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Abstract

We consider structure-preserving methods for conservative systems,
which rigorously replicate the conservation property yielding better nu-
merical solutions. There, corresponding to the skew-symmetry of the
differential operator, that of difference operators is essential to the
discrete conservation law. Unfortunately, however, when we employ
the standard central difference operator, which is the simplest skew-
symmetric operator, the numerical solutions often suffer from undesir-
able spatial oscillations. In this letter, we propose a novel “average-
difference method,” which is tougher against such oscillations, and
combine it with an existing conservative method. Theoretical and nu-
merical analyses show the superiority of the proposed method.

1 Introduction

In this letter, we consider the numerical integration of the partial differential
equation (PDE) in the form

utx =
δG

δu
, H(u) :=

∫ L

0
G(u, ux, . . . )dx, (1)

where subscripts t or x denote the partial differentiation with respect to t
or x, and δG/δu is the variational derivative of G. We assume the periodic
boundary condition u(t, x + L) = u(t, x) (∀t ∈ R+ := [0,+∞), ∀x ∈ R),
where L ∈ R+ is a constant. When the derivatives of u do not appear in H,
the equation (1) is called the (nonlinear) Klein–Gordon equation in light-
cone coordinates. Moreover, the class of PDEs in the form (1) includes the
Ostrovsky equation [1], the short pulse equation [2], etc. For their numerical
treatments, due to the possible indefiniteness caused by the spatial derivative
in the left-hand side, it seems a systematic numerical framework for (1) is
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yet to be investigated, though a few exceptions for specific cases can be
found (see, e.g., [3, 4]).

In this letter, we focus on a certain class of conservative methods. Under
the periodic boundary condition, the target equation (1) has the conserved
quantity H:

dH
dt

=

∫ L

0

δG

δu
ut dx =

∫ L

0
utxut dx =

[
1

2
u2t

]L
0

= 0. (2)

Note that the skew-symmetry of the differential operator ∂x := ∂/∂x is
crucial here. A numerical scheme is called conservative when it replicates
such a conservation property (see, e.g., [5, 6]). The numerical solutions ob-
tained by such schemes are often more stable than those of general-purpose
methods. There, the crucial point for the discrete conservation law is the
skew-symmetry of difference operator, which corresponds to that of the dif-
ferential operator; when one try to construct a conservative finite-difference
scheme for the equation (1), the differential operator ∂x in left-hand side
must be replaced by one of the skew-symmetric difference operators, for
example, the central difference operators, the compact finite difference op-
erators (see, e.g., Kanazawa–Matsuo–Yaghchi [7]), and the Fourier-spectral
difference operator (see, e.g., Fornberg [8]). This is intrinsically indispens-
able, at least to the best of the present authors’ knowledge. This, however,
at the same time, leads to an undesirable side effect that the numerical
solutions tend to suffer from spatial oscillations.

In this letter, to work around this technical difficulty, we propose a novel
“average-difference method,” which is tough against such undesirable spa-
tial oscillations. A similar method has been, in fact, already investigated
by Nagisa [9]. However, he used this method for advection-type equations,
and concluded the method was unfortunately not more advantageous than
existing methods. In this letter, we instead construct an average-difference
method for the PDE (1), and combine it with the idea of conservation men-
tioned above. Then we compare the proposed and existing methods in the
case of the linear Klein–Gordon equation, which is the simplest case with
G(u) = u2/2. As a result, the average-difference type method is success-
fully superior to the existing methods in view of the phase speed of each
frequency component.

