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Abstract

Quadratically constrained quadratic programming (QCQP) with one constraint is usually
solved via a dual SDP problem. In this work we introduce an algorithm for QCQP that
requires finding just one eigenpair of a generalized eigenvalue problem, and involves no
outer iterations other than the (usually black-box) iterations for computing the eigenpair.
Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also
analyze the QCQP solution extensively, including difficult cases, and show that the canonical
form of a matrix pair gives a complete classification of the QCQP in terms of boundedness
and attainability, and explain how to obtain a global solution whenever it exists.

keywords: QCQPgeneralized eigenvalue problemcanonical form for symmetric matrix
pair

1 Introduction

A quadratically constrained quadratic programming (QCQP) is an optimization problem of the
form [4, Sec. 4.4]

minimize
x∈Rn

f(x) := x>Ax+ 2a>x,

subject to gi(x) := x>Bix+ 2b>i x+ βi ≤ 0 (i = 1, . . . , k),
(1)

where A and Bi are n × n symmetric matrices and a, bi ∈ Rn, βi ∈ R. When A and Bi are
all positive semidefinite, QCQP (1) is a convex problem, for which efficient algorithms are
available such as the interior-point method [4, Ch. 11]. By contrast, when convexity is not
assumed, QCQP is generally a difficult problem, in fact NP-hard in general [30]. Even when
the constraints are all affine, i.e., Bi = 0, the decision problem formulation is known to be
NP-complete [36]. All these are evidence that nonconvex QCQP is generally computationally
intractable.

∗This work was supported by JSPS Scientific Research Grants No. 26540007 and No. 26870149.
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One exception to this difficulty is when k = 1, that is, when there is just one constraint:

minimize
x∈Rn

f(x) := x>Ax+ 2a>x,

subject to g(x) := x>Bx+ 2b>x+ β ≤ 0.
(2)

This class of problems, namely QCQP with one quadratic constraint, includes the trust-region
subproblem (TRS) as a special case [5], [25, Ch. 4], in which B is positive definite, b = 0 and β <
0. TRS is commonly employed for nonlinear optimization, and a number of efficient algorithms
for solving TRS are available, e.g. [13, 24, 27, 29]. The QCQP (2) is sometimes called the
generalized TRS [23], and has applications in double well potential problems [9] and compressed
sensing for geological data, in which A is positive semidefinite and B is indefinite [18]. In this
paper we refer to QCQP with one quadratic constraint (2) simply as QCQP, unless otherwise
mentioned.

A dual formulation for QCQP (2) can be written as an semidefinite programming (SDP)

maximize
γ

γ

subject to

[
A+ λB a+ λb

(a+ λb)> λβ − γe

]
� 0,

(3)

where X � Y means X − Y is positive semidefinite. Remarkably, assuming Slater’s condition
is satisfied, the SDP (3) is a dual problem with no duality gap, that is, the solution γ to (3)
is equal to the optimal value of the QCQP (2), even when (2) is nonconvex; see [4, App. B]
for details and a proof, which relies on the S-lemma [26]. The solution x can be obtained via
the dual variable X = xx> of (3). Nonconvex QCQP with one constraint (2) is thus a notable
class of nonconvex optimization problems that can be solved in polynomial time. However, this
SDP approach is not very efficient as solving the SDP (3) by the standard interior-point method
involves an iterative process, each iteration requiring O(n3) operations [4, § 11.8.3] with a rather
large constant, which limits the practical matrix size to, say, n ≤ 1000.

Alternative strategies have been proposed in the literature. Moré [23] analyzes QCQP (2)
and describes an algorithm that extends the algorithm of [24] for TRS. This algorithm is of an
iterative nature, and as indicated in the experiments in [1] for TRS, a one-step algorithm can
significantly outperform such algorithm. Another approach [9, 16] is to note the Lagrange dual
problem can be expressed equivalently as

maximize
ρ≥0

d(ρ) := inf
x
x>(A+ σB)x− 2(a+ σb)>x− σβ. (4)

This is a concave maximization problem, hence can be solved by e.g. a gradient descent method
or Newton’s method. However, computing the gradient already involves O(n3) operations, let
alone the Hessian, and typically a rather large number of iterations is needed for convergence.

The main contribution of this paper is the development of an efficient algorithm for QCQP (2)
that is strictly feasible and (A,B) is a definite pair with A + λB � 0 for some λ ≥ 0 (which
we call definite feasible), which we argue is a generic condition for QCQP to be bounded1. The
running time is O(n3) when the matrices A,B are dense, and it is significantly faster if the
matrices are sparse. The algorithm requires (i) finding a λ̂ ≥ 0 such that A + λ̂B is positive
definite, and (ii) computing an extremal eigenpair of an (2n+1)×(2n+1) generalized eigenvalue
problem. We emphasize that the algorithm requires just one eigenvalue problem. The algorithm
is easy to implement given a routine for computing an extremal (largest or smallest) eigenpair,

1Note that solving the SDP (3) would also face difficulty when the QCQP is not definite feasible, because
then the interior-point method involves the inverse of a singular matrix [4, § 11.8.3].
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for which high-quality software based on shift-invert Arnoldi is publically available such as
ARPACK [2, 21]. We present experiments that illustrate the efficiency and accuracy of our
algorithm compared with the SDP-based approach. Our algorithm is based on the framework
established in [1, 11, 17] of formulating the KKT conditions as an eigenvalue problem.

In addition, this paper also contributes to the theoretical understanding of QCQP, treating
those that are not definite feasible. Specifically, it is a nontrivial problem to decide whether
a given QCQP is bounded or not, and if bounded, whether the infimum is attainable. We
present a classification of QCQP in terms of feasibility/boundedness/attainability, based on
the canonical form of the symmetric pair (A,B) under congruence. We shall see that the
canonical form provides rich information on the properties of the associated QCQP. We thus
establish a process that (in exact arithmetic) solves QCQP completely in the sense that feasibil-
ity/boundedness/attainability is checked and the optimal objective value and a global solution
is computed if it exists.

This paper is organized as follows. In Section 2 we review (mostly existing) results on the
optimality and boundedness of QCQP (2). Section 3 is the heart of this paper where we derive
our eigenvalue-based algorithm for definite feasible QCQP. We present numerical experiments
in Section 4, and analyze QCQP that are not definite feasible in Section 5.

Notation. We denote by R(X) the range of a matrix X, and by N (X) the null space.
X � (�)0 indicates X is a positive (semi)definite matrix. In is the n×n identity, and On, Om×n
are zero matrices of size n×n and m×n. We simply write I,O if the dimensions are clear from
the context. x∗ denotes a QCQP solution with associated Lagrange multiplier λ∗.

2 Preliminaries: Optimality and boundedness of QCQP

This section collects results on QCQP that are needed for our analysis and algorithm.

2.1 QCQP with no interior feasible point

We first treat the case where QCQP (2) has no strictly feasible point, that is, when Slater’s
condition is violated.

First note that checking strict feasibility can be done by an unconstrained quadratic mini-
mization problem minimizex g(x). If the optimal objective value minx g(x) is positive, then the
QCQP is infeasible (and we attempt no further analysis). If minx g(x) is negative, the QCQP
satisfies Slater’s condition. This subsection focuses on the case minx g(x) = 0.

When minx g(x) = 0, the feasible points are the solutions for the unconstrained optimization
problem minimizex g(x), and so for any feasible x′ we must have

∇g(x′) = 2(Bx′ + b) = 0,

∇2g(x′) = 2B � 0.

Therefore we can write g(x) as

g(x) = (x− x′)>B(x− x′) + 2(Bx′ + b)>(x− x′) + g(x′)

= (x− x′)>B(x− x′) ≥ 0.

Thus we see that g(x) ≤ 0 is equivalent to g(x) = 0, and implies x−x′ ∈ N (B). Now let N (B)
be spanned by ν1, . . . , νj . Taking N = [ν1 . . . νj ] ∈ Rn×j we can write

x− x′ ∈ N (B)⇔ x = x′ +Ny
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for some y ∈ Rj . Thus the constraint g(x) ≤ 0 can be rewritten as x = x′ +Ny, so the original
QCQP is equivalent to the unconstrained problem

minimize
y∈Rj

f(x′ +Ny) = y>(N>AN)y + 2(N>a)>y.

This is an unconstrained quadratic programming, which is straightforward to solve by a
linear system (N>AN)y = −N>a, which is a solution if and only if N>AN � 0; otherwise the
QCQP is unbounded.

Thus, dealing with QCQP that violates Slater’s condition is straightforward. In what follows
we treat strictly feasible QCQP for which there exist x with g(x) < 0 (i.e., Slater’s condition is
satisfied).

2.2 Boundedness and attainability

We start with a necessary and sufficient condition for boundedness of a strictly feasible QCQP.

Lemma 2.1 (Hsia et al. [16], Thm. 5) Suppose that for QCQP (2), there exists an interior
feasible point x ∈ Rn such that g(x) < 0. Then f(x) is bounded below in the feasible region if
and only if there exists λ ≥ 0 such that

A+ λB � 0, a+ λb ∈ R(A+ λB). (5)

proof. This is essentially a corollary of strong duality between QCQP (2) and SDP (3), which
is bounded below if and only if there exist λ ≥ 0 and µ ∈ R such that[

λβ − µ (a+ λb)>

a+ λb A+ λB

]
� 0, (6)

which is equivalent to (5).

Boundedness guarantees the existence of the optimal (infimum) value for f . On the other
hand, it is worth noting that there exist QCQP that are bounded but has no solution x∗. For
example, consider

minimize x2

subject to − xy + 1 ≤ 0.
(7)

For any (x, y), we have x2 ≥ 0, and by taking (x, y) = (ε, 1/ε) and ε → 0 the constraints are
satisfied and the objective function approaches the infimum 0. However, no feasible (x, y) has
the objective value equal to 0. Such QCQP, that is, QCQP for which the infimum cannot be
attained in the feasible region, are called unattainable. A necessary and sufficient condition for
unattainability is given in the following result.

