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Abstract

Many time series are naturally considered as a superposition of
several oscillation components. For example, electroencephalogram
time series (EEG) include oscillation components such as alpha, beta,
and gamma. We propose a method for decomposing time series into
such oscillation components using state space models. Based on the
concept of random frequency modulation, Gaussian linear state space
models for oscillation components are developed. In this model, the
frequency of an oscillator is fluctuated by noise. Time series decompo-
sition is accomplished by this model like the Bayesian seasonal adjust-
ment method. Since the model parameters are estimated from data by
the empirical Bayes method, the frequencies of oscillation components
are determined in a data-driven manner. Also, appropriate number
of oscillation components is determined with the Akaike Information
Criterion (AIC). In this way, the proposed method provides a natural
decomposition of the given time series into oscillation components. In
neuroscience, the phase of neural time series plays an important role
in neural information processing. The proposed method can be used
to estimate the phase of each oscillation component and has several
advantages over conventional method based on the Hilbert transform.
Thus, the proposed method enables an investigation of the phase dy-
namics of time series. We apply the proposed method to real data from
various fields such as astronomy, ecology, tidology and neuroscience.

1 Introduction

Many time series are naturally considered as a superposition of several oscil-
lation components. For example, EEG time series are composed of several
oscillation components such as alpha, beta and gamma. Each oscillation
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component has its own amplitude, frequency and phase. In general, they
vary over time and these dynamics characterize the process underlying the
oscillation component. In neuroscience, such phase of neural time series
plays an important role in neural information processing (Buzsaki, 2011).
O’Keefe and Recce (1993) found that the theta phase of the hippocampal
local field potential (LFP, extracellular recording of voltage) at spike timing
of the place cells encodes the place of a rat. This study initiated impor-
tant follow-up research on the place cells and grid cells in the hippocampus.
In addition, phase synchronization between distant brain areas has been
deemed important (Siapas et al., 2005), the phase reset phenomenon has
been reported in human LFP (Makeig et al., 2002), and the LFP phase has
been found to encode some sensory information (Lopour et al., 2013). Time
series from other fields such as astronomy, ecology, and tidology, are con-
sidered to have their own oscillation components. An investigation of such
time series from the viewpoint of phase dynamics would provide interesting
insights.

In neuroscience, the phase of a neural time series is computed by the
Hilbert transform (Cohen, 2014). After applying a band-pass filter to the
original time series, the analytical signal is computed by the Hilbert trans-
form and the phase is determined from this analytical signal. Although this
method is widely used and easy to implement, it has several shortcomings
(Siapas et al., 2005). First, this method does not account for measurement
noise, which is inevitable in real time series data. Second, band-pass filtering
can distort the waveform, which leads to inaccurate estimate of the phase.
Third, the selection of band-pass filter is subjective and it may control the
final estimate of phase. For example, the definition of alpha band, which is
around 8-13 Hz, seems to vary among literatures. Since it is natural that
there are individual differences in the frequency band of alpha, it would be
useful if the frequency band is determined in a data-driven manner.

In this study, we propose a method for decomposing time series into os-
cillation components with state space models and also estimating the phase
of each oscillation component. Based on the concept of random frequency
modulation by (Wiener, 1966), Gaussian linear state space models for os-
cillation components are developed. In this model, the frequency of an
oscillator is fluctuated by noise. Time series decomposition is accomplished
by this model like the Bayesian seasonal adjustment method of Kitagawa
and Gersch (1984) and Akaike and Ishiguro (1980). Since parameters of the
state space model are estimated from data by empirical Bayes method, the
amplitude and frequency of each oscillation component are determined in a
data-driven manner. Also, the number of oscillation components is deter-
mined with the Akaike Information Criterion (AIC) from Akaike (1980). In
this way, the proposed method accomplishes a natural decomposition of the
given time series into oscillation components. Following the decomposition,
the phase of each oscillation component can be estimated. This phase es-
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timator has several advantages over the conventional phase estimator using
the Hilbert transform as discussed in Section 4.3.

We first explain about the existing method for phase estimation with
the Hilbert transform in Section 2. Then, we introduce random frequency
modulation models in Section 3. Based on this model, details of the proposed
method are explained in Section 4. Results of numerical experiments are
presented in Section 5. The proposed method is applied to real time series
from various fields in Section 6.

2 Phase estimation with the Hilbert transform

We explain about the existing method for phase estimation with the Hilbert
transform (Cohen, 2014). Given a time series y0(t), its phase in the fre-
quency band [f1, f2] is estimated as follows. First, a band-pass filter with
the passband [f1, f2] is selected, applied to y0(t) and the band-pass filtered
signal y(t) is obtained. To prevent the band-pass filtering from causing phase
delay, the band-pass filter b = (b0, b1, · · · , bL) is applied twice in opposite
directions as follows:

ỹ(t) =
L∑
l=0

bly0(t− l), y(t) =
L∑
l=0

blỹ(t+ l).

The MATLAB function filtfilt performs this operation. Next, the band-pass
filtered signal y(t) is transformed into another signal yH(t) by the Hilbert
transform:

yH(t) =

∫ ∞

−∞

y(τ)

t− τ
dτ. (1)

Taking y(t) as the real part and yH(t) as the imaginary part, the analytical
signal z(t) is determined as follows:

z(t) = y(t) + iyH(t), (2)

where i denotes the imaginary unit
√
−1. Finally, we define the phase ϕ(t)

of y0(t) in the frequency band [f1, f2] as the angle of the analytical signal
z(t):

ϕ(t) = arg z(t). (3)

Throughout this paper, we take the phase to be −π ≤ ϕ(t) < π.
Note that (1) and (2) can be rewritten as

Z(ω) =

{
2Y (ω) (ω > 0)

0 (ω < 0)
, (4)

where X(ω) denotes the Fourier transform of x(t). The MATLAB function
hilbert computes the Hilbert transform using the Fast Fourier Transform and
(4).
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Although this method is widely used and easy to implement, it has sev-
eral shortcomings that have recently been recognized in the field of neu-
roscience (Siapas et al., 2005). First, this method does not account for
measurement noise in y(t), which is inevitable in real time series data. Sec-
ond, band-pass filtering can distort the waveform of y(t), which leads to
inaccurate estimation of the phase. Third, the selection of a band-pass filter
is subjective and may affect the final estimate of the phase. For example, the
definition of an alpha band seems to vary among studies. Since it is natural
that there are individual differences in the frequency band of alpha, it would
be useful if the frequency band is determined in a data-driven manner.