2 The standard conservative method

The conservative scheme for the PDE (1) can be constructed in the spirit of
discrete variational derivative method (DVDM) (see, the monograph [5] for
details). There, one utilize the concept of the “discrete variational deriva-

tive” and skew-symmetric difference operators. The symbol u
(m)
k denotes the

approximation u
(m)
k = u(m∆t, k∆x) (m = 0, . . . ,M ; k ∈ Z), where ∆t and
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∆x (:= L/K) are the temporal and spatial mesh sizes, respectively. Here, we

assume the discrete periodic boundary condition u
(m)
k+K = u

(m)
k (k ∈ Z), and

thus, we use the notation u(m) := (u
(m)
1 , . . . , u

(m)
K )>. Let us introduce the

spatial central difference operator δ
〈1〉
x and the temporal forward difference

operator δ+t :

δ〈1〉x u
(m)
k =

u
(m)
k+1 − u

(m)
k−1

∆x
, δ+t u

(m)
k =

u
(m+1)
k − u(m)

k

∆t
.

The discrete counterpart Hd of the functional H can be defined as

Hd

(
u(m)

)
:=

K∑
k=1

Gd

(
u
(m)
k

)
∆x,

where Gd(u
(m)
k ) is an appropriate approximation of G(u, ux, . . . ) in the

PDE (1). Then, the discrete variational derivative δGd/δ(u
(m+1), u(m))k

is defined as a function satisfying

δ+t Hd

(
u
(m)
k

)
=

K∑
k=1

δGd

δ
(
u(m+1), u(m)

)
k

δ+t u
(m)
k ∆x. (3)

For the construction of such one, see [5]. By using the discrete variational
derivative, we can construct a conservative scheme

δ〈1〉x δ+t u
(m)
k =

δGd

δ
(
u(m+1), u(m)

)
k

. (4)

As stated in the introduction, the key ingredient here is the skew-symmetry
of the central difference operator.

Proposition 1 (Discrete conservation law) Let u
(m)
k be the solution of

the numerical scheme (4) under the periodic boundary condition. Then, it
holds that Hd(u(m+1)) = Hd(u(m)).

Proof Thanks to the definition (3) of the discrete variational derivative,
we can follow the line of the discussion (2) as follows:

δ+t Hd

(
u(m)

)
=

K∑
k=1

δGd

δ
(
u(m+1), u(m)

)
k

δ+t u
(m)
k ∆x

=

K∑
k=1

(
δ〈1〉x δ+t u

(m)
k

)
δ+t u

(m)
k ∆x,
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whose right-hand side vanishes due to the skew-symmetry of the central

difference operator δ
〈1〉
x :

K∑
k=1

ukδ
〈1〉
x vk∆x = −

K∑
k=1

(
δ〈1〉x uk

)
vk∆x.

holds for any u, v ∈ RK . 2

The discrete conservation law can also be proved similarly for DVDM
with other skew-symmetric difference operators.

3 “Average-difference method”

In this section, we propose the novel method. There, instead of the sin-
gle skew-symmetric difference operator, we employ the pair of the forward
difference and average operators:

δ+x u
(m)
k =

u
(m)
k+1 − u

(m)
k

∆x
, µ+x u

(m)
k =

u
(m)
k+1 + u

(m)
k

2
.

The average-difference method for the equation (1) can be written in the
form

δ+x δ
+
t u

(m)
k = µ+x

δGd

δ
(
u(m+1), u(m)

)
k

. (5)

The name “average-difference” comes from the idea of approximating ∂x
with the pair of (δ+x , µ

+
x ); this makes sense for more general PDEs, and thus

is independent of any conservation properties. Still, in this letter we focus
on (1) and (5).

Although it is constructed in the spirit of DVDM, now the forward dif-
ference operator δ+x loses the apparent skew-symmetry, and accordingly, the
proof of the discrete conservation law becomes unobvious. A similar proof
can be found in Nagisa [9].

Theorem 1 Let u
(m)
k be the solution of the average-difference method (5)

under the periodic boundary condition. Then, it holds that Hd(u(m+1)) =
Hd(u(m)).

Proof By using the definition (3) of the discrete variational derivative, we
see that

δ+t Hd

(
u(m)

)
=

K∑
k=1

δGd

δ(u(m+1), u(m))k
δ+t u

(m)
k ∆x.