Lemma 2.2 (Hsia et al. [16], Thm. 7) Suppose that QCQP (2) is bounded and satisfies
Slater’s condition. Then the QCQP is unattainable if and only if the set {λ ≥ 0|A + λB � 0}
is a single point λ∗ ≥ 0, and the following has no solution in y:{

g((A+ λ∗B)†(a+ λ∗b) + V y) = 0 if λ∗ > 0,
g(A†a+ V y) ≤ 0 if λ∗ = 0.

(8)

A reasonable output of a numerical algorithm for such QCQP is the infimum objective value
0 with the warning that it is unattainable.
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2.3 Optimality conditions

When QCQP (2) satisfies Slater’s condition and has a global solution, a set of necessary and
sufficient conditions is given by Moré [23]:

Theorem 2.1 (Moré [23]) Suppose that QCQP (2) satisfies Slater’s condition. Then x∗ is
its global solution if and only if there exist λ∗ ≥ 0 such that

(A+ λ∗B)x∗ = −(a+ λ∗b),

g(x∗) ≤ 0,

λ∗g(x∗) = 0,

A+ λ∗B � 0.

(9)

The first three conditions in (9) represent the KKT conditions, and there can be many
KKT points (λ, x) satisfying these three, reflecting the nonconvexity of the problem. The final
condition A+ λ∗B � 0 specifies which of the KKT points is the solution.

2.4 Definite feasible QCQP: strictly feasible and definite

By Lemma 5, for a strictly feasible QCQP to be bounded we necessarily need A + λ̂B � 0 for
some λ̂ ≥ 0. If we further have A + λ̂B � 0, then the QCQP is clearly bounded. As we argue
in Section 5, such cases form a “generic” class of QCQP (2) that are bounded and has a global
solution. We therefore give a name for such QCQP.

Definition 2.1 A QCQP (2) satisfying the following two conditions is said to be definite fea-
sible.

1. It is strictly feasible: there exists x ∈ Rn such that g(x) < 0, and

2. (A,B) is definite with nonnegative shift: there exists λ̂ ≥ 0 such that A+ λ̂B � 0.

We shall treat such QCQP in detail and derive an efficient algorithm in Section 3. To begin
with, for definite feasible QCQP there always exists a global solution x∗.

Theorem 2.2 (Moré [23]) For a definite feasible QCQP (2), there exist x∗ ∈ Rn, λ∗ ≥ 0
such that the conditions (9) hold.

In the special case of TRS we have B � 0, so by taking λ̂ arbitrarily large we have A+λ̂B � 0,
and since Slater’s condition is trivially satisifed, it follows that TRS is a definite feasible QCQP.
Similarly, if A � 0, taking λ̂ = 0 shows the pencil is definite, so such QCQP is definite feasible
as long as it is strictly feasible. Indeed a number of studies focus on such cases [8, 9].

2.4.1 Checking definite feasibility

Let us now discuss how to determine whether a given QCQP (2) is definite feasible.
Generally the values of λ for which A+λB � 0, if nonempty, is an open interval D̃ = (λ̃1, λ̃2),

allowing λ̃1 = −∞ and λ̃2 =∞, and the set of λ ≥ 0 for which A+ λB � 0 is its closure [23] if
D̃ is nonempty. λ̃1, λ̃2 are eigenvalues of the pencil A+ λB unless they are ±∞.

In general, given a matrix pair (A,B), it is an active research area to devise algorithms for
checking its definiteness (dropping the requirement λ̂ ≥ 0), that is, checking whether there exist
t ∈ R such that A sin t+B cos t � 0. Such algorithms include [6, 15], which also provide a value
t0 for which A sin t0 + B cos t0 � 0 if (A,B) is definite. If the pair (A,B) is determined not to
be definite then QCQP is not definite feasible. If the pair (A,B) is determined to be definite,
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with t0 available such that A sin t0 +B cos t0 � 0, then we compute the eigenvalues λ1 < 0 < λ2
of the definite pencil

(A sin t0 +B cos t0) + λ(A cos t0 −B sin t0),

which are nearest to 0. Then by using a linear transformation, we can obtain the interval
t ∈ (t1, t2) on which A sin t+B cos t � 0. From this we obtain the interval D ⊆ [0,∞) such that
A+ λB � 0 if and only if λ ∈ D. If D is empty then the QCQP is not definite feasible.

3 Eigenvalue-based algorithm for definite feasible QCQP

We now develop an eigenvalue algorithm for definite feasible QCQP. In this section we assume
that a value of λ̂ ≥ 0 such that A+ λ̂B � 0 is known, through a process such as those described
in Section 2.4.1.

By Theorems 2.1 and 2.2, a definite feasible QCQP can be solved by solving (9) for λ∗ and
x∗. We develop an algorithm that first finds the optimal Lagrange multiplier λ∗ by an eigenvalue
problem, then computes x∗.

3.1 Preparations

First, let D be the interval {λ ≥ 0|A + λB � 0}. We denote the left-end of D by λ1, and the
right-end by λ2. Note that λ2 = λ̃2, but due to the requirement λ ≥ 0, the left-end of D may
not be the same as λ̃1 in Section 2.4.1. We have either D = (λ1, λ2) if λ1 > 0, or D = [λ1, λ2),
which happens if A � 0 and hence λ1 = 0.

For λ ∈ D, define

x(λ) = −(A+ λB)−1(a+ λb),

γ(λ) = g(x(λ)).
(10)

In view of the third condition in (9), the main goal is to find λ∗ such that γ(λ∗) = 0. This
argument apparently dismisses the cases where A + λ∗B is singular (then x(λ) is not well-
defined) or λ∗ = 0 (then γ(λ) = 0 is unnecessary). Nonetheless, the analysis below will cover
such cases.

Since A + λ̂B � 0, A and B are simultaneously diagonalizable, that is, there exists a
nonsingular W ∈ Rn×n such that W>AW and W>BW are both diagonal [12, Chap. 8]. Hence
without loss of generality we assume that A,B are diagonal in the analysis below (our algorithm
does not assume this or the knowledge of W ). Let A = diag(d1, . . . , dn), B = diag(e1, . . . , en),
a = [a1, . . . , an]>, and b = [b1, . . . , bn]>. It is now straightforward to identify the interval D.
Since

di + λei > 0⇔


λ > −di

ei
(ei > 0)

λ < −di
ei

(ei < 0)

λ : no constraint (ei = 0, di > 0),

(11)

When 0 < λ1 < λ2 <∞ there exist i1 and i2 so that di1 + λ1ei1 = 0 and di2 + λ2ei2 = 0.
γ(λ) can be explicitly expressed using x(λ) = [x1(λ), . . . , xn(λ)]> as

xi(λ) = −ai + λbi
di + λei

, (12)

γ(λ) =

n∑
i=1

{
eixi(λ)2 + 2bixi(λ)

}
+ β. (13)
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Therefore xi(λ) and γ(λ) are rational functions of λ. Moreover, on λ ∈ D, the function γ(λ)
has the following property [23, Thm. 5.2].

Proposition 3.1 (Moré [23]) γ(λ) is monotonically nonincreasing on λ ∈ D̃ = (λ̃1, λ̃2) ⊇ D.
Moreover, excluding the case where x(λ) is a constant, γ(λ) is monotonically strictly decreasing
on λ ∈ D̃.

3.2 Classification of definite feasible QCQP

In order to investigate the properties of λ∗ that satisfy (9), in particular γ(λ∗) = 0, we separate
definite feasible QCQP (2) into four distinct cases, depending on the sign of γ(λ) on λ ∈ D.

(a) γ(λ) takes both nonnegative and nonpositive values.

(b) γ(λ) > 0 everywhere.

(c) γ(λ) < 0 everywhere, and λ1 > 0.

(d) γ(λ) < 0 everywhere, and λ1 = 0.

We now investigate the value of λ∗ for each case.
First for (a), by the mean-value theorem there exists λ ∈ D such that γ(λ) = 0, and for this

λ we have λ∗ = λ.
To deal with cases (b), (c) we use the following result.

Proposition 3.2 (Feng et al. [9]) The following results hold for definite feasible QCQP (2)
for which A+ λB � 0 on λ ∈ D.

1. Suppose λ2 < ∞. Then if γ(λ) > 0 as λ → λ2 − 0, then x(λ) converges and there exists
x with g(x) = 0, (A+ λ2B)x = −(a+ λ2b).

2. Suppose λ1 > 0. Then if γ(λ) < 0 as λ→ λ1 + 0 then x(λ) converges, and there exists x
with g(x) = 0 and (A+ λ1B)x = −(a+ λ1b).

By Proposition 3.2, in case (b) we have λ∗ = λ2 when λ2 < ∞. Similarly, in case (c) we
have λ∗ = λ1. In Proposition 3.2 we assumed λ2 < ∞, but indeed Slater’s condition assures
that λ2 =∞ and γ(λ2) > 0 cannot happen, as we show next.

Proposition 3.3 Suppose that λ2 = ∞ for a definite feasible QCQP, i.e., B � 0. Then
limλ→∞ γ(λ) < 0.

proof. Suppose to the contrary that limλ→∞ γ(λ) ≥ 0. Then since γ(λ) is nonincreasing on
(λ1,∞), we see that γ(λ) converges, and let γ∞ be the limit. Now if we suppose that xi(λ)
diverges, then by (12) we have ei = 0, di > 0 and bi 6= 0. Hence as λ→∞ we have

eixi(λ)2 + 2bixi(λ) = 2bixi(λ) = −2(ai + λbi)bi
di

→ −∞,

which, by (13), indicates γ(λ) → −∞, a contradiction. Thus x(λ) converges, and let x̄ be the
limit. Then we have Bx̄ = −b, so

γ∞ = g(x̄) = x̄>Bx̄+ 2b>x̄+ β = −x̄>Bx̄+ β ≥ 0.

