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Abstract

Efficient refinement algorithms are proposed for symmetric eigen-
value problems. The structure of the proposed algorithms is straight-
forward, primarily comprising matrix multiplications. We first present
a basic algorithm for improving all the eigenvectors associated with
well-separated eigenvalues. We show that it quadratically converges
in exact arithmetic, provided that a modestly accurate initial guess is
given. The convergence rate is also preserved in finite precision arith-
metic if the working precision is sufficiently high in the algorithm, i.e.,
it is indispensable to double the working precision in each iteration.
Moreover, for multiple eigenvalues, we prove quadratic convergence
under a technical assumption, whenever all the simple eigenvalues are
well separated. We emphasize that this approach to multiple eigen-
values overcomes the limitation of our analysis to real matrices, re-
sulting in the extension of the proof to Hermitian matrices. On the
basis of the basic algorithm, we propose the complete version of a
refinement algorithm which can also improve the eigenvectors associ-
ated with clustered eigenvalues. The proposed algorithms construct
an accurate eigenvalue decomposition of a real symmetric matrix by
iteration, up to the limit of computational precision. Numerical re-
sults demonstrate excellent performance of the proposed algorithms in
terms of convergence rate and overall computational cost, and show
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that the basic algorithm is considerably faster than a naive approach
using multiple-precision arithmetic.

1 Introduction

Let A be a real symmetric n × n matrix. We are concerned with the sym-
metric eigenvalue problem Ax = λx, where λ ∈ R is an eigenvalue of A and
x ∈ Rn is an eigenvector of A associated with λ. Solving this problem is im-
portant because it plays a significant role in scientific computing. Excellent
overviews can be found in [22, 26].

Throughout the paper, I and O denote the identity and the zero matri-
ces of appropriate size, respectively. Moreover, ∥ · ∥ denotes the Euclidean
norm for vectors and the spectral norm for matrices. For legibility, if neces-
sary, we distinguish between the approximate quantities and the computed
results, e.g., for some quantity α we write α̃ and α̂ as an approximation of
α, and a computed result for α, respectively. The relative rounding error
unit according to ordinary floating-point arithmetic is denoted by u. For
example, u = 2−53 for IEEE 754 binary64.

For simplicity, we basically handle only real matrices. The discussions
in this paper can be extended to Hermitian matrices, as we will mention at
Subsection 4.3. Moreover, the discussion for the symmetric eigenvalue prob-
lem can readily be extended to the generalized symmetric (or Hermitian)
definite eigenvalue problem Ax = λBx where A and B are real symmetric
(or Hermitian) with B being positive definite.

1.1 Our purpose

This paper aims to develop an algorithm for calculating an arbitrarily accu-
rate result of the eigenvalue decomposition

A = XDXT, (1)

where X is the n×n orthogonal matrix whose ith columns are the eigenvec-
tors x(i) of A (called the eigenvector matrix), and D is the n × n diagonal
matrix whose diagonal elements are the corresponding eigenvalues λi ∈ R,
i.e., Dii = λi for i = 1, . . . , n. For this purpose we discuss iterative refine-
ment methods for (1) together with the convergence analysis.

Several efficient numerical algorithms for (1) have been developed such
as the bisection method with inverse iteration, the QR algorithm, the divide-
and-conquer algorithm or the Multiple Relatively Robust Representations
(MRRR) algorithm via Householder’s tridiagonalization, and the Jacobi al-
gorithm. For details, see, [9, 10, 13, 14, 22, 26] and references cited therein.
Since they have actively been studied in numerical linear algebra for decades,
there are highly reliable implementations for them, such as Linear Algebra
Package (LAPACK) routines.
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We stress that we do not intend to compete with such existing algorithms
but to develop a refinement algorithm for improving the results obtained by
any of them. Such an algorithm is useful if the quality of the results are
not satisfactory. Namely, the proposed algorithm can be regarded as a
supplement to the existing ones for constructing (1). In fact, we assume
that some computed result X̂ for (1) can be obtained by backward stable
algorithms in ordinary floating-point arithmetic. Our analysis provides a
sufficient condition for the convergence of the iterations.

In our proposed algorithms, the use of higher-precision arithmetic is
mandatory, but is basically restricted to matrix multiplication, which ac-
counts for most of the computational cost. For example, an approach used
in Extra Precise Basic Linear Algebra Subroutines (XBLAS) [18] and other
accurate and efficient algorithms for dot products [20, 23, 24] and matrix
products [21] based on error-free transformations are available for practical
implementation.