3 Random frequency modulation model

3.1 Motivation

In general, a state space model is a pair of the state model and the obser-
vation model:

xt+1 = f(xt, vt), vt ∼ p(v),

yt = g(xt, wt), wt ∼ p(w).

In particular, a state space model of the following form is called a Gaussian
linear state space model:

xt+1 = Fxt + vt, vt ∼ N(0, Q),

yt = Hxt + wt, wt ∼ N(0, R).

The central problem in state space models is to estimate the state x from
the observation y.

We note that (2) can be interpreted as an observation model in a Gaus-
sian linear state space model:

y(t) = x1(t),

where
x(t) = (x1(t), x2(t)) = (Rez(t), Imz(t))⊤.

Here, no observation noise is assumed. Therefore, the Hilbert transform can
be interpreted as estimating the two-dimensional state vector x(t) from the
one-dimensional observation y(t). Based on this idea, we propose state space
models that describes oscillation components in time series in the following.
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3.2 Definition

Wiener (1966) noted that the spectrum of EEG has a characteristic peak
around 10 Hz, corresponding to the alpha wave. In order to understand how
this peak is established, he developed a stochastic process model of brain
wave that represents random fluctuation in the frequency of an oscillator.
He showed that such random frequency modulation gives rise to the alpha
peak in the spectrum of brain wave.

Based on Wiener’s “random frequency modulation” concept, we develop
Gaussian linear state space models for oscillation components as follows:(

xt+1,1

xt+1,2

)
= a

(
cos(2πf∆t) − sin(2πf∆t)
sin(2πf∆t) cos(2πf∆t)

)(
xt,1
xt,2

)
+

(
vt,1
vt,2

)
, (5)

yt = xt,1 + wt, (6)

where (
vt,1
vt,2

)
∼ N

((
0
0

)
,

(
σ2 0
0 σ2

))
,

wt ∼ N(0, τ2).

Here, 0 < a < 1, 0 ≤ 2πf∆t ≤ π and ∆t is the sampling period of yt. In
Section 3.5, we discuss the extension of this model by adding moving average
(MA) terms to (5). From the system model (5), xt+1 is determined by
rotating xt through an angle 2πf∆t about the origin, multiplying by a, and
adding system noise vt. These operations represent the random frequency
modulation. We added the constant a to make the model stationary. From
the observation model (6), yt is the first coordinate of xt plus observation
noise wt. Like (3), the phase of the oscillator is naturally defined as

ϕt = arg (xt,1 + ixt,2) . (7)

Note that we take the phase to be −π ≤ ϕ(t) < π throughout this paper.
In practice, a given time series is often a superposition of several oscilla-

tion components. Thus, we model a time series with K oscillation compo-
nents as follows:(
x
(k)
t+1,1

x
(k)
t+1,2

)
= ak

(
cos(2πfk∆t) − sin(2πfk∆t)
sin(2πfk∆t) cos(2πfk∆t)

)(
x
(k)
t,1

x
(k)
t,2

)
+

(
v
(k)
t,1

v
(k)
t,2

)
, (k = 1, · · · ,K),

(8)

yt =
K∑
k=1

x
(k)
t,1 + wt, (9)

where (
v
(k)
t,1

v
(k)
t,2

)
∼ N

((
0
0

)
,

(
σ2
k 0
0 σ2

k

))
,
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wt ∼ N(0, τ2).

Here, 0 < ak < 1, 0 ≤ 2πfk∆t ≤ π and ∆t is the sampling period of yt. The
frequencies of K oscillation components underlying the given time series are
f1, · · · , fK . The phase of the k-th oscillator is naturally defined as

ϕ
(k)
t = arg

(
x
(k)
t,1 + ix

(k)
t,2

)
. (10)

In the following, we denote the state vector and the observation matrix

of the model (8) and (9) by xt = (x
(1)
t,1 , x

(1)
t,2 , · · · , x

(K)
t,1 , x

(K)
t,2 )⊤ and H =

(1, 0, 1, 0, · · · , 1, 0).

3.3 Power spectrum

Since the model (5) describes a stationary Gaussian time series, we discuss
its second-order spectrum (Brockwell and Davis, 2009). The autocovariance
function of xt,1 is

E [xt,1xt+h,1] =
σ2

1− a2
ah cos (2πhf∆t) .

This coincides with the autocovariance function of the ARMA(2,1) model

Xt − 2a cos(2πf∆t)Xt−1 + a2Xt−2 = Zt + bZt−1, (11)

where

b =
1

2

(
A− 2a cos(2πf∆t) +

√
(A− 2a cos(2πf∆t))2 − 4

)
,

A =
1− 2a2 cos2(2πf∆t) + a4 cos(4πf∆t)

a(a2 − 1) cos(2πf∆t)
,

and Zt ∼ N(0, V ) are independent random variables with variance

V =
−σ2a cos(2πf∆t)

b
(> 0). (12)

The power spectrum of the ARMA(2,1) model (11) is

p(λ) =
V

2π

|1 + b exp(−iλ)|2

|1− 2a cos(2πf∆t) exp(−iλ) + a2 exp(−2iλ)|2
(−π < λ ≤ π),

(13)
and it has one peak around λ = 2πf∆t. We note that (11) specifies a
submodel of the full ARMA(2,1) model.