By the assumption λ2 = ∞, taking λ → ∞ we have A + λB � 0, so B � 0. Thus for any
x ∈ Rn we have

g(x) = (x− x̄)>B(x− x̄) + 2(Bx̄+ b)>x+ g(x̄) = (x− x̄)>B(x− x̄) + γ∞ ≥ 0,

which contradicts the fact that there exists x such that g(x) < 0.
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An alternative way to understand Proposition 3.3 is to note that λ2 =∞⇔ B � 0 indicates
the QCQP (2) is essentially a TRS (after an affine change-of-variables), for which a solution for
γ(λ∗) = 0 is known to exist [1].

Finally, consider case (d). Since γ(λ) ≤ 0 as λ→ +0, letting x0 be the limit (which exists [9])
we have g(x0) ≤ 0 and Ax0 = −a, so taking λ∗ = 0,x∗ = x0 we see that the conditions (9) are
satisfied.

Summarizing, the values of λ∗ in Theorem 2.2 are

λ∗ =


λ ∈ D such that γ(λ) = 0 (Case (a))

λ2 (Case (b), λ2 <∞)

λ1 (Case (c))

0 (Case (d)).

(14)

Figures 1-4 illustrate the typical plots of γ(λ) for the four cases.

Figure 1: Typical γ(λ) for case (a). There exists
λ∗ such that λ1 < λ∗ < λ2, γ(λ∗) = 0.

Figure 2: Typical γ(λ) for case (b). λ∗ = λ2 is
the solution.

Figure 3: Typical γ(λ) for case (c). λ∗ = λ1 is
the solution.

Figure 4: Typical γ(λ) for case (d). λ∗ = 0 is
the solution.

3.3 Computing the Lagrange multiplier λ∗

We now consider computing λ∗ > 0 that satisfies (9). The material in this subsection is the key
ingredient of the algorithm that we propose. We need to find λ∗, x∗ such that

(A+ λ∗B)x∗ = −(a+ λ∗b),

g(x∗) = 0.
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In principle, this can be done by solving γ(λ) = 0 for λ, which is a rational equation. However,
when A,B are not diagonal (as is usually the case), expressing γ(λ) is a nontrivial task.

Our approach, building upon [1, 11] for the TRS, is to express γ(λ) = 0 as a generalized
eigenvalue problem.

Define M0,M1 ∈ R(2n+1)×(2n+1) as

M0 =

 β b> −a>
b B −A
−a −A O

 , M1 =

 0 0 −b
0 O −B
−b −B O

 . (15)

Then we show that the the optimal Lagrange multiplier λ∗ > 0 in (9) is an eigenvalue of
M0 + λM1, that is, there exists a nonzero vector z ∈ R2n+1 such that

(M0 + λ∗M1)z =

 β b> −(a+ λ∗b)
>

b B −(A+ λ∗B)
−(a+ λ∗b) −(A+ λ∗B) O

 z = 0. (16)

Theorem 3.1 For λ∗ > 0 satisfying (9), we have det(M0 + λ∗M1) = 0.

proof. For λ for which det(A+ λB) 6= 0, we have

det(M0 + λM1) = det

 β b> −(a+ λb)>

b B −(A+ λB)
−(a+ λb) −(A+ λB) O


= det

 g(x(λ)) b> − x(λ)>B 0>

b−Bx(λ) B −(A+ λB)
0 −(A+ λB) O


= (−1)nγ(λ) det(A+ λB)2. (17)

Hence if A+ λ∗B is nonsingular, then (17) holds with γ(λ∗) = 0, and hence we have det(M0 +
λ∗M1) = 0.

When A + λ∗B is singular, we have a + λ∗b = −(A + λ∗B)x∗ ∈ R(A + λ∗B), hence the
bottom n rows of M0 + λ∗M1 have rank (n− 1) or less, hence det(M0 + λ∗M1) = 0.

The above proof also shows that any KKT multiplier λ satisfying the first three equations
in (9) is an eigenvalue of M0+λM1. Note from (17) and the fact A+ λ̂B � 0 that we either have
det(M0 + λ̂M1) 6= 0, indicating M0 +λM1 is a regular matrix pencil (thus having exactly 2n+1
eigenvalues), or that det(M0 + λ̂M1) = 0, in which case (λ̂, x(λ̂)) satisfies all the conditions
in (9), thus is a solution for QCQP (2). It thus follows that λ∗ can be found (or at least a finite
set containing it) via the eigenvalue problem det(M0 + λM1) = 0. Note from Proposition 3.1
that M0 + λM1 is regular unless γ(λ) is identically zero, in which case every value of λ for
which A+λB � 0 is an optimal Lagrange multiplier. Since this case is easy, in what follows we
assume M0 + λM1 is regular.

We shall further show that λ∗ is the unique eigenvalue of M0 + λM1 in the interval D =
(λ1, λ2). To simplify the analysis, we apply a Mobius transformation [22] to the matrix pen-
cil (16). Specifically, recalling that λ̂ ≥ 0 is known such that A + λ̂B � 0, we define M̂ :=
M0 + λ̂M1 and consider the eigenvalues of

(M1 + ξM̂)z = 0. (18)

The eigenvalues ξ of (18) correspond one-to-one to those λ of M0 +λM1 via the transforma-
tion λ = λ̂ + ξ−1. We shall show that the largest (or smallest) real eigenvalue ξ∗ of (18) gives
the value λ∗ = λ̂+ ξ−1∗ in (9).

We consider separate cases depending on the sign of γ(λ̂), and we shall show that in both
cases it suffices to compute one extremal eigenpair of (18).
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3.3.1 When γ(λ̂) = 0

In this case γ(λ̂) = g(x(λ̂)) = 0, so (λ∗, x∗) = (λ̂, x(λ̂)) satisfies (9). Hence in this case we are
done; there is no need to solve the generalized eigenvalue problem.

3.3.2 When γ(λ̂) > 0

In this case det(M1 + ξM̂) = ξ2n+1 det(M0 + (λ̂+ ξ−1)M1), so defining ξ∗ = (λ∗ − λ̂)−1 where
λ∗ 6= λ̂ satisfies (9), we have det(M1 + ξ∗M̂) = 0.

By Theorem 3.1 we know that for an eigenvalue ξ of (18), λ = λ̂+ ξ−1 and x(λ) satisfy the
first three equations in (9). Now we shall show that indeed the ξ of interest is the largest real
eigenvalue of (18).

Theorem 3.2 Suppose γ(λ̂) > 0. Then for the largest real eigenvalue ξ′ of (18) it holds ξ′ > 0,
and the optimal Lagrange multiplier satisfying (9) is λ∗ = λ̂+ ξ′−1.

proof. Recall that γ(λ̂) > 0 happens only in cases (a) and (b).
When (a), by Proposition 3.1 there exists a unique λ∗ ∈ D such that γ(λ∗) = 0. Now define

ξ∗ = (λ∗ − λ̂)−1. γ(λ̂) > 0 and γ(λ∗) = 0 imply 0 ≤ λ̂ < λ∗, so it follows that ξ∗ > 0. For any
ξ > ξ∗, we have λ̂ < λ̂ + ξ−1 < λ∗, hence λ̂ + ξ−1 ∈ D, so we have det(A + (λ̂ + ξ−1)B) 6= 0
and γ(λ̂ + ξ−1) > γ(λ∗) = 0. Hence det(M1 + ξM̂) = ξ2n+1 det(M0 + (λ̂ + ξ−1)M1) 6= 0, so it
follows that ξ with ξ > ξ∗ cannot be an eigenvalue of (18). Also, from

det(M1 + ξ∗M̂) = (−1)nξ2n+1
∗ γ(λ∗) det(A+ λ∗B)2 = 0

we have ξ′ = ξ∗. Hence we conclude that λ∗ = λ̂+ ξ′−1.
When (b), we have λ∗ = λ2 <∞, so taking ξ∗ = (λ2− λ̂)−1 we have ξ∗ > 0. Hence as above,

any ξ such that ξ > ξ∗ is not an eigenvalue of (18). Furthermore, from det(A + λ2B) = 0 it
follows that det(M1 + ξ∗M̂) = 0, so ξ′ = ξ∗. Thus λ∗ = λ̂+ ξ′−1.

Theorem 3.2 shows that when γ(λ̂) > 0, the optimal Lagrange multiplier λ∗ can be obtained
by computing the largest real eigenvalue of (18). One practical difficulty here is that by an
algorithm such as shift-and-invert Arnoldi, it can be much harder to compute the largest real
eigenvalue than the eigenvalue with largest real part (which can be complex). We shall now
show that in fact these are the same for (18), that is, its rightmost eigenvalue is real. A similar
statement was made in [1] for the special case of TRS; here we extend the result to definite
feasible QCQP.

Theorem 3.3 Let γ(λ̂) > 0. Then the rightmost eigenvalue of the pencil (18) is real.

proof. It suffices to prove that for every ξ = s+ti with s > ξ′ and t 6= 0, we have det(M1+ξM̂) 6=
0, or equivalently (by (17)), that det(A+ (λ̂+ ξ−1)B) 6= 0 and γ(λ̂+ ξ−1) 6= 0.

First consider values of λ such that det(A+ λB) = 0. These are the eigenvalues λ = −di
ei

of

A+λB. In particular, when λ is nonreal we have det(A+λB) 6= 0, and so det(A+(λ̂+ξ−1)B) 6=
0.

