ̂2‖22
. (3.10)

We can similarly obtain

‖Ṽ21‖ ≤
σmin(Σ1)‖Ũ∗31S2‖+ ‖Σ̂2‖2‖R2Ṽ31‖

(σmin(Σ1))2 − ‖Σ̂2‖22
. (3.11)

Again using the fact ‖XY ‖ ≤ ‖X‖2‖Y ‖ we have

max(‖Ũ21‖, ‖Ṽ21‖) ≤
max(‖Ũ∗31S2‖, ‖R2Ṽ31‖)
σmin(Σ1)− ‖Σ̂2‖2

≤ max(‖Ũ∗31‖, ‖Ṽ31‖) max(‖R2‖2, ‖S2‖2)
σmin(Σ1)− ‖Σ̂2‖2

=
max(‖R2‖2, ‖S2‖2)

δ
max(‖Ũ∗31‖, ‖Ṽ31‖). (3.12)

Now if δ = σmin(Σ̂2) − ‖Σ1‖2 > 0, we repeat the above analysis to arrive at the same
conclusion (3.12).

Recalling (3.6) and (3.7), we obtain

max(‖ sin∠(U1, Û1)‖, ‖ sin∠(V1, V̂1)‖) = max

(∥∥∥∥∥
[
Ũ21

Ũ31

]∥∥∥∥∥ ,
∥∥∥∥∥
[
Ṽ21
Ṽ31

]∥∥∥∥∥
)

≤ max(‖Ũ21‖+ ‖Ũ31‖, ‖Ṽ21‖+ ‖Ṽ31‖)

≤ (1 +
max(‖R2‖2, ‖S2‖2)

δ
) max(‖Ũ31‖, ‖Ṽ31‖)

= (1 +
max(‖R2‖2, ‖S2‖2)

δ
) max(‖ sin∠(U1, Û)‖, ‖ sin∠(V1, V̂ )‖),
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giving (3.3). In the spectral or Frobenius norm we use the inequality ‖
[
A
B

]
‖2 ≤

√
‖A‖22 + ‖B‖22

to obtain the slightly tighter bound

max{‖ sin∠(U1, Û1)‖2,F , ‖ sin∠(V1, V̂1)‖2,F} = max

∥∥∥∥∥
[
Ũ21

Ũ31

]∥∥∥∥∥
2,F

,

∥∥∥∥∥
[
Ṽ21
Ṽ31

]∥∥∥∥∥
2,F


≤ max(

√
‖Ũ21‖22,F + ‖Ũ31‖22,F ,

√
‖Ṽ21‖22,F + ‖Ṽ31‖22,F )

≤
√

1 + (
max(‖R2‖2, ‖S2‖2)

δ
)2 max(‖ sin∠(U1, [Û1 Û2])‖2,F , ‖ sin∠(V1, [V̂1 V̂2])‖2,F ).

To obtain (3.4), adding the two inequalities (3.10) and (3.11) we have

‖Ũ21‖+ ‖Ṽ21‖ ≤
‖R2Ṽ31‖+ ‖Ũ∗31S2‖
(σmin(Σ1))2 − ‖Σ̂2‖22

≤ (‖Ũ31‖+ ‖Ṽ31‖)
max(‖R2‖2, ‖S2‖2)

δ
, (3.13)

where as before, the last bound holds in both cases δ = σmin(Σ1)−‖Σ̂2‖2 and δ = σmin(Σ̂2)−
‖Σ1‖2. Hence we have

‖ sin∠(U1, Û1)‖+ ‖ sin∠(V1, V̂1)‖ =

∥∥∥∥∥
[
Ũ21

Ũ31

]∥∥∥∥∥+

∥∥∥∥∥
[
Ṽ21
Ṽ31

]∥∥∥∥∥
≤ ‖Ũ21‖+ ‖Ũ31‖+ ‖Ṽ21‖+ ‖Ṽ31‖

≤ (1 +
max(‖R2‖2, ‖S2‖2)

δ
)(‖Ũ31‖+ ‖Ṽ31‖)

= (1 +
max(‖R2‖2, ‖S2‖2)

δ
)(‖ sin∠(U1, Û)‖+ ‖ sin∠(V1, V̂ )‖),

completing the proof. �
Theorem 3.1 shows that the computed singular vectors obtained by the projection method

is optimal up to a factor
√

1 +
(max(‖R2‖2,‖S2‖2)

δ

)2
in the spectral norm, and a factor 1 +

max(‖R2‖2,‖S2‖2)
δ

in any unitarily invariant norm. Note the similarity of these factor between
Theorems 2.2 and 3.1.