In the model (8) and (9), the spectrum of yt is the sum of the spectrums

of x
(1)
t,1 , · · · , x

(K)
t,1 and white noise. Therefore, the model (8) and (9) can be

viewed as representing the spectrum of a given time series as a sum of the
spectrums of the ARMA(2,1) models (11).
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3.4 Oscillator interpretation of the AR model

The submodel (11) of the ARMA(2,1) models was introduced naturally as
the description of an oscillator with random frequency modulation On the
other hand, the AR(2) models are commonly used to describe time series
with single characteristic frequencies (Quinn and Hannan, 2013). Here, we
explain how the AR process of arbitrary order can also be interpreted as a
superposition of several oscillation components (Huerta and West, 1999a,b).

For the AR(p) process

xt =

p∑
k=1

akxt−k + εt, (14)

the characteristic roots ξ1, · · · , ξp are defined as the roots of the algebraic
equation

zp −
p∑

k=1

akz
p−k = 0. (15)

In the following, we assume that (15) has no multiple roots, ξ1, · · · , ξ2mp are
imaginary numbers satisfying ξ2 = ξ̄1, · · · , ξ2mp = ξ̄2mp−1 and ξ2mp+1, · · · , ξp
are real numbers. Let V be a Vandermonde matrix

V =


1 1 · · · 1

ξ−1
1 ξ−1

2 · · · ξ−1
p

...
...

. . .
...

ξ1−p
1 ξ1−p

2 · · · ξ1−p
p

 . (16)

Since ξ1, · · · , ξp are all different, V is nonsingular. Then, the state space
form of the AR model

xt
xt−1
...

xt−p+1

 =


a1 a2 a3 · · · ap−1 ap
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



xt−1

xt−2
...

xt−p

+


εt
0
...
0


is reduced to the following canonical form:

u
(1)
t

u
(2)
t
...

u
(p)
t

 =


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp



u
(1)
t−1

u
(2)
t−1
...

u
(p)
t−1

+ V −1


εt
0
...
0

 , (17)
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where 
u
(1)
t

u
(2)
t
...

u
(p)
t

 = V −1


xt
xt−1
...

xt−p+1

 . (18)

Now, since the multiplication by a complex number ξk corresponds to the
composition of the scalar multiplication by |ξk| and the rotation by arg ξk

on the complex plane, each u
(k)
t in (17) represents an oscillator with random

frequency modulation. However. from ξ2 = ξ̄1, · · · , ξ2mp = ξ̄2mp−1, we

can show that u
(2)
t = ū

(1)
t , · · · , u(2mp)

t = ū
(2mp−1)
t . Therefore, each pair

(u
(1)
t , u

(2)
t ), · · · , (u(2mp−1)

t , u
(2mp)
t ) essentially represents one oscillator. Since

xt =
K∑
k=1

u
(k)
t

from (18), the AR process (14) is interpreted as the superposition of p−mp

oscillators.
The phase of each oscillator in the AR process can now be defined as

ϕ
(k)
t = arg u

(k)
t (k = 1, 3, · · · , 2mp + 1, 2mp + 2, · · · , p). (19)

However, as described in Section 5, this phase definition did not perform well
in numerical experiments. Therefore, we use the model (8) in the proposed
method. Just as AR(2) models have been extended so that frequencies vary
with time (Nguyen et al., 2009), the model (8) can also be made to have a
frequency that varies with time.

Whereas the system noise is degenerated in (17), the system noise is
rotation invariant in (8). In other words, the modulation does not depend
on direction in (8). Therefore, the model (8) describes the random frequency
modulation more naturally than the model (17). Also, whereas the system
noises for different oscillators are strongly correlated in (17), the system
noises for different oscillators are independent in (8). Therefore, the model
(8) is preferable to the AR model (17) when one decomposes a given time
series into independent oscillation components.

3.5 Addition of MA term

We found some real time series for which the fit of the model (8) and (9) is
not very good in the high frequency range. This problem was overcome by
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adding the following MA terms to the model (8) and (9):(
x
(k)
t+1,1

x
(k)
t+1,2

)
= ak

(
cos(2πfk∆t) − sin(2πfk∆t)
sin(2πfk∆t) cos(2πfk∆t)

)(
x
(k)
t,1

x
(k)
t,2

)
+

(
v
(k)
t,1

v
(k)
t,2

)

+ bk,1

(
v
(k)
t−1,1

v
(k)
t−1,2

)
+ · · ·+ bk,q

(
v
(k)
t−q,1

v
(k)
t−q,2

)
(k = 1, · · · ,K), (20)

yt =

K∑
k=1

x
(k)
t,1 + wt, (21)

where (
v
(k)
t,1

v
(k)
t,2

)
∼ N

((
0
0

)
,

(
σ2
k 0
0 σ2

k

))
,

wt ∼ N(0, τ2).

This model corresponds to a submodel of the ARMA(2,1+ q) model. Com-
pared with the original model (8) and (9), the spectrum of the model (20)
and (21) decay faster in the high frequency range. Therefore, for time se-
ries whose spectrum decay fast in the high frequency range, the model (20)
and (21) provides better fit than the original model (8) and (9). This phe-
nomenon is demonstrated using tidal data in Section 6.3.

4 Proposed method

4.1 Decomposition into oscillation components and phase es-
timation

Based on the random frequency modulation model (8) and (9), the proposed
method decomposes the given time series into oscillation components and
estimates the phase of each component. Decomposition is accomplished us-
ing the same approach as in the Bayesian seasonal component adjustment
method of Kitagawa and Gersch (1984) and Akaike and Ishiguro (1980).
The methods of selecting K and estimating the parameters f1, · · · , fK ,
a1, · · · , aK , σ2

1, · · · , σ2
K , and τ2 are explained in Section 4.2.