We next examine the imaginary part of γ(λ̂+ ξ−1). Defining λ̂+ ξ−1 = p+ qi we have

Im(γ(p+ qi)) = −2q
n∑
k=1

(bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
.
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Now p = λ̂+ s(s2 + t2)−1, and since 0 < ξ′ < s we obtain

λ̂ < p = λ̂+
s

s2 + t2
< λ̂+ s−1 < λ̂+ ξ′−1 = λ∗,

hence p ∈ D. In other words, dk + pek > 0 (k = 1, . . . , n). By γ(λ̂) 6= 0 and Proposition 3.1 we
see that for some k we have bkdk − akek 6= 0, so by q 6= 0

n∑
k=1

(bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
≥ (bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
> 0.

Hence γ(λ̂+ ξ−1) 6= 0, completing the proof.

The upshot is that to obtain the optimal Lagrange multiplier λ∗ when γ(λ̂) > 0, it suffices
to compute the rightmost eigenpair of (18).

3.3.3 When γ(λ̂) < 0

If γ(λ̂) < 0, we are in one of cases (a), (c) and (d). The cases (a) and (c) can be treated in
essentially the same way as above, but special treatment is necessary for the case (d). We first
discuss how to deal with (a) and (c) and how to determine whether we are in case (d).

Theorem 3.4 Suppose γ(λ̂) < 0. Let ξ′ be the smallest real eigenvalue of (18). If λ̂ > 0 and
ξ′ < −λ̂−1, then λ∗ = λ̂ + ξ′−1. Otherwise, that is, when −λ̂−1 ≤ ξ′ ≤ 0 or λ̂ = 0, the case
corresponds to (d), and we have λ∗ = 0.

proof. In case (a), as in Theorem 3.2 we have ξ′ = (λ∗ − λ̂)−1, so (9) can be satisfied. It
remains to establish ξ′ < −λ̂−1, which follows from −λ̂ < λ∗ − λ̂ < 0.

Similarly, when (c) we proceed as in Theorem 3.2 for case (b), and take ξ′ = (λ1 − λ̂)−1.
Since −λ̂ < λ1 − λ̂ < 0 we have ξ′ < −λ̂−1.

Now consider case (d). First if λ̂ = 0, then by γ(λ̂) < 0 we are trivially in case (d) and
λ∗ = 0. Now suppose that λ̂ > 0 and define ξ∗ = −λ̂−1 < 0. Since M1 is singular, ξ = 0 is
a solution for (18), and so ξ′ ≤ 0 holds. For every ξ < ξ∗ we have 0 < λ̂ + ξ−1 < λ̂. Hence
λ̂+ ξ−1 ∈ D, so det(M0 + (λ̂+ ξ−1)M1) 6= 0 and γ(λ̂+ ξ−1) < 0, so ξ is not a solution for (18).
We thus obtain ξ∗ = −λ̂−1 ≤ ξ′ ≤ 0, hence λ∗ = 0.

To summarize, if λ̂ > 0 and ξ′ < −λ̂−1 we are either in case (a) or (b), and otherwise in
case (d) and hence λ∗ = 0.

The following is an analogue of Theorem 3.3.

Theorem 3.5 Suppose that γ(λ̂) < 0, and that for the leftmost real eigenvalue ξ′ of (18),
ξ = s+ ti satisfies s < ξ′, t 6= 0 and ξ is an eigenvalue of (18). Then this corresponds to case
(d), and Re(λ̂+ ξ−1) ≤ 0.

proof. We first prove that cases (a) and (c) cannot satisfy the assumptions. Indeed by Theo-
rem 3.4 we have ξ′ < −λ̂−1 < 0, so writing λ̂+ ξ−1 = p+ qi we have

λ′ = λ̂+ ξ′−1 < λ̂+ s−1 < λ̂+
s

s2 + t2
= p < λ̂.

Since λ′, λ̂ ∈ D, we have λ̂+ s−1 ∈ D. Then as in the proof of Theorem 3.2 we see that ξ is not
a solution for (18), a contradiction.

Now suppose we are in case (d). Since D is bounded below by 0, if 0 < λ < λ̂ then λ ∈ D.
Also, since p < λ̂ always holds, if p > 0 then by 0 < p < λ̂ we have p ∈ D, so as in the proof of
Theorem 3.2 we see that ξ is not a solution for (18), again a contradiction. Thus we conclude
that p = Re(λ̂+ ξ−1) ≤ 0.
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In summary, when γ(λ̂) < 0 we can obtain λ∗ in (9) by computing the leftmost eigenvalue
ξ∗ of (18) and choosing λ∗ depending on the value of λ̂+ ξ−1∗ as follows:

• if λ̂+ ξ−1∗ > 0, take λ∗ = λ̂+ ξ−1∗

• if Re(λ̂+ ξ−1∗ ) ≤ 0, or if ξ∗ = 0, take λ∗ = 0.

3.3.4 Pseudocode for computing λ∗

We summarize the whole process for finding λ∗ in Algorithm 3.1.

Algorithm 3.1 Computes optimal Lagrange multiplier λ∗ satisfying (9)

Input: QCQP (2), and λ̂ such that A+ λB � 0
Output: Optimal Lagrange multiplier λ∗ in (9)

Separate cases based on sign of γ(λ̂)
if γ(λ̂) > 0 then

Find rightmost real eigenvalue ξ of (M1 + ξM̂)z = 0
λ∗ = λ̂+ ξ−1

else if γ(λ̂) < 0 then
Find leftmost eigenvalue ξ of (M1 + ξM̂)z = 0
if λ̂ = 0 or Re(λ̂+ ξ−1) ≤ 0 (case (d) in (9)) then
λ∗ = 0

else
λ∗ = λ̂+ ξ−1

end if
else
λ∗ = λ̂

end if

As discussed before, we can compute the rightmost (or leftmost) eigenpair of a generalized
eigenvalue problem using the Arnoldi method, which is much more efficient than computing all
the eigenvalues, especially when the matrices have structure such as symmetry and/or sparsity.
In Matlab the eigs command with the flag ’lr’ (’sr’) computes such eigenpair.

3.4 Obtaining the solution x∗

Having computed the optimal Lagrange multiplier λ∗, we now turn to finding the solution x∗.
We shall show that generically the eigenvector z obtained in Algorithm 3.1 contains the desired
information on x∗.

First, if the output of Algorithm 3.1 is λ∗ = 0, then the QCQP solution is simply −A−1a,
the solution of a linear system (see Section 3.4.2 for the case det(A) = 0).

For nonzero λ∗, we can generically obtain the solution by computing x∗ = −(A+λ∗B)−1(a+
λ∗b), but below we show that solving such linear system is usually unnecessary.

3.4.1 When A+ λ∗B is nonsingular

If λ∗ > 0 and det(A+ λ∗B) 6= 0, then we can obtain x∗ via the eigenvector associated with λ∗
(which is obtained by the Arnoldi method). Suppose z = [θ y>1 y>2 ]> is the computed eigenvector
where θ ∈ R, y1, y2 ∈ Rn.
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Plugging z = [θ y>1 y>2 ]> into M0z + λ∗M1z = 0 gives

βθ + b>y1 − (a+ λ∗b)
>y2 = 0,

θb+By1 − (A+ λ∗B)y2 = 0, (19)

−θ(a+ λ∗b)− (A+ λ∗B)y1 = 0. (20)

First suppose θ 6= 0, which holds generically. Then from the last equation we see that the
solution is x∗ = y1

θ .
Next suppose that θ = 0. By (20), if y1 6= 0 then y1 ∈ N (A+λ∗B), and A+λ∗B is singular.

When y1 = 0, by (19) we have y2 ∈ N (A + λ∗B) so again A + λ∗B is singular. Thus when
A+ λ∗B is nonsingular we necessarily have θ 6= 0, and thus we can obtain x∗ directly from the
eigenvector z.

3.4.2 When A+ λ∗B is singular

When A + λ∗B is singular at the λ∗ obtained by Algorithm 3.1, matters are more subtle. In
this case we need to solve the linear system

(A+ λ∗B)x∗ = −(a+ λ∗b), (21)

which has a singular coefficient matrix A+ λ∗B. A singular linear system generically does not
have a solution, but (9) shows that (21) must be consistent. However, the error of a computed
solution to a linear system is generally proportional to the condition number, and solving a
singular linear system numerically is challenging, if not impossible.

In fact, the case where A + λ∗B is singular corresponds to the well known “hard case” for
the special case of TRS. For TRS, dealing with such hard cases are discussed in [24, 28]. In
this work we discuss dealing with the hard case for the general QCQP by forming and solving
a nonsingular linear system that has the same solution as (21). The development here parallels
that in [1], which is in turn based on [10].

The following theorem will be the basis for the construction of x∗.

Theorem 3.6 For λ∗ satisfying (9), suppose A + λ∗B is singular. Let v1, . . . vj be a basis for
N (A+ λ∗B), and let w∗ be the solution of the linear system Ãw∗ = −ã, where

Ã = A+ λ∗B + α

j∑
i=1

Bviv
>
i B, ã = a+ λ∗b+ αB

j∑
i=1

viv
>
i b, (22)

in which α > 0 is an arbitrary positive number. Then the following hold:

1. Ã � 0, in particular, Ã is nonsingular (hence w∗ above exists uniquely),

2. (A+ λ∗B)w∗ = −(a+ λ∗b),

3. (Bw∗ + b)>v = 0 for every v ∈ N (A+ λ∗B).

To prove the theorem we prepare a lemma, which we will use repeatedly.