3.2 When one-sided projection is used

Some of the state-of-the-art algorithms for an approximate SVD, such as [3, 4], rely on one-
sided projection methods, instead of two-sided projection as described so far. In this case
one would approximate A ≈ (Û Ũ)Σ̂Ṽ ∗, where ŨΣ̂Ṽ ∗ = Û∗A is the SVD of the m1 × n
matrix, obtained by projecting A only from the left side (compare with the discussion in the

introduction) by Û .
Although one-sided projection is merely a special case of two-sided projection (as it

corresponds to taking V̂ = In), because of its practical importance and the simplicities that

9



accrue, we restate the above results when specialized to one-sided projections. In this case
we do not have V̂3, and we start with the equation

(Ã =) [Û1 Û2 Û3]
∗A[V̂1 V̂2] =

Σ̂1 0

0 Σ̂2

S1 S2

 . (3.14)

Theorem 3.2 In the notation of Theorem 3.1, suppose that span(V̂ ) = Rn. Then

‖ sin∠(U1, Û1)‖+ ‖ sin∠(V1, V̂1)‖) ≤ (1 +
‖S2‖2
δ

)‖ sin∠(U1, Û)‖ (3.15)

in any unitarily invariant norm. In the spectral and Frobenius norms,

max(‖ sin∠(U1, Û1)‖2,F ,‖ sin∠(V1, V̂1)‖2,F ) ≤

√
1 +
‖S2‖22,F
δ2

‖ sin∠(U1, Û)‖2,F . (3.16)

proof. The bounds are obtained essentially by taking Ri = 0 in Theorem 3.1, and noting
that ∠(V1, [V̂1 V̂2]) = 0 because V̂ spans the entire space Rn. �

Note that the inequality corresponding to (3.3) becomes strictly weaker than (3.15), thus
omitted.

3.3 Note on approximating null spaces

We expect that this work is most relevant in the context of finding a approximate and
truncated SVD, in which one approximates the largest singular values and its associated
subspaces. Nonetheless, the results obtained here are applicable to any set of singular vectors:
for example, Theorem 3.1 can be used when Û1, V̂1 approximate the singular subspaces
corresponding to certain interior singular values. The same holds for the smallest singular
values, and in particular, in the context of computing the null space.

However, practical difficulties arise when one is not finding the largest singular subspaces.
The first difficulty is related to the remark before Section 2.1; when computing interior
singular values, “spurious” approximate singular values can be very close to an exact sought
singular value, while having corresponding singular vectors that are nowhere near the correct
ones. An approach analogous to harmonic Rayleigh-Ritz might be helpful here; the analysis
of such alternatives would also be of interest.

Another difficulty (focusing on null spaces) is that even if the bounds in Theorem 3.1

are sufficiently small, this does not guarantee that Û1, V̂1 capture the whole left and right
null space of A: specifically, U1, V1 in the theorems above are merely a subset of the null
spaces, of the same size as Û1, V̂1. Unfortunately there is no easy way to check that Û1, V̂1
contains the entire desired null space (contrast this with when Û1, V̂1 approximate the largest

singular subspaces, in which case A−Û1Σ̂1V̂1 being small indicates Û1, V̂1 contain the desired
subspaces). The blame is not on the projection algorithm but the input subspace Û , V̂ that
we started with.

10



A An alternative proof of Wedin’s result

A classical result on perturbation of singular vectors is due to Wedin [18], which is an
analogue of Davis-Kahan’s sin θ theorems for Hermitian eigenproblems. Wedin calls it the
generalized sin θ theorem in [18, § 3]. Here we show the line of argument that we used
in this paper can be used to prove the result when the perturbation is off-diagonal. The
proof below may look more accessible (an alternative derivation is via the Jordan-Wieldant
matrix combined with the Davis-Kahan theory [17, § V.4.1]). We also prove slightly more
in equation (A.2).

Theorem A.1 Let A,E ∈ Cm×n and [U1 U2] ∈ Cm×m, [V1 V2] ∈ Cn×n be orthogonal matri-
ces such that

[U1 U2]
∗(A+ E)[V1 V2] =

[
Σ1

Σ2

]
+

[
0 R
S 0

]
,

where Σ1,Σ2 need not be diagonal. Let diag(Σ̃1, Σ̃2) be a matrix of singular values of A+E

(singular values ordered arbitrarily), and define δ = max(σmin(Σ1)−‖Σ̃2‖2, σmin(Σ̃2)−‖Σ1‖2).

If δ > 0, then the exact left and right singular subspaces Ũ1 and Ṽ1 of A + E corresponding
to Σ̃1 satisfy, in any unitarily invariant norm,

max(‖ sin∠(V1, Ṽ1)‖, ‖ sin∠(U1, Ũ1))‖) ≤
max(‖R‖, ‖S‖)

δ
(A.1)

and

‖ sin∠(V1, Ṽ1)‖+ ‖ sin∠(U1, Ũ1))‖ ≤
‖R‖+ ‖S‖

δ
. (A.2)

proof. Let Ã := [U1 U2]
∗(A+ E)[V1 V2] and Ã = ŨΣ̃Ṽ ∗ be its SVD. Writing

Ũ =
[ [Ũ11 Ũ12

Ũ21 Ũ22

] ]
, Ṽ =

[
Ṽ11 Ṽ12
Ṽ21 Ṽ22

]
,

as in (2.4), (2.5) we have

‖ sin∠(U1, Ũ1)‖ = ‖Ũ21‖, ‖ sin∠(V1, Ṽ1)‖ = ‖Ṽ21‖. (A.3)