For Gaussian linear state space models, filtering and smoothing are re-
alized by the Kalman filter and smoother. The Kalman filter algorithm
calculates the filtering distribution p(xt | y1, · · · , yt) and the one-step ahead
predictive distribution p(xt+1 | y1, · · · , yt). The Kalman smoother algorithm
calculates the smoothing distribution p(xs | y1, · · · , yt) where s < t. These
algorithms form the basis of the proposed method. Since all of the condi-
tional distributions p(xs | y1, · · · , yt) are Gaussian, they are determined by
the mean and the covariance matrix. We define the conditional mean as

xs|t = E[xs | y1, · · · , yt]
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and the conditional covariance matrix as

Σs|t = E[(xs − xs|t)(xs − xs|t)
⊤ | y1, · · · , yt].

Kitagawa and Gersch (1984) and Akaike and Ishiguro (1980) developed
the Bayesian seasonal adjustment method. They assumed that a given time
series yt consists of a trend component Tt, a seasonal component St and
observation noise Wt, as follows:

yt = Tt + St +Wt.

The trend component Tt and the seasonal component St are described by
Gaussian linear state space models. By applying the Kalman smoother, the
given time series yt is decomposed into these components:

yt = Tt|N + St|N +Wt|N ,

where N denotes the length of the time series. West (1997) also proposed a
method for decomposing a given time series into trend and AR components.

The proposed method decomposes a given time series into oscillation
components based on the model (8) and (9). By applying the Kalman
smoother, yt is represented as the superposition of K oscillation components
as follows:

yt =
K∑
k=1

x
(k)
t,1|N + wt|N , (22)

where wt represents the observation noise. The phase ϕ
(k)
t (t) of the k-th

oscillator (10) is then estimated as

ϕ̂
(k)
t = arg

(
x
(k)
t,1|N + ix

(k)
t,2|N

)
. (23)

We can construct the credible intervals of each oscillation component

x
(k)
t,1 using the conditional covariance

(
Σt|N

)
2k−1,2k−1

. The (2Φ(1)− 1 =) 68

% credible interval is[
x
(k)
t,1|N −

√(
Σt|N

)
2k−1,2k−1

, x
(k)
t,1|N +

√(
Σt|N

)
2k−1,2k−1

]
,

where Φ is the cumulative distribution function of the standard normal
distribution N(0, 1). Also, we can construct the credible intervals of the

phase ϕ
(k)
t defined as (10) using the conditional covariance

(
Σt|N

)
2k−1,2k−1

,(
Σt|N

)
2k−1,2k

and
(
Σt|N

)
2k,2k

. Let x̃1 = (x̃1,1, x̃1,2), · · · , x̃M = (x̃M,1, x̃M,2)

(M = 103) be independent samples from the conditional distribution of

(x
(k)
t,1 , x

(k)
t,2 )

⊤

N

((
x
(k)
t,1|N

x
(k)
t,2|N

)
,

((
Σt|N

)
2k−1,2k−1

(
Σt|N

)
2k−1,2k(

Σt|N
)
2k,2k−1

(
Σt|N

)
2k,2k

))
.
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The phase of each sample is defined as

ϕ̃k = arctan
x̃k,2
x̃k,1

.

We sort ϕ̃k − ϕ
(k)
t|N and put them ϕ̃(1), · · · , ϕ̃(M). Then, we construct the

100α % credible interval of the phase ϕ
(k)
t as [ϕ

(k)
t|N + ϕ̃(l), ϕ

(k)
t|N + ϕ̃(u)], where

ϕ̃(l), · · · , ϕ̃(u) have ⌈Mα⌉ smallest absolute values among ϕ̃(1), · · · , ϕ̃(M).
Since the proposed method is based on the state space model (8) and

(9), it can be applied to time series with missing values; the filtering step is
skipped for time points without observation (Kitagawa, 2010). In this way,
the state vectors can be estimated even for time points without observa-
tion. This capability is demonstrated using tidal data with missing values
in Section 6.4.

4.2 Parameter estimation and model selection

Before decomposing a given time series, we need to determine the parameters
of the model (8) and (9) and the number of oscillation components K. We
estimate the parameters by the empirical Bayes method and select K with
the Akaike Information Criterion (AIC) of Akaike (1980).

First, we explain the method for parameter estimation. We denote
the parameters in the model (8) and (9) as θK = (f1, · · · , fK , a1, · · · , aK ,
σ̃2
1, · · · , σ̃2

K , τ2), where
σ̃2
k = τ−2σ2

k.

We estimate θK by maximizing the marginal likelihood L(θK) = p(y1, · · · , yN |
θK) of the model (8) and (9) with numerical optimization.

As noted in Kitagawa (2010), the maximization of L(θK) with respect
to τ2 is solved in closed form. The log marginal likelihood of the model (8)
and (9) is computed using the Kalman filter as follows:

logL(θK) =

T∑
t=1

log p(yt | y1, · · · , yt−1; θK), (24)

log p(yt | y1, · · · , yt−1; θK) = −1

2
log
(
2π(HΣt|t−1H

⊤ + τ2)
)
−

(yt −Hxt|t−1)
2

2(HΣt|t−1H⊤ + τ2)
,

where x1|0 and Σ1|0 are the mean and the covariance matrix of the stationary
distribution of the model (8):

x1|0 = 0,

(Σ1|0)2k−1,2k−1 = (Σ1|0)2k,2k =
τ2σ̃2

k

1− a2k
(k = 1, · · · ,K),

11



(Σ1|0)ij = 0 (i ̸= j).