Lemma 3.1 For a definite feasible QCQP (2), if x ∈ N (A+ λ∗B) and x>Bx = 0 then x = 0.

proof. We have

x>(A+ λ̂B)x = x>(A+ λ∗B)x+ (λ̂− λ∗)x>Bx = 0

and A+ λ̂B � 0, hence x = 0.
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We are now ready to prove Theorem 3.6.

proof. (for Theorem 3.6) We give a proof for each claim.
1. By A+ λ∗B � 0 and

∑j
i=1Bviv

>
i B � 0, we trivially have Ã � 0. For any x ∈ Rn, there

exist a unique x0 ∈ N (A+λ∗B) and x1 ∈ R(A+λ∗B) such that x = x0 +x1. Let x be a vector
such that x>Ãx = 0. We show that x = 0. We have x>Ãx = x>1 (A+λ∗B)x1+α

∑j
i=1(v

>
i Bx)2 =

0, hence
x>1 (A+ λ∗B)x1 = 0, and v>i Bx = 0 (i = 1, . . . , j). (23)

Since (A + λ∗B) � 0 we have (A + λ∗B)x1 = 0, and hence x1 ∈ N (A + λ∗B). Together
with the assumption x1 ∈ R(A + λ∗B) we obtain x1 = 0. Therefore, x = x0 can be written
as x =

∑j
i=1 civi, for some constants c1, . . . , cj , so together with (23) we obtain x>Bx =∑j

i=1 civ
>
i Bx = 0. Combining this with x>(A + λ∗B)x = 0 and Lemma 3.1 we obtain x = 0.

Therefore Ã � 0.
2. We shall first prove that

ui := Ã−1Bvi ∈ N (A+ λ∗B), i = 1, . . . , j. (24)

From Ãui = Bvi, we have

(A+ λ∗B)ui = Bvi − α
j∑

k=1

(v>k Bui)Bvk = B
(
vi − α

j∑
k=1

(v>k Bui)vk
)

=: Bv′i,

where we defined v′i := vi − α
∑j

k=1(v
>
k Bui)vk. Since v′i ∈ N (A + λ∗B) we have (v′i)

>Bv′i =
(v′i)

>(A + λ∗B)ui = 0. Therefore by Lemma 3.1 we have v′i = 0, so (A + λ∗B)ui = 0, hence
ui ∈ N (A+ λ∗B), establishing (24). From this it follows that (A+ λ∗B)Ã−1Bvi = 0, and

(A+ λ∗B)w∗ + (a+ λ∗b) = −(A+ λ∗B)Ã−1ã+ (a+ λ∗b)

= −(A+ λ∗B)Ã−1(a+ λ∗b+ α

j∑
i=1

Bviv
>
i b) + (a+ λ∗b)

= −(A+ λ∗B − Ã)Ã−1(a+ λ∗b)− α
j∑
i=1

((A+ λ∗B)Ã−1Bvi)v
>
i b

= α

j∑
i=1

Bvi

(
v>i BÃ

−1(a+ λ∗b)
)
,

where for the last equality we used (A+ λ∗B)Ã−1Bvi = 0 and (22). Now from (9) we see that
there exists x∗ such that a+λ∗b = −(A+λ∗B)x∗, so v>i BÃ

−1(a+λ∗b) = −u>i (A+λ∗B)x∗ = 0
for i = 1, . . . , j, and (A+ λ∗B)w∗ = −(a+ λ∗b).

3. For any v ∈ N (A+ λ∗B), we have

(Bw∗ + b)>v = (−BÃ−1ã+ b)>v =
(
−BÃ−1

(
a+ λ∗b+ α

j∑
i=1

Bviv
>
i b
)

+ b
)>
v

= −b>
(
BÃ−1α

j∑
i=1

Bviv
>
i

)>
v + b>v

= −b>
(
α

j∑
i=1

viv
>
i BÃ

−1B
)
v + b>v =: −b>Lv + b>v, (25)
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where we define L := α
∑j

i=1 viv
>
i BÃ

−1B. Taking Lx = 0 for some x ∈ N (A+ λ∗B) we have

Lx = α

j∑
i=1

(v>i BÃ
−1Bx)vi = 0,

so v>i BÃ
−1Bx = 0 for i = 1, . . . , j. Now since x can be written as a linear combination of

v1, . . . , vj , it follows that x>BÃ−1Bx = 0, and by Ã−1 � 0 we have Bx = 0. Hence x>Bx = 0,
and again by Lemma 3.1 we conclude that x = 0. Moreover,

L = α

j∑
i=1

viv
>
i BÃ

−1B = α

j∑
i=1

viv
>
i BÃ

−1ÃÃ−1B

= α

j∑
i=1

viv
>
i BÃ

−1(A+ λ∗B + α

j∑
l=1

Bvlv
>
l B)Ã−1B

= α

j∑
i=1

viv
>
i BÃ

−1
(
α

j∑
l=1

Bvlv
>
l B

)
Ã−1B (by (24))

= α

j∑
l=1

(
α

j∑
i=1

viv
>
i BÃ

−1B

)
vlv
>
l BÃ

−1B

= α

j∑
l=1

Lvlv
>
l BÃ

−1B = L2,

that is, L is an idempotent matrix: indeed, it turns out that L does not depend on α. Therefore,
for every v ∈ N (A+ λ∗B), Lv is a linear combination of v1, . . . , vj , so (v−Lv) ∈ N (A+ λ∗B),
and from L(v − Lv) = Lv − L2v = 0 it follows from the above argument, taking x ← v − Lv,
that v − Lv = 0. Hence by (25) we conclude that

(Bw∗ + b)>v = b>(v − Lv) = 0,

as required.

Let us now explain how to obtain a QCQP solution x∗ using Theorem 3.6. First when
λ∗ > 0, by Theorem 2.2 A+ λ∗B can be singular only in cases (b) and (c). First examine case
(b). For the obtained λ∗ we have λ∗ < λ̂, so for any nonzero v ∈ N (A+ λ∗B) we have

v>Bv =
1

λ̂− λ∗

(
v>(A+ λ̂B)v − v>(A+ λ∗B)v

)
=

1

λ̂− λ∗
v>(A+ λ̂B)v > 0.

Hence

g(w∗ + v) = v>Bv + 2(Bw∗ + b)>v + g(w∗) = v>Bv + g(w∗),

so g(w∗ + v) > g(w∗). Moreover, there exists x∗ satisfying (9), so g(w∗) ≤ g(x∗) = 0. Thus
writing x = w∗ + tv for t ∈ R, the quadratic equation in t

g(w∗ + tv) = v>Bvt2 + g(w∗) = 0

has a real solution t = ±
√
−g(w∗)/(v>Bv). Letting t be one of these solutions, taking x∗ =

w∗ + tv we have g(x∗) = 0, and from λ∗ = λ1 we see that (λ∗, x∗) satisfies (9). The case (c) is
analogous.
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Next when λ∗ = 0 and A = A + λ∗B is singular, we similarly have g(w∗) ≤ 0. However,
recalling (9), when λ∗ = 0 we do not need g(x∗) = 0, so we can directly take x∗ = w∗.

Summarizing the above findings, we can compute an optimal solution x∗ by Algorithm 3.2.
Note that the above argument clearly shows the solution can be non-unique; the goal here is to
obtain one optimal solution.

Algorithm 3.2 Finding solution x∗ for QCQP (2)

Input: λ̂ ≥ 0 such that A+ λ̂B � 0
if γ(λ̂) > 0 then

Compute the rightmost real eigenpair (ξ, z = [θ y>1 y>2 ]>) of (M1 + ξM̂)z = 0
λ∗ = λ̂+ ξ−1

else if γ(λ̂) < 0 then
Compute the leftmost real eigenpair (ξ, z = [θ y>1 y>2 ]>) of (M1 + ξM̂)z = 0
if λ̂ = 0 or ξ ≥ −λ̂−1 then
λ∗ = 0, x∗ = −A−1a

else
λ∗ = λ̂+ ξ−1

end if
else
λ∗ = λ̂, x∗ = x(λ̂)

end if
if λ∗ > 0 and γ(λ̂) 6= 0 then

if θ 6= 0 then
x∗ = y1

θ
else

Find a basis v1, . . . , vj for N (A+ λ∗B).

Ã = A+ λ∗B + α
∑j

i=1Bviv
>
i B,ã = a+ λb∗ + αB

∑j
i=1 viv

>
i b.

Obtain w∗ from Ãw∗ = −ã.
Take an arbitrary v ∈ N (A+ λ∗B) and choose x∗ = w∗ + tv so that g(x∗) = 0.

end if
end if

3.5 Complexity

When no structure is present and A,B are dense, the dominant cost in Algorithm 3.2 lies in
finding an eigenpair and the solution of a linear system; these are both O(n3). Computing
N (A + λ∗B) can be done by an SVD, and finding γ(λ̂) is mostly solving a linear system, and
the other steps are all O(n2). Hence the overall complexity of Algorithm 3.2 is O(n3).

In comparison, the SDP-based approaches require at least O(n3) in each iteration of the
interior-point method [3] with a rather large constant, so we see that Algorithm 3.2 can be
much more efficient.

Moreover, the dominant step of finding an extremal eigenpair can easily take advantage of
the sparsity structure of A,B if present, resulting in running time much faster than O(n3). This
fact is illustrated in our experiments.
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4 Numerical experiments

To illustrate the performance (speed and accuracy) of Algorithm 3.2 for solving QCQP (2),
here we present Matlab experiments comparing with the SDP-based algorithm. Specifically,
we compare Algorithm 3.2 with SDP solvers based on the interior-point method: SeDuMi [32],
and SDPT3 [35], which we invoke via CVX [14]. We used the default values for parameters
such as the stopping criterion. We do not compare with the algorithm of Moré [23] since a
quality implementation appears to be unavailable. However, since the core of that algorithm
and ours are both essentially the same as those for the TRS (excluding finding λ̂, which they
both require), we expect that our code would outperform [23] in speed and accuracy just as in
TRS.