1.2 Background

A naive and possible approach to achieving an accurate eigenvalue decom-
position is to use a multiple-precision arithmetic library such as MPFR [19]
with GMP [12] in Householder’s tridiagonalization and the subsequent algo-
rithm. In general, however, we do not know in advance how much arithmetic
precision suffices to achieve the desired accuracy for results. Moreover, the
use of such multiple-precision arithmetic for entire computations is often
much more time-consuming than ordinary floating-point arithmetic, owing
to the difficulty of optimization for today’s computer architectures. There-
fore, we prefer the approach of the iterative refinement, rather than that of
simply using multiple-precision arithmetic.

There exist several refinement algorithms for eigenvalue problems that
are based on Newton’s method (cf. e.g., [3, 5, 11, 25]). Since this sort of
algorithm is designed to improve eigenpairs (λ, x) ∈ R×Rn individually, ap-
plying such a method to all eigenpairs requires O(n4) arithmetic operations.
To reduce the computational cost, one may consider the preconditioning by
Householder’s tridiagonalization of A by using ordinary floating-point arith-
metic such as T ≈ ĤTAĤ, where T is a tridiagonal matrix, and Ĥ is an
approximately orthogonal matrix involving rounding errors. However, it is
not a similarity transformation, so that the original problem is slightly per-
turbed. Therefore, the accuracy of eigenpairs is limited by the orthogonality
of Ĥ.

Simultaneous iteration or Grassmann-Rayleigh quotient iteration in [1]
can potentially be used to refine eigenvalue decompositions. However, such
methods require the use of higher-precision arithmetic concerning the or-
thogonalization of the approximate eigenvectors, and hence we cannot re-
strict the higher-precision arithmetic to matrix multiplication. Moreover,
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Wilkinson [26, Chapter 9, pp. 637–647] explained the refinement of eigen-
value decompositions for general square matrices, mentioning Jahn’s method [17,
4]. Such methods rely on a similarity transformation C := X̂−1AX̂ with
high accuracy for a computed result X̂ for X, which requires an accurate
solution of the linear system X̂C = AX̂ for C, and breaks the symmetry of
A.

Alternatively, the Jacobi algorithm is useful for improving the accuracy
of all computed eigenvectors. In addition, Davies and Modi [6] proposed
a direct method for completing the symmetric eigenvalue decomposition
of nearly diagonal matrices. However, in fact, owing to rounding errors
in floating-point arithmetic, it is difficult to compute the eigenvectors cor-
responding to clustered eigenvalues with high accuracy. In other words,
higher-precision arithmetic is required for computing accurate eigenvectors
corresponding to the clustered eigenvalues. We will mention the details in
Section 2.

With such a background of the study, we try to derive a simple and
efficient iterative refinement algorithm for simultaneously improving the ac-
curacy of all the eigenvectors with quadratic convergence, which requires
O(n3) operations for each iteration. In fact, the proposed algorithm can
be regarded as a variant of Newton’s method, and therefore, its quadratic
convergence is naturally derived.

1.3 Our idea

The idea to design the proposed algorithm is as follows. For a computed
eigenvector matrix X̂ for (1), define E ∈ Rn×n such that X = X̂(I + E).
Then we aim to compute a sufficiently precise approximation Ẽ of E using
the following two relations:{

XTX = I (orthogonality)
XTAX = D (diagonality)

(2)

After obtaining Ẽ, we can update X ′ := X̂(I + Ẽ). If necessary, we iterate
the process such as X̂(ν+1) := X̂(ν)(I + Ẽ(ν)). Under some conditions, we
prove Ẽ(ν) → O and X̂(ν) → X, where the convergence rates are quadratic.

Using (2), we will concretely derive a basic refinement algorithm (Algo-
rithm 1 in Section 3), which works perfectly for the eigenvectors associated
with well-separated eigenvalues. However, we encounter the problem on
the convergence if A has clustered eigenvalues, since the convergence rate
strongly depends on the relative gap of eigenvalues as will be stated in our
convergence analysis (Theorem 1 in Section 4). In such cases, we need
special care, especially for the eigenvectors associated with nearly multiple
eigenvalues.