Here, for brevity, we introduce the notation

ak =
δGd

δ(u(m+1), u(m))k
, bk = δ+t u

(m)
k .
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Note that the equation (5) implies the relation δ+x bk = µ+x ak. By using the
identity

α+β+ + αβ

2
=

(
α+ + α

2

)(
β+ + β

2

)
+

1

4

(
α+ − α

) (
β+ − β

)
,

which holds for any α, α+, β, β+ ∈ R, we see that

ak+1bk+1 + akbk
2

=
(
µ+x ak

) (
µ+x bk

)
+

(
∆x

2

)2 (
δ+x ak

) (
δ+x bk

)
=
(
δ+x bk

) (
µ+x bk

)
+

(
∆x

2

)2 (
δ+x ak

) (
µ+x ak

)
=

1

2

(
δ+x b

2
k +

(
∆x

2

)2

δ+x a
2
k

)
.

By using this, we obtain

K∑
k=1

akbk =
K∑
k=1

ak+1bk+1 + akbk
2

=

K∑
k=1

1

2
δ+x

{
b2k +

(
∆x

2
ak

)2
}

= 0,

which proves the theorem. 2

4 Analysis in the linear Klein–Gordon equation

In order to conduct a detailed analysis, we consider the simplest case, the
linear Klein–Gordon equation

utx =
δG

δu
= u, H(u) :=

1

2

∫ 2π

0
u2dx (6)

under the periodic domain with the period L = 2π. The exact solution of
the linear Klein–Gordon equation (6) can be formally written in the form

u(t, x) =
∑

n∈Z\{0}

an exp

(
−i
t

n

)
exp (inx) ,

where i is the imaginary unit, and an ∈ C is determined by the initial
condition u(0, x) = u0(x):

an =
1

2π

∫ 2π

0
u0(x) exp (−inx) dx.

From the superposition principle, we only have to consider the single com-
ponent exp(−it/n) exp(inx) for each n ∈ Z \ {0}.
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4.1 Comparison of phase speeds

In order to clarify the difference between the standard conservative method
and proposed average-difference method, we consider the following three
semi-discretizations

δ〈1〉x u̇k = uk, (7)

δPSu̇k = uk, (8)

δ+x u̇k = µ+uk, (9)

where uk(t) ≈ u(t, k∆x) for k = 1, . . . ,K. Here, δPS denotes the Fourier-
spectral difference operator defined as

δPSuk :=



1√
K

K−1
2∑

j=−K−1
2

ij exp

(
2πijk

K

)
ũj (K : odd),

1√
K

K−2
2∑

j=−K−2
2

ij exp

(
2πijk

K

)
ũj (K : even),

where ũk is obtained by the discrete Fourier transform:

ũk :=
1√
K

K∑
j=1

exp

(
−2πikj

K

)
u
(m)
j .

Note that, appropriate temporal discretizations of the semi-discretizations
above coincide with the numerical schemes constructed in the previous sec-
tions.

We consider the solution of the semi-discretizations above in the form
uk = exp(icnt) exp(ink∆x) (cn ∈ R) for each n ∈ Z \ {m ∈ Z | 2m/K /∈ Z},
which gives an exact solutions of (7), (8), and (9) with appropriate choices
of cn. For the central difference scheme (7), we see

cCD
n = − ∆x

sinn∆x
.

If we employ the Fourier-spectral difference operator instead of the central
difference, we see

cPSn = − 1

n
(|n| < K/2),

and cn+K = cn holds for any n ∈ Z \ {m ∈ Z | 2m/K /∈ Z}. For the
average-difference scheme (9), we obtain

cAD
n = − ∆x

2 tan(n∆x/2)
.

The phase speeds cn corresponding to each numerical scheme are sum-
marized in Fig. 1 (K = 65). As shown in Fig. 1, the phase speed of the
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Figure 1: The phase speeds for each n ∈ Z. The solid, dashed, and dotted
lines correspond to the average-difference, Fourier-spectral difference, and
central difference schemes, respectively.

central difference scheme (7) are falsely too fast for high frequency compo-
nents (n ≈ K/2). On the other hand, the error of the phase speeds of the
average-difference method are much smaller.