All experiments were carried out in MATLAB version R2013a on a machine with an Intel
Xeon E5-2680 processor with 64GB RAM.

4.1 Setup

We generate a “random” definite feasible QCQP with indefinite A,B as follows. First form
a random positive definite K � 0, formed as X>X + I where X is a random n × n matrix,
obtained by MATLAB’s function randn(n). Since the problem becomes ill-conditioned if K is
close to singular, we chose K to have eigenvalues at least 1. We then set λ̂ to be a random
positive number.

We then took a random symmetric matrix B obtained by Y = randn(n); B = Y+Y’, and
define A via K = A+ λ̂B. We took a and b to be random vectors.

To form a problem with known exact solution (so that the accuracy of the computed solution
x can be evaluated), we take λopt := λ̂ + ε where |ε| ≈ 10−10 and computed xopt = −(A +
λoptB)−1(a+ λoptb), then set β to satisfy g(xopt) = 0, so that (λopt, xopt) satisfies (2.1), hence
xopt is the QCQP solution, i.e., (λopt, xopt) = (λ∗, x∗).

Below we report the average speed and accuracy from 50 randomly generated instances for
each matrix size n.

4.1.1 Computing λ̂

In practice λ̂ is usually unknown in advance, and in that case our algorithm starts by computing
λ̂. To this end we used the algorithm in [6, 15] to find λ̂, as discussed in Section 2.4.1, to obtrain
the interval D. Although any value in D is allowed to be λ̂, we chose λ̂ as the middle point of
D to avoid ill-conditioning of A+ λ̂B.

In the figures we show the performance of our algorithm in two cases: (i) when λ̂ is known
a priori, shown as “Eig”, and and (ii) when λ̂ needs to be computed, shown as “Eigcheck”. In
other words, the runtime of Eigcheck is the sum of Eig and finding λ̂.

4.1.2 Newton refinement process

We use a refinement process to improve the accuracy of the solution, in particular to force the
computed solution to satisfy the constraint to working precision. Suppose λ∗ is positive in (9).
Then at the solution the constraint must hold with equality, but due to numerical errors this
may not be the case with the computed solution x. Writing x = x∗ + δ where x∗ satisfies the
constraint exactly, i.e., g(x∗) = 0, we have

g(x) = 2(Bx∗ + b)>δ + δ>Bδ.
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We apply Newton’s method to g(x) = 0 to force x to satisfy the constraint to full accuracy.
Specifically, we update x by

δ̂ =
g(x)

2‖Bx+ b‖2
(Bx+ b), x← x− δ̂.

Then

g(x− δ̂) = g(x)− 2(Bx+ b)>δ̂ + δ̂>Bδ̂ = g(x)− 2(Bx+ b)>δ̂ +O(δ̂2)

= g(x)− 2(Bx+ b)>
g(x)

2‖Bx+ b‖2
(Bx+ b) +O(δ̂2) = O(δ̂2).

We have applied this refinement process to all three algorithms. By forcing the computed
x to be numerically feasible, we rule out the misleading cases where a infeasible x with a small
objective function is interpreted as a “good” solution.

4.2 Results

Figure 5 shows the runtime of the three algorithms. For n ≥ 1000, SDPT3 was unable to
compute a solution on our computer, so we show experiments with n ≤ 700 for this algorithm.
Our algorithm and SeDuMi are able to deal with larger matrices on our machine, and we report
its performance up to n = 5000.
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Figure 5: Average runtime.

We see that when λ̂ is known (Eig), our algorithm is faster than SeDuMi, SDPT3 by orders
of magnitude. Even if we include the time for computing λ̂, our algorithm (EigCheck) is still
faster than SeDuMi and SDPT3.

Figure 6 shows the accuracy of the computed solution. For each QCQP, let fi (i = 1, 2, 3)
be the objective value of the solution computed by each of the three algorithms. We compute

si =
|fi − fopt|
|fopt|

, ti =
‖xi − xopt‖2
‖xopt‖2

,

where fopt = f(xopt). We report the average value s̄i, t̄i of si, ti for each fixed matrix size (recall
that we repeated 50 random examples for each n).

Figure 6 illustrates that our algorithm found solutions and objective values nearest to opti-
mal, hence more accurate.
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Figure 6: Average accuracy s̄i (left) and t̄i (right).

Sparse matrices Another strength of our method is that it can directly take advantage of
the matrix sparsity structure. Specifically, for the computation of an extremal eigenpair, which
is the dominant part of our algorithm, efficient eigensolvers for large-sparse matrices are widely
available [2, 21], and implemented for example in Matlab’s eigs command.

To illustrate this we generated QCQP as before, but with A,B tridiagonal. Here we assume
that λ̂ is known, and skip its computation, showing the runtime of only Eig; otherwise the
code spends the majority of the runtime in finding λ̂ (unless the tridiagonal structure is fully
exploited in the detection process). Similarly, SeDuMi and SDPT3 are not shown here, as their
speed remained about the same as in the dense case for n ≤ 700, hence inpractical for n ≥ 103.
In Figure 8 we show the runtime and accuracy of our algorithm Eig for varying matrix size n
from 103 to as large as 106.

matrix size
104 106

tim
e 

(s
)

10-2

100

102

Eig
Trend O(n)

Trend O(n2)

Figure 7: Tridiagonal example, runtime.

In Figure 7 we verify that when the matrices A,B are sparse our method is much faster
than O(n3); here it scaled like O(n2). The accuracy of the solution and objective values is also
consistintly good, as illustrated in Figure 8.

5 QCQP that are not definite feasible

Thus far we have focused on the definite feasible QCQP and derived an eigenvalue-based algo-
rithm that is fast and accurate. We now develop an analysis that accounts for “non-generic”
QCQP that are not necessarily definite feasible. The key tool for our analysis is the canonical
form of a symmetric pair under congruence, which we review next.
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5.1 The canonical form of (A,B) under congruence

For a pair of symmetric matrices (A,B) the canonical form under congruence [20, 33, 34], shown
below, is the simplest form taken by W>(A+ λB)W where W is nonsingular. We define the ⊕
operator as A1 ⊕A2 :=

[
A1 O
O A2

]
.

Theorem 5.1 (Lancaster, Rodman [20]) For symmetric matrices A,B ∈ Sn, there exist a
nonsingular W such that

W>(A+ λB)W = Ou×u ⊕
p⊕
j=1

λ
 O O Fεj

O 0 O
Fεj O O

+G2εj+1

 (26)

⊕
r⊕
j=1

(
δj(Fkj + λGkj )

)
⊕

q⊕
j=1

(
ηj((λ+ αj)Flj +Glj )

)
(27)

⊕
s⊕
j=1

(
(λ+ µj)F2mj + νjH2mj +

[
F2mj−2 O
O O2×2

])
. (28)

Here

Fm =


0 0 · · · 0 1
0 1 0
... . .. ...
0 1 0
1 0 · · · 0 0

 ∈ Rm×m, Gm =

[
Fm−1 0

0> 0

]
∈ Rm×m,

H2m =



0 0 · · · 1 0
0 0 −1
... 1 0

0 −1

. .
. ...

1 0 0
0 −1 · · · 0 0


∈ R2m×2m

and νj 6= 0, δj , ηj = ±1. The form in (26), (27) (28) is the canonical form of (A,B) under
congruence.

This theorem shows that by congruence transformation, a symmetric matrix pair (A,B)
can be block diagonalized with three types of diagonal blocks (26), (27) and (28). Each block
corresponds to an eigenvalue or singular part of the pencil A+ λB as summarized below.
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1. The blocks in the right-hand side of (26) correspond to a singular part; any matrix pair
that possess these blocks is singular, that is, det(A+ λB) = 0 for every λ.

2. The blocks (27) correspond to real finite (right term) and infinite (left term) eigenvalues.
The right terms are the “natural” extensions of the Jordan block in standard eigenvalue
problems. kj , lj are the size of the Jordan blocks.

3. The blocks (28) correspond to nonreal eigenvalues, which must appear in conjugate pairs.
Again, mj is the Jordan block size.

The main message of this section is that the canonical form under congruence contains
full information about QCQP (2). While this work appears to be the first to use the canon-
ical form in the analysis of QCQP, related results have been presented in the literature. The
paper [9] also shows that if the matrices A,B are diagonalizable by congruence and this con-
gruence transformation is known, the dual problem can be solved by linear programming. The
preprint [16] also investigates the matrix pencil and illustrates why QCQP is nontrivial when
the pencil is not simultaneously diagonalizable under congruence. Here we clarify the situation,
treating extensively the difficult cases that are not definite feasible, and characterize the fea-
sibility/boundedness/attainability with respect to the canonical form of the pair (A,B) under
congruence.

5.2 Implication of canonical form for QCQP boundedness

Now we turn to the implications of Theorem 5.1 for QCQP, first focusing on the condition for
QCQP to be bounded.

In Section 2.1 we dealt with the case where the feasible region has no interior point, and the
analysis made no assumption on definite feasibility. Hence, here we assume Slater’s condition,
which allows us to invoke Lemma 2.1 and Theorem 2.1. The first observation is that the
necessary condition A + λB � 0 in (5) for QCQP to be bounded restricts the admissible
canonical forms of A+ λB from the general form in Theorem 5.1 to the following.

Theorem 5.2 Let A,B ∈ Sn be symmetric matrices. If there exists λ ≥ 0 for which A+λB � 0,
then there exists a nonsingular W ∈ Rn×n such that

W>(A+ λB)W = Ou×u ⊕ Ir×r ⊕
q1⊕
j=1

ηj [λ+ αj ]⊕
q2⊕
j=1

J(λ; θ). (29)

Here J(λ; θ) =
[

1 λ+θ
λ+θ 0

]
for some real constant θ ≤ 0, and ηi = ±1.

proof. For A + λB � 0 to hold, each block in Theorem 5.1 needs to be positive semidefinite.
We examine each of the blocks of the form (26), (27) and (28).