By the second block row of

[
Σ1 R
S Σ2

][
Ṽ11
Ṽ21

]
=

[
Ũ11

Ũ21

]
Σ̃1 we get

SṼ11 + Σ2Ṽ21 = Ũ21Σ̃1,

so
Ũ21Σ̃1 − Σ2Ṽ21 = SṼ11,

If σmin(Σ̃1) > ‖Σ2‖2, then taking norms we get

σmin(Σ̃1)‖Ũ21‖ − ‖Σ2‖2‖Ṽ21‖ ≤ ‖S‖. (A.4)
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Similarly, the second block column of
[
Ũ∗11 Ũ∗21

] [Σ1 R
S Σ2

]
= Σ̃1

[
Ṽ11 Ṽ21

]
gives Ũ∗11R +

Ũ∗21Σ2 = Σ̃1Ṽ21, so

Σ̃1Ṽ21 − Ũ∗21Σ2 = Ũ∗11R.

Taking norms we get
σmin(Σ̃1)‖Ṽ21‖ − ‖Σ2‖2‖Ũ21‖ ≤ ‖R‖. (A.5)

Eliminating the ‖Ṽ21‖ term from (A.4) and (A.5), we get

((σmin(Σ̃1))
2 − ‖Σ2‖22)‖Ũ21‖ ≤ σmin(Σ̃1)‖R‖+ ‖Σ2‖2‖S‖,

Hence, assuming σmin(Σ̃1)) > ‖Σ2‖2 we obtain

‖Ũ21‖ ≤
σmin(Σ̃1)‖R‖+ ‖Σ2‖2‖S‖

(σmin(Σ̃1))2 − ‖Σ2‖22
(A.6)

≤ max(‖R‖, ‖S‖)σmin(Σ̃1) + ‖Σ2‖2
(σmin(Σ̃1))2 − ‖Σ2‖22

=
max(‖R‖, ‖S‖)

(σmin(Σ̃1))− ‖Σ2‖2

=
max(‖R‖, ‖S‖)

δ
. (A.7)

A similar argument, again assuming σmin(Σ̃1)) > ‖Σ2‖2, yields a bound for ‖Ṽ21‖:

‖Ṽ21‖ ≤
‖Σ2‖2‖R‖+ σmin(Σ̃1)‖S‖

(σmin(Σ̃1))2 − ‖Σ2‖22
(A.8)

≤ max(‖R‖, ‖S‖)
δ

. (A.9)

As in the proof of Theorem 3.1, the bounds (A.7) and (A.9) hold even when σmin(Σ2) >

‖Σ̃1‖2. Hence we conclude that

max(‖Ṽ21‖, ‖Ũ21‖) ≤
max(‖R‖, ‖S‖)

δ
.

In view of (A.3) this establishes (A.1).

The remaining task is to prove (A.2). We add (A.6) and (A.8) to obtain (if σmin(Σ̃1) >
‖Σ2‖2)

‖Ũ21‖+ ‖Ṽ21‖ ≤
‖R‖+ ‖S‖

σmin(Σ̃1)− ‖Σ2‖2
=
‖R‖+ ‖S‖

δ
,

and again by repeating the argument we see that the inequality ‖Ũ21‖ + ‖Ṽ21‖ ≤ ‖R‖+‖S‖
δ

holds whether δ = σmin(Σ̃1)− ‖Σ2‖2 or δ = σmin(Σ2)− ‖Σ̃1‖2.

12



References

[1] C. Beattie. Galerkin eigenvector approximations. Math. Comp., 69:1409–1434, 2000.

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, 4th edition, 2012.

[3] M. Gu. Subspace iteration randomization and singular value problems. arXiv preprint
arXiv:1408.2208, 2014.

[4] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev., 53(2):217–288, 2011.

[5] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
PA, USA, 2008.

[6] M. E. Hochstenbach. A Jacobi–Davidson type SVD method. SIAM J. Sci. Comp,
23(2):606–628, 2001.

[7] A. V. Knyazev. New estimates for Ritz vectors. Math. Comp., 66(219):985–995, 1997.

[8] C.-K. Li and R.-C. Li. A note on eigenvalues of perturbed Hermitian matrices. Linear
Algebra Appl., 395:183–190, 2005.

[9] R. Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM J.
Matrix Anal. Appl., 19(2):541–550, 1998.

[10] R. B. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra Appl.,
154-156:289 – 309, 1991.

[11] Y. Nakatsukasa. Algorithms and Perturbation Theory for Matrix Eigenvalue Problems
and the Singular Value Decomposition. PhD thesis, University of California, Davis,
2011.

[12] C. C. Paige and M. A. Saunders. Towards a generalized singular value decomposition.
SIAM J. Numer. Anal., 18(3):398–405, 1981.

[13] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

[14] Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia, PA,
USA, second edition, 2011.

[15] G. W. Stewart. A generalization of Saad’s theorem on Rayleigh-Ritz approximations.
Linear Algebra Appl., 327:115–119, 1999.

[16] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia, 2001.

13



[17] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory (Computer Science and
Scientific Computing). Academic Press, 1990.

[18] P. Wedin. Perturbation bounds in connection with singular value decomposition. BIT,
12:99–111, 1972.

14