4.2 Numerical experiment

In this section, we conduct a numerical experiment with the initial condition

u0(x) =

{
1 (π/2 < x < 3π/2),

−1 (otherwise).

The corresponding solution can be formally written in

u(t, x) =
∞∑
n=1

(
− 4

nπ
sin

nπ

2

)
cos

(
nx− t

n

)
.

Figures 2, 3, and 4 show the numerical solutions of the central difference
scheme (7), the Fourier-spectral difference scheme (8), and the average-
difference method (9), respectively (the temporal discretization: implicit
midpoint rule). As shown in Fig. 2, the central difference scheme suffers
from the spatial oscillation, whereas the other schemes reproduce the smooth
profiles until t = 1. Although the central difference scheme (7) and the
average-difference method (9) have the same order, the average-difference
method is far better. The cause of this superiority is the correct phase speed
of high frequency components (Fig. 1).

However, as shown in Fig. 5, which shows the numerical solutions of each
schemes at t = 50, the Fourier-spectral scheme also suffers from the unde-
sirable spatial oscillation, whereas the proposed method, average-difference
method reproduces a better profile. This could be attributed to the fact
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Figure 2: The numerical solution of the central difference scheme (7) (K =
129, ∆t = 0.01).
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Figure 3: The numerical solution of the Fourier-spectral difference
scheme (8) (K = 129, ∆t = 0.01).

8



2

4

6 0

0.5

1

−2

0

2

x t

u

Figure 4: The numerical solution of the average-difference scheme (9) (K =
129, ∆t = 0.01).
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Figure 5: The comparison of the numerical solutions at t = 50 (K = 129,
∆t = 0.01). The black dotted line represents the exact solution. The green,
blue, and red solid line denote the numerical solution of the central difference
scheme, the Fourier-spectral difference scheme, and the average-difference
method, respectively.

9



that the Fourier-spectral difference can be regarded as a higher-order cen-
tral difference, and thus should share the same property to a certain extent.

5 Concluding remarks

The results above can be extended in several ways. First, instead of the
cumbersome proof in Theorem 1, we can introduce the concept of generalized
skew-symmetry, by which a more sophisticated “average-difference” version
of the DVDM could be given. Second, we should try more general PDEs to
see to which extent the new DVDM is advantageous. Finally and ultimately,
we hope to construct a systematic numerical framework for (1), based on
the above observations. The authors have already got some results on these
issues, which will be reported somewhere soon.
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[2] T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses
in cubic nonlinear media, Phys. D, 196 (2004), 90–105.

[3] T. Yaguchi, T. Matsuo and M. Sugihara, Conservative numerical
schemes for the Ostrovsky equation, J. Comput. Appl. Math., 234
(2010), 1036–1048.

[4] Y. Miyatake, T. Yaguchi and T. Matsuo, Numerical integration of
the Ostrovsky equation based on its geometric structures, J. Comput.
Phys., 231 (2012), 4542–4559.

[5] D. Furihata and T. Matsuo, Discrete variational derivative method:
A structure-preserving numerical method for partial differential equa-
tions, CRC Press, Boca Raton, 2011.

[6] E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O’Neale,
B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in
numerical PDEs using the “Average Vector Field” method, J. Comput.
Phys. 231 (2012), 6770–6789.

[7] H. Kanazawa, T. Matsuo and T. Yaguchi, A conservative compact finite
difference scheme for the KdV equation, JSIAM Letters 4 (2012), 5–8.

[8] B. Fornberg, A practical guide to pseudospectral methods, Cambridge
University Press, Cambridge, 1996.

10



[9] Y. Nagisa, Finite difference schemes for PDEs using shift operators (in
Japanese), The University of Tokyo, Master’s thesis, 2014.

11