In general, it is notoriously difficult to obtain accurate approximation
of the eigenvectors corresponding to clustered eigenvalues as stated by the
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Davis–Kahan theorem for eigenpairs (cf. e.g., [22, Theorem 11.7.1]): Let
(λ, x) ∈ R× Rn be some eigenpair of A with ∥x∥ = 1. For any x̂ ∈ Rn with
∥x̂∥ = 1 and any µ ∈ R whose closest eigenvalue is λ,

| sin∠(x̂, x)| ≤ ∥Ax̂− µx̂∥
gap(µ)

, gap(µ) := min{|µ− λi| : λi ̸= λ}. (3)

However, the eigenspace spanned by all the eigenvectors corresponding to
clustered eigenvalues is not sensitive to perturbations, which is also proved
by Davis and Kahan (cf. e.g., [22, Theorem 11.7.2]). This theorem is crucial.
Let J denote a set of the indexes of the eigenvalues in a cluster with p := |J |,
and K := {1, 2, . . . , n} \ J . Let XJ , X̂J ∈ Rn×p denote the matrices com-
prising all x(j), x̂(j) for j ∈ J , respectively. In addition, let XJ , X̂J denote

the subspaces spanned by the columns of XJ , X̂J , respectively. Moreover,
let {zj}j∈J be an orthonormal basis of X̂J , and ZJ ∈ Rn×p the matrix that
consists of {zj}j∈J . Then, the Davis–Kahan theorem for subspaces states

sin

(
max
x̂∈X̂J

min
x∈XJ

|∠(x̂, x)|
)
≤ ∥AZJ − ZJSJ ∥

gapJ
, SJ := ZT

JAZJ ∈ Rp×p, (4)

where gapJ := min{|θi − λk| : 1 ≤ i ≤ p, k ∈ K} with θi being the

eigenvalues of SJ . In general, using floating-point arithmetic, X̂, D̂ obtained
by backward stable algorithms satisfy

∥AX̂ − X̂D̂∥ = O(∥A∥u), ∥X̂TX̂ − I∥ = O(u), (5)

where u is the relative rounding error unit. Since Weyl’s perturbation
theorem (cf. e.g., [9, Theorem 5.1]) indicates |λi − D̂ii| = O(∥A∥u) for
i = 1, . . . , n, the clustered eigenvalues are easily identified. In addition, the
right-hand side of (4) is sufficiently small whenever ∥A∥/gapJ is a constant
of modest size.

From this viewpoint, we introduce some criterion for judging whether the
eigenvalues are clustered, which is done in the basic refinement algorithm
(Algorithm 1). For simplicity, let us consider the case where there is only one
cluster of eigenvalues λ1 ≈ λ2 ≈ · · · ≈ λp, and the rest of the eigenvalues are
well separated each other and from the cluster with max |λi|/min |λi| ≈ 1.
Then, J = {1, 2, . . . , p} and K = {p+ 1, p+ 2, . . . , n}. Define α, β as

α :=
∥A∥
gapJ

, β :=
∥A∥

mink gap(λk)
=

∥A∥
minλi ̸=λj

|λi − λj |
. (6)

Note that α ≈ 1, and due to the Davis–Kahan theorems as (3) and (4),

∥X̂K −XK∥ = O(αu) = O(u), ∥X̂J −XJ ∥ = O(βu).

In other words, X̂J is not sufficiently accurate. However, if Algorithm 1
is performed in sufficiently high precision arithmetic, it transforms X̂ =
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[X̂K, X̂J ] to X ′ = [X ′
K, X

′
J ], where X ′

K and X ′
J correspond to the well-

separated eigenvalues and the clustered ones, respectively, with

∥X ′
K −XK∥ = O(u2), ∥X ′TX ′ − I∥ = O(u2).

The estimation ofX ′
K above is convincing because Algorithm 1 is viewed as a

sort of Newton’s method. See (40) and (41) in Lemma 1 for details. Regard-
ing the orthogonality of X ′, since Algorithm 1 has an aspect of the Newton–
Schulz iteration [16, Section 8.3] as shown in Remark 2, the quadratic con-
vergence of the orthogonality is naturally derived. In addition, note that
the estimation above is consistent with the numerical result for ρ = 103 in
Section 5. Thus, we can see that the columns of X ′

J are sufficiently accurate
approximation of the orthonormal basis vectors of the eigenspace spanned
by the columns of XJ , even though X ′