First consider the block (28), corresponding to the nonreal eigenvalues. When mj > 1, the
(2, 2), (2mj , 2), and (2mj , 2mj) elements are respectively 0, −νj and 0. Thus the (28) blocks
cannot be positive semidefinite, regardless of the value of λ. Therefore we need mj = 1, but
then (28) is

s⊕
j=1

[
νj λ+ µj

λ+ µj −νj

]
,

and we look for conditions under which this is semidefinite. For this to happen we need the
(1, 1) and (2, 2) elements to be nonnegative, which means we need νj = 0, a contradiction. Thus
the blocks (28) cannot exist.
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Similarly, the second term in (26) cannot exist since its (1, 1), (1, 2εj), (2εj , 2εj) elements
are respectively 0,1 and 0.

For the first term in (27), if kj > 1 the (1, kj) and (kj , kj) elements are respectively δj and
0, so again we need kj = 1. Then δj(F1 + λG1) = [δj ] ≥ 0 so δj = 1, and

r⊕
j=1

(
δj(Fkj + λGkj )

)
=

r⊕
j=1

[1] = Ir×r.

Finally, consider the second term in (27). When lj > 1 the (1, lj) and (lj , lj) elements are
respectively ηj(λ + αj) and 0, so the only value of λ for which ηj((λ + αj)Flj + Glj ) � 0 is
λ = −αj . Hence we need ηjGlj � 0, and the only value of lj > 1 for which this holds is lj = 2,
in which case ηj = 1. Moreover, we need λ = −αj to hold simultaneously for all j = 1, . . . , q,
so αj = θ for each j (they are all the same), and by λ ≥ 0 we have θ ≤ 0. In addition, when
lj = 1 we have ηj((λ+ αj)Flj +Glj ) = ηj(λ+ αj).

Given A,B satisfying (29), we next examine the values of λ for which A+ λB � 0.

Proposition 5.1 Let A,B ∈ Sn by symmetric matrices satisfying (29). Then the values of λ
for which A+ λB � 0 are the intersection of{

λ ≥ −αj , if ηj = 1
λ ≤ −αj , if ηj = −1

for j = 1, . . . , q1,

λ = −θ if q2 ≥ 1.

(30)

A proof is a straightforward examination of each term in (29).
The above results imply that for a bounded QCQP, the pencil A+ λB cannot have nonreal

eigenvalues. Furthermore, Jordan blocks must be of size at most two, and when (29) contains
q2 ≥ 1 blocks of size two J(λ; θ) (the QCQP in (7) is one such example with q2 = 1), the
corresponding eigenvalue θ need to be all the same for all the q2 blocks, and moreover the value
of λ with A + λB � 0 is restricted to just one value, namely λ = −θ, and this value needs to
satisfy

⊕q1
j=1 ηj [λ+ αj ] � 0 for A+ λB � 0 to hold.

5.2.1 Characterizing bounded QCQP via the canonical form

Recall from Lemma 2.1 that the QCQP is bounded if and only if there exists λ ≥ 0 such that

A+ λB � 0 and a+ λb ∈ R(A+ λB). (31)

If (A,B) is definite so that A + λB � 0 for some λ, then both conditions in (31) are satisfied
trivially. However, these conditions are not straightforward to verify when the pair (A,B) is
semidefinite but not definite.

Here we show that the conditions (31) can be written explicitly using the canonical form
of symmetric pencils by congruence. Essentially this specifies the types of A,B for which the
QCQP is solvable.

We start by examining the first condition in (31), the semidefiniteness of the pair (A,B).
As we saw in Theorem 5.2, this requirement restricts the canonical form to (29); here without
loss of generality we assume the αj are arranged in nondecreasing order. Recall that J(λ; θ) is
a Jordan block corresponding to a real eigenvalue, whose size is here restricted to 2 × 2. The
so-called sign characteristics ηj ∈ {1,−1} must satsify certain conditions. We separate into two
cases depending on the presence of Jordan blocks.
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• if no block J(λ; θ) is present, then by Proposition 5.1 there exists an interval [αj , αj+1]
on which A + λB � 0, and the requirement on ηi is ηi = 1 for i ≤ j and ηi = −1 for
i ≥ j + 1. (Note that αj = αj+1 is allowed, in which case the interval [αj , αj+1] becomes
a point. We also allow αj+1 =∞)

• if a block J(λ; θ) is present then the θ values must be all the same, and λ = −θ is the
only value for which A + λB � 0. The requirement on ηi is ηi = 1 if αj > θ, and
ηj = −1 if αj < θ. For the real and semisimple eigenvalues αj = θ, the corresponding sign
characteristic ηj is allowed to be either 1 or −1.

We repeat that in the second case the set of λ for which A + λB � 0 is a point. In the
first case, it is the interval [αj , αj+1]. In the special case where the pair (A,B) is definite, the
canonical form consists only of the second and third terms in (29) Ir×r ⊕

⊕q1
j=1 ηj [λ+αj ], with

ηj satisfying the first of the above conditions.
Next consider the second condition a+λb ∈ R(A+λB). This can be written as (A+λB)x =

a+ λb for some vector x, which, using the canonical form, is equivalent to

W−>

Ou×u ⊕ Ir×r ⊕ q1⊕
j=1

ηj [λ+ αj ]⊕
q2⊕
j=1

J(λ; θ)

W−1x = a+ λb.

Left-multiplying W> yieldsOu×u ⊕ Ir×r ⊕ q1⊕
j=1

ηj [λ+ αj ]⊕
q2⊕
j=1

J(λ; θ)

W−1x = W>(a+ λb). (32)

Our task is to identify the condition under which the linear system (32) has a solution x with
A+ λB � 0. We consider two cases separately:

• A+ λB � 0 on an interval [λj , λj+1] with λj < λj+1. In this caseOu×u ⊕ Ir×r ⊕ q1⊕
j=1

ηj [λ+ αj ]

W−1x = W>(a+ λb).

This has a solution for any value of λ ∈ (λj , λj+1) if and only if W>(a+λb) is of the form

W>(a+ λb) =

[
01×u
∗

]
, (33)

where ∗ ∈ Rn−u can take any value. Crucial here is the zero pattern of the vector
W>(a + λb); whether such vector exists with λ ∈ (λj , λj+1) can be verified easily once
W>a,W>b are available.

• A+ λB � 0 only at a point λ̂. In this case (32) reduces toOu×u ⊕ Ir×r ⊕
η1(λ̂− α1)

. . .

ηq1(λ̂− αq1)

⊕ q2⊕
j=1

[
1 0
0 0

]W−1x = W>(a+ λ̂b).

Note that q2 = 0 is allowed, and otherwise λ̂ = −θ. Clearly, this has a solution if and
only if

W>(a+ λb) =

Ou×1∗
∗J

 (34)
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where ∗ ∈ Rn−u−2q2 can take any value (except for elements corresponding to (λ−αi) = 0
if such elements are present), and ∗J ∈ R2q2 has zeros in coordinates of even indices:
∗J = [?, 0, ?, 0, . . . , 0, ?, 0] where each ? denotes an arbitrary scalar.

We summarize the above findings in the next theorem.

Theorem 5.3 A QCQP with strict interior feasible point is bounded below if and only if its
canonical form under congruence is of the form (29), and W>(a+ λb) has nonzero structure{

(34), when a block J(λ; θ) is present or λj = λj+1, and
(33), otherwise.

Note that the conditions in the theorem are straightforward to verify provided that the
congruence transformation W for the canonical form is available.

5.3 Complete solution for QCQP

We now discuss how to solve a QCQP that is not necessarily definite feasible. We describe the
process in a way that avoids computing the canonical form whenever possible.

5.3.1 Removing common null space

For QCQP that are not definite feasible, attempting to compute λ∗ as in Section 3, we face the
difficulty that the Ou×u block (if it exists) forces det(M0 + λM1) = 0 for every value of λ, so
the pencil is singular and hence we cannot compute λ∗ via the generalized eigenvalue problem.
Here we discuss how to remove such Ou×u blocks.

Since such block corresponds to the common null space, we first compute the null space Q
such that [

A
B

]
Q = 0.

We take Q to have orthonormal columns Q>Q = I and let Q⊥ be its orthogonal complement
in Rn. Write x = Q⊥y + Qz and define A′ = (Q⊥)>AQ⊥, B′ = (Q⊥)>BQ⊥, a′ = (Q⊥)>a,
c = Q>a, b′ = (Q⊥)>b, and d = Q>b. The original QCQP is equivalent to

minimize
y,z

y>A′y + 2a′>y + 2c>z

subject to y>B′y + 2b′>y + 2d>z + β ≤ 0.
(35)

When c = d = 0, this is a QCQP of smaller size with the Ou×u blocks removed: the canonical
form of (A′, B′) has no zero block.

First suppose that c 6= 0 but d = 0. Then (35) is clearly unbounded, as we can take z = −αc
with α→∞.