When (f1, · · · , fK , a1, · · · , aK , σ̃2
1, · · · , σ̃2

K) are fixed, xt|t−1 and xt|t do not
depend on τ2, and Σt|t−1 and Σt|t are proportional to τ2. Therefore, the
log-likelihood function (24) is rewritten as

logL(θK) =

T∑
t=1

(
−1

2
log
(
2πτ2(HΣ̃t|t−1H

⊤ + 1)
)
−

(yt −Hx̃t|t−1)
2

2τ2(HΣ̃t|t−1H⊤ + 1)

)
,

(25)
where Σ̃t|t−1 and Σ̃t|t are conditional covariance matrices with τ2 = 1 and
fixed parameters f1, · · · , fK , a1, · · · , aK , σ̃2

1, · · · , σ̃2
K . The function (25) is

maximized as a function of τ2 by

τ̂2 =
1

T

T∑
t=1

(yt −Hx̃t|t−1)
2

HΣ̃t|t−1H⊤ + 1
,

and the maximum value is

max
τ2

logL(θK) = −T

2
log
(
2πeτ̂2

)
− 1

2

T∑
t=1

log(HΣ̃t|t−1H
⊤ + 1). (26)

Thus, we have reduced the number of parameters to be estimated by numeri-
cal optimization. We only need to maximize (26) with respect to f1, · · · , fK ,
a1, · · · , aK , and σ̃2

1, · · · , σ̃2
K .

We maximize (26) with respect to f1, · · · , fK , a1, · · · , aK , and σ̃2
1, · · · , σ̃2

K

using the quasi-Newton method. Since (26) is not concave in general, the
initial values for f1, · · · , fK , a1, · · · , aK , and σ̃2

1, · · · , σ̃2
K must be carefully

determined. The method of setting the initial values, based on the oscilla-
tor interpretation of AR models discussed in Section 3.4, is detailed in the
Appendix.

We can also use the expectation maximization (EM) algorithm to esti-
mate the parameters (Shumway and Stoffer, 1982). For the model (8) and
(9), M-step can be written down in a closed form. However, this algorithm
was slower than the quasi-Newton method in the numerical experiments.
Therefore, here, we use the quasi-Newton method for the parameter estima-
tion.

For the model (20) and (21), we take θq,K = (f1, · · · , fK , a1, · · · , aK ,

σ̃2
1, · · · , σ̃2

K , b
(1)
1 , · · · , b(K)

q , τ2) and θq,K is estimated in the same way as θK .
Next, we explain the method for model selection. We select the num-

ber K of oscillation components based on the Akaike Information Criterion
(AIC) from Akaike (1980), Since 3K+1 parameters (f1, · · · , fK , a1, · · · , aK ,
σ2
1, · · · , σ2

K , τ2) are estimated from the data, the AIC of the model (8) and
(9) with K oscillation components is defined as

AICK = −2 logL(θ̂K) + 2(3K + 1),

12



where L(θK) = p(y1, · · · , yN | θK) is the marginal likelihood and θ̂K is the
estimate of θK . Similarly, when we add MA terms, the AIC of the model
(20) and (21) with K oscillation components is defined as

AICq,K = −2 logL(θ̂q,K) + 2{(3 + q)K + 1}.

We select the model with the minimum AIC to determine K.

4.3 Comparison with the Hilbert transform method

In Section 2, we discussed several shortcomings of the existing phase estima-
tion method using the Hilbert transform. The proposed method overcomes
these shortcomings. First, since the proposed method is based on the state
space model (8) and (9), measurement noise is naturally accounted for in
the decomposition (22). Next, by virtue of parameter estimation with the
empirical Bayes method and model selection with information criterion AIC,
the proposed method decomposes a given time series into several oscillation
components in a data-driven manner. The frequency, amplitude and the
degree of random frequency modulation of each component, together with
the number of components, are determined from data objectively. There-
fore, the proposed method avoids arbitrary selection of the band-pass filter.
Finally, the proposed method is free from waveform distortion caused by
band-pass filtering.

Furthermore, the proposed method can evaluate the error of the phase
estimate (23) using the conditional covariance

(
Σt|T

)
2k−1,2k−1

,
(
Σt|T

)
2k−1,2k

and
(
Σt|T

)
2k,2k

, and can also be applied to time series with missing values

since it is based on the state space model (8) and (9). The Hilbert transform
method is not capable of performing these tasks.

5 Numerical experiments

In this Section, we compare the proposed method to the Hilbert transform
method with simulated data. We generated simulated data from the follow-
ing state space model:

log r
(k)
t+1 ∼ N(ak log r

(k)
t , σ2

k) (k = 1, · · · ,K),

ϕ
(k)
t+1 ∼ VM(ϕ

(k)
t + 2πfk∆t, κk) (k = 1, · · · ,K),

yt ∼ N

(
K∑
k=1

r
(k)
t cosϕ

(k)
t , τ2

)
,

where VM(µ, κ) represents the von Mises distribution with a mean param-
eter µ and a concentration parameter κ.This model represents a time series

13



Table 1: AIC values of the models (8) and (9) withK oscillation components
K 1 2 3 4 5

AIC 1793 1659 1442 1448 1453

with K oscillation components. In this model, the amplitude rt and the
phase ϕt of each oscillator develop independently.

In the simulation, the parameters were set with K = 3 as follows:

a1 = 0.5, σ2
1 = 0.01, f1 = 25, κ1 = 20,

a2 = 0.4, σ2
2 = 0.01, f2 = 50, κ2 = 30,

a3 = 0.3, σ2
3 = 0.01, f3 = 75, κ3 = 40,

and τ2 = 1. Therefore, the simulated data consists of three oscillation
components with frequencies of 25 Hz, 50 Hz, and 75 Hz. We used the
MATLAB toolbox CircStat (Berens, 2009) to generate random variables
from the von Mises distribution. The sampling frequency was set to 200 Hz,
and the data length was set to 1000.

Table 1 shows the AIC values of the models (8) and (9) with K oscilla-
tion components. The AIC attains minimum at K = 3. With K = 3, the
estimated frequencies are f̂1 = 25.22, f̂2 = 50.40 and f̂3 = 75.10. There-
fore, the proposed method detects the correct number and frequencies of
oscillators in a data-driven manner.