J is not necessarily close to XJ . For
this matrix X ′

J , we introduce the diagonal shift to the matrix (X ′
J )

TAX ′
J ,

which is the submatrix of (X ′)TAX ′ corresponding to the clustered eigen-
values, to make the eigenvalues well-separated in the same manner as the
MRRR algorithm [10] and others. After such a preconditioning, we can ob-
tain an accurate approximation X ′′

J of XJ by using Algorithm 1 again. Also
note that, if all λj , j ∈ J , are multiple eigenvalues, both of X ′

J and X ′′
J are

accurate approximation of the eigenvectors corresponding to the multiple
eigenvalues. As a whole, we will derive a refinement algorithm (Algorithm 2
in Section 5), which can deal with clustered eigenvalues.

1.4 Outline

The rest of the paper is organized as follows. In the following section, we
summarize the difficulty of the refinement of the eigenvectors corresponding
to the clustered eigenvalues, mentioning the previous work relevant to this
study, and identify where the higher-precision arithmetic is indispensable. In
Section 3, we present a basic refinement algorithm for symmetric eigenvalue
decomposition. In Section 4, we provide a convergence analysis of the basic
algorithm. On the basis of the basic algorithm, we propose in Section 5
the complete version of a refinement algorithm which can also be applied
to matrices having clustered eigenvalues. In Section 6, we present some
numerical results showing the behavior and the performance of the proposed
algorithms. Finally, we conclude the paper in Section 7.

2 Motivation

Our aim is to develop an iterative refinement algorithm adaptively using
the higher-precision arithmetic to obtain arbitrarily accurate eigenvectors.
To explain the significance of such an algorithm, we show that it is also
effective to obtain the eigenvectors with high accuracy in IEEE 754 binary64
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(formerly double precision) floating-point format. Then, u ≈ 10−16 as the
relative rounding error unit in binary64 format.

2.1 A numerical example

In general, iterative refinement algorithms are important if A has clustered
eigenvalues, because it is difficult to compute the eigenvectors corresponding
to them accurately. For simplicity, we discuss the iterative refinement for
the eigenvectors of

A =

1 + ε 1 1 + ε
1 1 −1

1 + ε −1 1 + ε

 . (7)

For any ε, the exact eigenvalues and the eigenvector matrix are
λ1 = −1
λ2 = 2
λ3 = 2 + 2ε

, X =

 1/
√
3 1/

√
6 1/

√
2

−1/
√
3 2/

√
6 0

−1/
√
3 −1/

√
6 1/

√
2

 ,

where A has multiple eigenvalues for ε = 0,−3/2. In what follows, we focus
on |ε| ≪ 1. Then, J = {2, 3},K = {1}, where J ,K are defined as in Section
1.3. Since the exact eigenvector matrix X is known, this is a fine example
to observe the numerical error of the computed eigenvector matrix X̂. Note
that this is not a special example. For other examples having clustered
eigenvalues, we obtain similar results.

For ε = 2−20 ≈ 10−6, the MATLAB built-in function eig returns X̂, D̂,
where ∥AX̂ − X̂D̂∥ ≈ 9.62× 10−16, and

∥X̂K −XK∥ ≈ 2.07× 10−16, ∥X̂J −XJ ∥ ≈ 2.69× 10−11.

We see X̂J is not sufficiently close to the exact eigenvector matrix XJ in
binary64 format, even though the residual norm ∥AX̂ − X̂D̂∥ is sufficiently
small in this example. This result is consistent with the Davis–Kahan the-
orems as in (3) and (4). In fact, for smaller ε = 2−50 ≈ 10−15, the function
eig returns X̂ satisfying

∥X̂K −XK∥ ≈ 1.34× 10−16, ∥X̂J −XJ ∥ ≈ 4.69× 10−2.