Now suppose that d 6= 0. We shall show how to obtain (λ∗, x∗) satisfying (9) in Theorem
2.1. Since we assume that QCQP is bounded, A+ λ∗B � 0 and (a+ λ∗b) ∈ R(A+ λ∗B) both
hold and we see that

c+ λ∗d ∈ R(Q>(A+ λ∗B)Q) = {0},
a′ + λ∗b

′ ∈ R((Q⊥)>(A+ λ∗B)Q⊥) = R(A′ + λ∗B
′)

need to hold; othewise it would not be a bounded QCQP. The first equation c+λ∗d = 0 clearly
determines the value of λ∗ (if it exists; otherwise the QCQP is unbounded), and if A+λ∗B � 0
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does not hold for this λ∗, the QCQP is unbounded. Then, taking y∗ to be an arbitrary vector
satisfying (A′ + λ∗B

′)y∗ = −(a′ + λ∗b
′), and defining

z∗ = −y
>
∗ B
′y∗ + 2b′>y∗ + β

2‖d‖22
d, (36)

we have y>∗ B
′y∗ + 2b′>y∗ + 2d>z∗ + β = 0, and x∗ = Q⊥y∗ + Qz∗ satisfies (9), so x∗ is a

global QCQP solution. Note that even when A′ + λ∗B
′ is singular, by defining Ã and ã as in

Theorem 3.6 we can compute y∗ via a nonsingular linear system.
We thus focus on QCQP without a Ou×u block in what follows.

5.3.2 Solution process for nongeneric QCQP

Suppose that we have removed the common null space of A and B as in Section 5.3.1, and λ̂ ≥ 0
is known such that A+ λ̂B � 0. The canonical form of (A,B) must be in the form

Ir×r ⊕
q1⊕
j=1

ηj [λ+ αj ]⊕
q2⊕
j=1

J(λ; θ). (37)

Let the columns of V form a basis for N (A+ λ̂B), and we separate the cases depending on the
eigenvalues of V >BV . Note that the blocks in the canonical form that contribute to the null
space are the blocks λ̂ + αj = 0 with eigenvalue −αj = λ̂, and J(λ̂; θ) =

[
1 0
0 0

]
, for which the

vector
[
0
1

]
is a null vector.

Note from (37) that given an eigenvector v corresponding to λ̂ + αj = 0, the sign of v>Bv

must match that of ηj . Moreover, for an eigenvector v corresponding to J(λ̂; θ), we have
v>Bv = 0. Thus we see that the zero eigenvalues of V >BV correspond to the terms J(λ; θ),
and the nonzero eigenvalues to the terms ηj [λ+ αj ], and their signs are ηj .

1. When N (A+ λ̂B) = 0.
This means A+ λ̂B is nonsingular and so A+ λ̂B � 0, so it belongs to the definite feasible
case, for which Algorithm 3.2 suffices.

2. When V >BV � 0 or V >BV ≺ 0.
There is no term of the form J(λ; θ), and the signs of ηj are all the same. Thus slightly

perturbing λ̂ in the positive (when V >BV � 0) or the negative (when V >BV ≺ 0)
direction we obtain A+ λ̂B � 0, so updating λ̂ to the perturbed λ̂, we reduce the problem
to the case N (A+ λ̂B) = 0.

3. When V >BV is indefinite with both positive and negative eigenvalues.
For all j such that λ̂+αj = 0, the signs of ηj take both +1 and −1. This implies λ̂ = λ∗,

which is the only value λ for which A + λB � 0, and we can take v1, v2 ∈ N (A + λ̂B)
such that v>1 Bv1 > 0, v>2 Bv2 < 0, so we solve (A+ λ̂B)x̂ = −(a+ λ̂b) for x̂ (by (33) the
QCQP is unbounded if no such x̂ exists) and then find t ∈ R such that g(x̂+ tvi) = 0; we
choose i ∈ {1, 2} depending on the sign of g(x̂): i = 1 if g(x∗) < 0, and i = 2 otherwise.
Then x∗ = x̂+ tvi.

4. When V >BV 6= O has a zero eigenvalue, and we have V >BV � 0 or V >BV � 0.
For definiteness suppose that V >BV � 0; the other case is analogous.

Since a zero eigenvalue is present, this is a case where the J(λ; θ) block exists. The goal
is to find x such that g(x) = 0 and (A+ λ̂B)x = −(a+ λ̂b). We first find a vector w∗ such
that

(A+ λ̂B)w∗ = −(a+ λ̂b), (38)
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while if no such w∗ exists then the QCQP is unbounded by Theorem 5.3. Otherwise the
QCQP is bounded, and we proceed to solve the unconstrained quadratic optimization
problem

minimize
u

g(w∗ + V u). (39)

If the optimal objective value is 0 or below (including −∞), there must exist u0 such that
g(w∗+V u0) ≤ 0. We then use a vector v such that v>Bv > 0, v ∈ N (A+ λ̂B) and adjust
a scalar t so that g(w∗ + V u0 + tv) = 0. Then we obtain a global solution w∗ + V u0 + tv.

Next consider the case where the optimal value of (39) is larger than 0. In this case there
is no x such that g(x) = 0 and (A + λ̂B)x = −(a + λ̂b). Since we are dealing with the
bounded case, this means we are in the unattainable case; there exists a scalar µ such that
for any ε > 0, there exists a feasible point x with f(x) = µ + ε. A similar statement is
made in [16, Thm. 7]. Since there is no solution in this case (ii), a reasonable goal would
be to provide just µ, which is the optimal objective value for

maximize
µ,λ∈R

µ

subject to λ ≥ 0, M(λ, µ) =

[
λβ − µ (a+ λb)>

a+ λb A+ λB

]
� 0

Since λ is fixed to λ = λ̂, by the definition of w∗ we see that it suffices to find the largest
µ for which [

λ̂β − µ −((A+ λ̂B)w∗)
>

−(A+ λ̂B)w∗ A+ λ̂B

]
� 0.

We can rewrite this as[
1 w>∗
0 A+ λ̂B

] [
λ̂β − µ −((A+ λ̂B)w∗)

>

−(A+ λ̂B)w∗ A+ λ̂B

] [
1 0

w∗ A+ λ̂B

]
=

[
λ̂β − µ− w>∗ (A+ λ̂B)w∗ 0

0 A+ λ̂B

]
� 0,

so it follows that the desired value of µ is

µ = λ̂β − w>∗ (A+ λ̂B)w∗. (40)

5. When V >BV = O.
This is the case where q1 = 0 and q2 > 0. We proceed as above until (38). The goal is to
find u such that g(w∗ + V u) = 0. In this case,

g(w∗ + V u) = g(w∗) + 2(Bw∗ + b)>V u+ u>(V >BV )u

= g(w∗) + 2(Bw∗ + b)>V u,

so g(w∗ + V u) is constant if and only if (Bw∗ + b)>V = 0.

If (Bw∗ + b)>V 6= 0, there exists u0 such that g(w∗ + V u0) = 0, which means that the
global solution is x∗ = w∗ + V u0.

Otherwise, when (Bw∗ + b)>V = 0, we are unable to find u such that g(w∗ + V u) = 0
unless g(w∗) = 0. This means we are in the unattainable case, and the optimal value is
as in (40).
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If λ̂ = 0, we either have λ∗ = λ̂ = 0 or λ∗ > 0; the latter case (in which QCQP is definite
feasible) occurs if and only if V >BV � 0, because if V >BV � 0 has a zero eigenvalue, then
by (37) a zero eigenvalue of V >BV implies the existence of J(λ; θ), which means D is a point.
If V >BV is not positive definite, we must have λ∗ = λ̂ = 0. We then compute w∗ such
that (38) holds, and solve (39), or more precisely a feasibility problem of finding u such that
g(w∗ + V u) ≤ 0. In fact, any w∗ + V u such that g(w∗ + V u) ≤ 0 satisfies (9) and is therefore
a global solution; recall from the complementarity condition in (9) that when λ∗ = 0 it is not
necessary to satisfy g(x∗) = 0. Such u trivially exists if V >BV has a negative eigenvalue. If
V >BV � 0 and det(V >BV ) = 0 (i.e., J(λ; 0) exists) then it could be that minu g(w∗+V u) > 0;
then by Lemma 2.2 this corresponds to the unattainable case, with infimum value µ = −w>∗ Aw∗
as in (40).

The steps described in this section, as shown in Figure 9, completely solves QCQP with one
constraint in the following sense:

1. For any bounded QCQP, it returns the optimal (or infimum) objective value, along with
its corresponding solution x if it is attainable.

2. If the QCQP is unbounded, it reports unboundedness.

3. If the QCQP is infeasible, it reports infeasibility.

The worst-case complexity corresponds to the case where a canonical form of (A,B) is required.
No numerically stable algorithm seems to be known for computing it, but the GUPTRI algo-
rithm [7, 19] provides most of the information, whose worst-case complexity is O(n4). We repeat
that most QCQP that are solvable in practice are solved by Algorithm 3.2, which is O(n3) or
faster.

6 Conclusion and discussion

We introduced an algorithm for QCQP with one constraint, which for generic (i.e., definite
feasible QCQP for which λ̂ is known) QCQP requires computing just one eigenpair of a gener-
alized eigenvalue problem. The algorithm is both faster and more accurate than the SDP-based
approach, and can directly take advantage of the matrix sparsity structure if present.

For QCQP that are not definite feasible, for which SDP-based methods also face difficulty, we
have classified the possible canonical forms under congruence of the pair (A,B), and described
an algorithm (though more expensive than Algorithm 3.2) that completely solves the QCQP.

We close with remarks on future directions. First, a recent manuscript [31] describes an
eigenvalue-based algorithm for TRS with an additional linear constraint, and a natural direction
is to examine such an extension for QCQP. Second, since our algorithm essentially also solves
the SDP (3), it is worth examining the class of SDP problems that can be solved similarly by an
eigenvalue problem. Also of interest would be to deal with Riemannian optimization, such as
minimization of trace(X>AX + C>X) over X ∈ Rn×k subject to the orthogonality constraint
X>X = Ik.
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nonexistent
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λ̂ 6= 0

find x∗ = w∗+V u
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solve (39)

(39)≤ 0(39)> 0

find v such that
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unattainable,
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Figure 9: Diagram for solving QCQP. The red boxes indicate properties of the problem, blue
the processes in the algorithm.
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