Fig. 1 shows the decomposition of the simulated data obtained by the
proposed method. The proposed method succeeds in denoising the given
time series and decomposing it into three oscillation components.

Table 2 shows the mean squared errors of phase estimators. The pro-
posed method has smaller mean squared errors than the Hilbert transform
method. Here, the Hilbert transform method adopted band-pass filters with
a passband of 20-30 Hz (for ϕ(1)), 40-60 Hz (for ϕ(2)) and 60-90 Hz (for
ϕ(3)). We used the MATLAB function filtfilt and hilbert to prevent phase
delay during band-pass filtering and to compute the Hilbert transform, re-
spectively. Also, we examined the phase estimator (19) defined from the
canonical form (17) of the AR models. Among the AR models with ob-
servation noise (27) and (28), the AR(7) model had the minimum AIC. As
described in Section 3.4, the fitted AR(7) model had four oscillation compo-
nents with frequencies of 0 Hz, 25.17 Hz, 50.41 Hz and 75.13 Hz. Therefore,
the phases of three oscillation components appear estimable using the es-
timator (19). However, as shown in Table 2, this estimator has a mean
squared error that is significantly larger than the other estimators.
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Figure 1: Decomposition of simulated data. First panel: raw data. Second-
fourth panel: oscillation components with 68% credible intervals. Fifth
panel: observation noise.
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Table 2: Mean squared errors of phase estimators
ϕ(1) ϕ(2) ϕ(3)

Hilbert transform 2.28 2.16 2.63

AR(7) 7.01 9.71 7.19

Proposed method 2.33 1.59 1.70

6 Applications to real data

6.1 Canadian Lynx data

The Canadian Lynx data is a famous time series that appears in many text-
books of time series analysis. Here, we use data from Brockwell and Davis
(2009) that is the annual number of the Canadian lynxes trapped in the
Mackenzie River District of the Northwestern Canada for the period 1821-
1934. Many statistical analyses of this data have been performed (Campbell
and Walker, 1977; Tong, 1977). We log-transformed the original data.

Table 3 shows the AIC values of several models for Canadian Lynx data.
As noted in Tong (1977), the AR(11) model is the minimum AIC model
among AR models without observation noise. Among AR models with ob-
servation noise (27) and (28), the AR(13) model is the minimum AIC model.
Our model (8) and (9) attains the minimum AIC when K = 6 and provides
better fit than the AR models. The estimated frequencies of the six oscilla-
tion components are

f̂1 = 0, f̂2 = 0.03, f̂3 = 0.10, f̂4 = 0.20, f̂5 = 0.30, f̂6 = 0.41,

where the frequency units are per year.
Fig. 2 presents the decomposition into oscillation components obtained

by the proposed method. Here, observation noise is omitted since it is in
the order 10−5. Since f̂1 = 0, the first component is considered to be the
trend component. As we can see from the first panel in Fig. 2, the Canadian
Lynx data has a characteristic period of approximately 10 years. The third
component, which has a 9.78 years period, corresponds well to this value.

Fig. 3 shows the phases of the six oscillation components. Because the
first component represents the trend, its phase remains largely unchanged.
For the third component, the phase develops regularly and the credible
interval of the phase is very narrow. For the fourth component, which has
a 5.02 years period, a phase reset phenomenon occurs around 1850 and the
credible interval of the phase widens around this phenomenon. This observed
phase reset may in fact represent a real-world event involving the Canadian
Lynx. For example, it would be interesting to apply the proposed method
to the annual number of the Lepus americanus, on which the Canadian
lynx feeds, and investigate the phase relationships between them. In this
way, the proposed method enables investigation of time series from a phase
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Table 3: AIC values of several models for Canadian Lynx data. The AR
order p and number of components K are optimized.

our model (8) and (9) with K = 6 -27.36

AR(11) -25.79

AR(13) with observation noise -26.47

Table 4: AIC values of several models for Wolfer sunspot data. The AR
order p and number of components K are optimized.

our model (8) and (9) with K = 3 -19.71

AR(9) -19.54

AR(7) with observation noise -21.44

dynamics perspective and may give rise to an interesting approach in time
series analysis.

6.2 Wolfer sunspot data

Similar to the Canadian Lynx data, the Wolfer sunspot data is also a famous
time series that appears in many textbooks. Here, we use data from Tong
(1990) that is the annual number of recorded sunspots on the sun’s surface
for the period 1770-1869. We log-transformed the original data.

Table 4 shows the AIC values of several models for Wolfer sunspot data.
The proposed method decomposes this data into three oscillation compo-
nents. The estimated frequencies of the three oscillators are

f̂1 = 0, f̂2 = 0.086, f̂3 = 0.180,

where the frequency units are per year.
Fig. 4 presents the decomposition into oscillation components accom-

plished by the proposed method. Here, observation noise is omitted since it
is in the order 10−6. Since f̂1 = 0, the first component is considered to be
the trend component. The number of sunspots is known to oscillate with a
period of approximately 11 years. The second component, which has 11.6
years period, corresponds well to this known value.

Fig. 5 shows the phases of the three oscillation components. Because the
first component represents the trend, its phase remains largely unchanged.
Comparatively, the second and third component phases change with time.
For the third component, the phase fluctuates randomly and the credible
interval of the phase is consistently wide.

6.3 Tidal data

Tidal data also show characteristic oscillatory behavior (Tamura et al.,
1991). Here, we apply the proposed method to tidal data in Tokyo obtained
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Figure 2: Decomposition of Canadian Lynx data. First panel: raw data
(log-transformed Lynx data). Second-seventh panel: oscillation components
with 68% credible intervals.
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Figure 3: Estimated phases of six oscillation components in Canadian Lynx
data with 68% credible intervals.
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Figure 4: Decomposition of Wolfer sunspot data. First panel: raw data (log-
transformed sunspot data). Second-fourth panel: oscillation components
with 68% credible intervals.
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Figure 5: Estimated phases of three oscillation components in Wolfer
sunspot data with 68% credible intervals

from the homepage of the Japan Meteorological Agency (http://www.data.
jma.go.jp/kaiyou/db/tide/suisan/). We use data from January-May
2010, which are sampled every hour with no missing values.