The quality of X̂J is seriously poor. However, the residual norm in the
right-hand side of (4) is always sufficiently small, whenever eigenvalue prob-
lems are solved by backward stable algorithms. Hence, to apply the Ja-
cobi algorithm to SJ in (4) in higher-precision arithmetic is effective. The
Davies–Modi algorithm [6] is also promising.
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2.2 Previous work

We briefly explain the Davies–Modi algorithm [6], which is relevant to this
study. The Davies–Modi algorithm assumes that a real symmetric matrix
A is transformed into a nearly diagonal symmetric matrix S = X̂TAX̂ by
some nearly orthogonal matrix X̂. Under that assumption, the method
aims to construct an accurate eigenvector matrix U of S. The idea is seen
in Jahn’s method [17, 4] as shown by Davies and Smith [7], which derives
an SVD algorithm based on the Davies–Modi algorithm. In order to show
the relationship between the Davies–Modi and the proposed algorithms, we
explain the Davies–Modi algorithm in the same manner as in [7]. We note
that UT is written as

UT = eY = I + Y +
1

2
Y 2 +

1

6
Y 3 + · · · (8)

for some skew-symmetric matrix Y . To compute Y with high accuracy, we
define a diagonal matrix DS whose diagonal elements are the eigenvalues of
S. Then,

DS = UTSU = S + Y S − SY +
1

2
(Y 2S + SY 2)− Y SY +O(∥Y ∥3). (9)

Here we define S0 = diag(s11, . . . , snn), and S1 = S − S0 that corresponds
to the off-diagonal entries of S. Under a mild assumption S1 = O(∥Y ∥), we
see

DS = S0 + (S1 + Y S0 − S0Y ) (10)

+

(
Y S1 − S1Y +

1

2
(Y 2S0 + S0Y

2)− Y S0Y

)
+O(∥Y ∥3).

For the first order approximation, we would like to solve

S1 + Ỹ1S0 − S0Ỹ1 = O. (11)

If we assume Ỹ1 is skew-symmetric, Ỹ1 is easily obtained, namely, (Ỹ1)ij =

−(Ỹ1)ji = sij/(sii − sjj) for i ̸= j. To compute U with high accuracy, we

construct the second order approximation ŨT = I + Ỹ1 + Ỹ2 + Ỹ 2
1 /2 for

skew-symmetric matrices Ỹ1 and Ỹ2. To compute Ỹ2, letting

T =
1

2
(Ỹ1S1 − S1Ỹ1), T0 = diag(t11, . . . , tnn), T1 = T − T0, (12)

we solve T1+Ỹ2S0−S0Ỹ2 = O for a skew-symmetric matrix Ỹ2. Note that Ỹ2
is computed in the same manner as Ỹ1 in (11). Thus, we obtain ŨT, where
its second order approximation is rigorously proved. Since the Davies–Modi
algorithm is based on matrix multiplication, it requires O(n3) operations.
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From now on, we discuss the refinement of X̂ for A in (7), in particular
X̂J with J = {2, 3}, where ε = 2−20 ≈ 10−6. The main problem is that,
since both of the Jacobi and Davies–Modi algorithms are applied to S =
X̂TAX̂ for computing the eigenvalue decomposition of S, they assume that
X̂ is an orthogonal matrix. In general, however, it is not the case, since X̂
suffers from rounding errors, and ∥X̂TX̂−I∥ ≈ 7.12×10−16. Therefore, even
if the computation of X̂TAX̂ is performed in the exact arithmetic, A and
S are not similar unless X̂ is orthogonal. Then, it may cause a significant
change of the eigenvectors associated with clustered eigenvalues. In fact,
even if X ′ = X̂U is obtained with U being the eigenvector matrix of S, we
have

∥X ′
K −XK∥ ≈ 2.24× 10−16, ∥X ′

J −XJ ∥ ≈ 1.71× 10−10.

Unfortunately, X ′
J is not refined at all as long as the original X̂ involves

rounding error in binary64 floating-point arithmetic. To overcome such a
problem, we must refine the orthogonality of X̂ as preconditioning in higher-
precision arithmetic. Recall that the use of higher-precision arithmetic
should be basically restricted to matrix multiplication for much better com-
putational efficiency. Hence, one may use the Newton–Schulz iteration [16,
Section 8.3] such as

Z =
1

2
X̂(3I − X̂TX̂), (13)

where all the singular values of X̂ are quadratically convergent to 1. We
apply (13) to X̂ in binary128 arithmetic (about 34 digits), and then ∥ZTZ−
I∥ ≈ 3.81×10−31. After this reorthogonalization, for the eigenvector matrix
U of T = ZTAZ, the columns of X ′ := ZU are expected to be sufficiently
accurate approximation of the eigenvectors of A. In fact, for this theoretical
X ′ rounded into binary64 format, we have

∥X ′
K −XK∥ ≈ 5.79× 10−17, ∥X ′

J −XJ ∥ ≈ 6.84× 10−17,

which means X ′ = [X ′
K, X

′
J ] is maximally accurate in binary64 format. Of

course, in practice, we need to derive a certain method to compute an ap-
proximate eigenvector matrix Ũ of T . If T is nearly diagonal, it is effective
to apply a diagonal shift to T . Similarly, the Jacobi and Davies–Modi algo-
rithms would be able to compute Ũ accurately by the use of higher-precision
arithmetic. As a result, we can obtain a sufficiently accurate eigenvector ma-
trix X ′ := ZŨ .