First, we down-sampled the original data to every four hours and then
applied the proposed method. The data length is 750. Fig. 6 plots the
AIC values of our models (8) and (9) and the AR models with observation
noise (27) and (28). Our model attains a minimum AIC at K = 11 and
it is lower than that of the AR models. Fig. 7 shows the decomposition
for the 201st-300th data points (17 days) and Fig. 8 shows the phase of
each component for the 201st-250th data points (8 days). Frequencies of
large-power components are

f̂1 = 0, f̂2 = 0.17, f̂3 = 0.39, f̂4 = 0.93, f̂7 = 1.93,

where the frequency units are per day. The phase of the fourth, fifth, sixth
and seventh components develops regularly, and their credible intervals are
narrow. Fig. 9 presents the fourth and seventh component for fifty days.
Interestingly, the amplitudes of these components oscillate with a period of
approximately 15 days.

Next, we applied the proposed method to the original tidal data, which
is sampled every hour. The data length is 3000. Fig. 10 plots the AIC of
our models (8) and (9) and the AR models with observation noise (27) and
(28). Here, we also present the AIC of our models with MA term added
(20) and (21) where q = 2.We can see that addition of MA terms improves
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Figure 6: AIC values of several models for tidal data. Left: AR(p) models
with observation noise (27) and (28). Right: our models (8) and (9) with
K oscillation components.

the model fit.

6.4 Tidal data with missing values

In tidal data, measurement equipment problems sometimes result in missing
values in practice. The proposed method can be applied to such data since
it is based on state space models. Here, in order to assess the effects of
missing values, we artificially dropped the 221st-250th data points from the
down-sampled tidal data described above. We applied the proposed method
to this time series.

Fig. 7 shows the decomposition for the 201st-300th data points (17 days).
Here, we used the same parameter as the non-missing case. The decomposi-
tion is qualitatively the same with the non-missing case. For several compo-
nents like the first and second, the conditional variance becomes large in the
interval without observation. However, regularly oscillating components like
the fourth and seventh are not affected much.Thus, the proposed method
detects the oscillation components underlying the tidal data robustly.

6.5 Hippocampal local field potential

Finally, we apply the proposed method to rat hippocampal LFP data from
Mizuseki (2009a). The sampling frequency is 125 Hz, and the data length is
250. The original paper (Mizuseki et al., 2009b) focused on the LFP theta
band (5-10 Hz) of this LFP. Fig. 12 depicts this data; periodic activity in
this frequency band is apparent.
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Figure 7: Decomposition of tidal data. First panel: raw data. Second-
12th panel: oscillation components with 68% credible intervals. 13th panel:
observation noise.
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Figure 10: AIC values of several models for tidal data. Left: AR(p) models
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Figure 13: AIC values of several models for hippocampal LFP data. Left:
AR(p) models with observation noise (27) and (28). Right: our models (8)
and (9) with K oscillation components.

Fig. 13 plots the AIC values of our models (8) and (9) and the AR
models with observation noise (27) and (28). Our model attains minimum
AIC at K = 4 and it is less than the AIC of AR models. When K = 4, the
estimated frequencies are

f̂1 = 6.00, f̂2 = 8.02, f̂3 = 15.96, f̂4 = 35.60,

where the frequency units are per second (Hz). Fig. 14 shows the decom-
position and Fig. 15 shows the phase of each component. For the second,
third, and fourth component, the phases develop regularly.

These results imply that one oscillator corresponds to the theta rhythm
with a frequency f̂2 = 8.02 Hz. A second oscillator corresponding to the
alpha rhythm likely exists with a frequency f̂3 = 15.96 Hz. Higher frequency
oscillators are also evident.
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Figure 14: Decomposition of hippocampal LFP data. First panel: raw
data. Second-fifth panel: oscillation components with 68% credible intervals.
Sixth panel: observation noise.

28



0.5 1 1.5 2
-3.14

0

3.14

0.5 1 1.5 2
-3.14

0

3.14

0.5 1 1.5 2
-3.14

0

3.14

0.5 1 1.5 2
-3.14

0

3.14

Figure 15: Estimated phases of the four oscillation components in hippocam-
pal LFP data with 68% credible intervals.

29



Conventional analysis of neural time series such as LFP focuses on fre-
quencies below 50 Hz, since the signal-to-noise ratio is lower for higher
frequencies. However, the proposed method denoises the time series and
decomposes it into oscillation components. Therefore, the observed high
frequency oscillators may have a significant role in neural information pro-
cessing. Future research may investigate the role of these oscillators, includ-
ing the potential for their phases to encode internal information.
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A Estimation of AR models with observation noise

Before fitting our model (8) and (9) to given time series, we need to fit the
AR models with observation noise

xt =

p∑
k=1

akxt−k + vt, vt ∼ N(0, Q), (27)

yt = xt + wt, wt ∼ N(0, R) (28)

to given time series, in order to determine the initial values of the parameters
in (8) and (9) for numerical optimization as described in Appendix B. Here,
we explain the method for fitting the AR models with observation noise (27)
and (28). Let

Ĉk =
1

N

N∑
t=k+1

ytyt−k

be the sample autocovariance function of the given time series yt.
First, we calculate the minimum eigenvalue R > 0 of the Toeplitz matrix

Ĉ0 Ĉ1 Ĉ2 · · · Ĉp

Ĉ1 Ĉ0 Ĉ1 · · · Ĉp−1

Ĉ2 Ĉ1 Ĉ0 · · · Ĉp−2
...

...
...

. . .
...

Ĉp Ĉp−1 Ĉp−2 · · · Ĉ0

 .

Then, we define a function g : (0, R) → R as follows. For R̃ ∈ (0, R), we
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solve the Yule-Walker type equation
Ĉ0 − R̃ Ĉ1 Ĉ2 · · · Ĉp−1

Ĉ1 Ĉ0 − R̃ Ĉ1 · · · Ĉp−2

Ĉ2 Ĉ1 Ĉ0 − R̃ · · · Ĉp−3
...

...
...

. . .
...

Ĉp−1 Ĉp−2 Ĉp−3 · · · Ĉ0 − R̃




a1(R)
a2(R)
a3(R)

...
ap(R)

 =


Ĉ1

Ĉ2

Ĉ3
...

Ĉp

 ,

calculate the log-likelihood of the model (27) and (28) with parameter

a1 = a1(R̃), · · · , ap = ap(R̃), Q = Ĉ0 −
p∑

k=1

ak(R̃)Ĉk, R = R̃

using Kalman filter (Kitagawa, 2010) and denote it as g(R̃). Note that the
stationarity of the AR process with a1 = a1(R̃), · · · , ap = ap(R̃) and the

positivity of Ĉ0−
∑p

k=1 ak(R̃) is guaranteed since R̃ ∈ (0, R). We maximize

g(R̃) by numerical optimization. Let R0 be the solution.
Next, we maximize the log-likelihood of the model (27) and (28) with

respect to a1, · · · , ap, Q,R by numerical optimization. The initial value is
set to

a1 = a1(R0), · · · , ap = ap(R0), Q = Ĉ0 −
p∑

k=1

ak(R0)Ĉk, R = R0.

In numerical optimization, we transform the AR coefficients a1, · · · , ap to
the partial autocorrelation coefficients (PARCOR) c1, · · · , cp to enforce the
stationarity (Kitagawa, 2010).

Thus, we fit the AR models with observation noise (27) and (28) to the
given time series.

B Initial values of parameters in model fitting

Since the log-likelihood (26) is not concave in general, in the numerical opti-
mization, initial values for f1, · · · , fK , a1, · · · , aK , σ̃2

1, · · · , σ̃2
K must be care-

fully chosen. We utilize the interpretation of AR process as a superposition
of oscillation components discussed in Section 3.4.

Suppose we want to fit the model (8) and (9) with K oscillation com-
ponents to given time series yt. First, for each p = K, · · · , 2K, we fit the
AR(p) model with observation noise (27) and (28) to yt using the method

described in Appendix A. Let ξ
(p)
1 , · · · , ξ(p)p be the characteristic roots of the

fitted AR(p) model (27). Here, ξ
(p)
2 = ξ̄

(p)
1 , · · · , ξ(p)2mp

= ξ̄
(p)
2mp−1 are imaginary

numbers and ξ
(p)
2mp+1, · · · , ξ

(p)
p are real numbers. Therefore, from Section 3.4,
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the fitted AR(p) model has p−mp oscillators. Note that |ξ(p)1 |, · · · , |ξ(p)p | are
all smaller than one since the fitted AR(p) model is stationary. Among the
fitted AR(p) models with p − mp = K, let AR(p∗) be the model with the

minimum AIC. We put ξ1 = ξ
(p∗)
1 , ξ2 = ξ

(p∗)
3 , · · · , ξmp = ξ

(p∗)
2mp∗−1, ξmp∗+1 =

ξ
(p∗)
2mp∗+1, · · · , ξK = ξ

(p∗)
p∗ . If there are no model with p − mp = K, then let

AR(p∗) be the model with the minimum AIC among those with p−mp > K.

In this case, among ξ
(p∗)
k with nonnegative imaginary parts, we set ξi to be

that with the i-th maximum absolute value. In both cases, let the estimated
variance R of the observation noise in the model (27) and (28) be R∗.

Then, the initial values for f1, · · · , fK and a1, · · · , aK are set to

2πf1∆t = arg ξ1, · · · , 2πfK∆t = arg ξK ,

a1 = |ξ1|, · · · , aK = |ξK |.

Thus, the location and degree of sharpness of peaks in the spectrum are set
to be the same as the best AR model. Also, the initial values for σ̃2

1, · · · , σ̃2
K

are set to

σ̃2
1 =

σ2
1

R∗
, · · · , σ̃2

K =
σ2
K

R∗
,

where σ2
1, · · · , σ2

K are calculated from the linear equation
p̃1(arg ξ1) p̃2(arg ξ1) · · · p̃K(arg ξ1)
p̃1(arg ξ2) p̃2(arg ξ2) · · · p̃K(arg ξ2)

...
...

. . .
...

p̃1(arg ξK) p̃2(arg ξK) · · · p̃K(arg ξK)




σ2
1

σ2
2
...

σ2
K

 =


I(arg ξ1)
I(arg ξ2)

...
I(arg ξK)

 .

Here,

p̃k(λ) =
−ak cos(2πfk∆t)

2πbk

|1 + bk exp(−iλ)|2

|1− 2ak cos(2πfk∆t) exp(−iλ) + a2k exp(−2iλ)|2

is the spectrum (13) of the ARMA(2,1) model (11) with σ2 = 1 and

I(λ) =
1

N

∣∣∣∣∣
N∑
t=1

yt exp(−itλ)

∣∣∣∣∣
2

is the sample spectrum. Thus, values of the power spectrum on f1, · · · , fK
are made to match the sample spectrum on f1, · · · , fK . This method is
motivated from the theory of Whittle likelihood for Gaussian time series
(Whittle, 1953).

For the model with MA term added (20) and (21), the initial values for
f1, · · · , fK and a1, · · · , aK are set in the above way and the initial values for
bk,1, · · · , bk,q (k = 1, · · · ,K) are set to zero.
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