In summary, there are two phases for the refinement of eigenvectors.
We require the orthogonalization algorithm such as the Newton–Schulz it-
eration, and the eigenvalue decomposition algorithm such as the Jacobi and
the Davies–Modi algorithms, where higher-precision arithmetic is indispens-
able.
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2.3 Position and strength of our algorithm

Clearly, the second equation in (2) corresponds to (9) in the Davies–Modi
algorithm. As stated before, the first equation in (2) is required to re-
fine the orthogonality, which corresponds to the Newton–Schulz iteration,
and hence our approach is straightforward and convincing. Note that the
first order approximation (11) is sufficient in the asymptotic regime because
the Newton–Schulz iteration is the first order approximation, which derives
quadratic convergence. From this viewpoint, compared to the naive com-
bination of them, we can reduce the number of matrix multiplications in
the proposed algorithm. In other words, we propose a new effective algo-
rithm, which can also be interpreted as a sophisticated combination of the
Newton–Schulz iteration and the Davies–Modi algorithm. See Remark 2 for
details.

In fact, for the example above, the result X ′ obtained by the proposed
algorithm (Algorithm 1) in binary128 arithmetic and rounded into binary64
format satisfies

∥X ′
K −XK∥ ≈ 5.79× 10−17, ∥X ′

J −XJ ∥ ≈ 6.84× 10−17.

We see X ′ = [X ′
K, X

′
J ] is sufficiently close to the corresponding exact eigen-

vector matrix X = [XK, XJ ] in binary64 format. Moreover, for ε = 2−50 ≈
10−15, the complete version (Algorithm 2) can iteratively provide accurate
approximation of the eigenvectors, up to the limit of computational preci-
sion in use. In what follows, we derive the basic algorithm and the complete
version in turn.

3 Basic algorithm

Let A = AT ∈ Rn×n. The eigenvalues of A are denoted by λi ∈ R,
i = 1, . . . , n. Then ∥A∥ = maxi |λi|. Let X, X̂ ∈ Rn×n denote the eigenvec-
tor matrix comprising normalized eigenvectors of A and its approximation,
respectively. Define E ∈ Rn×n such that X = X̂(I + E). The problem is
how to derive the method to compute E. Here, we assume that

∥E∥ =: ϵ < 1, (14)

which implies that I + E is nonsingular.
First, we consider the orthogonality of the eigenvectors such thatXTX =

I. From this, we obtain I = XTX = (I + E)TX̂TX̂(I + E), and

(I + E)−T(I +E)−1 = X̂TX̂. (15)

Using the Neumann series expansion, we have

(I + E)−1 = I − E +∆E , ∆E :=
∞∑
k=2

(−E)k. (16)
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Here, it follows from (14) that

∥∆E∥ ≤
ϵ2

1− ϵ
. (17)

Substituting (16) into (15) yields (I −E+∆E)
T(I −E+∆E) = X̂TX̂, and

E + ET = I − X̂TX̂ +∆1, (18)

where ∆1 := ∆E + ∆T
E + (E − ∆E)

T(E − ∆E). Here it follows from (14)
and (17) that

∥∆1∥ ≤
(3− 2ϵ)ϵ2

(1− ϵ)2
. (19)

Omitting ∆1 from (18) yields the following matrix equation for Ẽ = (ẽij) ∈
Rn×n:

Ẽ + ẼT = I − X̂TX̂. (20)

Next, we consider the diagonalization of A such that XTAX = D. From
this, we have D = XTAX = (I + E)TX̂TAX̂(I + E), and

(I +E)−TD(I + E)−1 = X̂TAX̂. (21)

Substitution of (16) into (21) yields (I−E+∆E)
TD(I−E+∆E) = X̂TAX̂,

and
D −DE − ETD = X̂TAX̂ +∆2, (22)

where ∆2 := −D∆E −∆T
ED− (E−∆E)

TD(E−∆E). Here, it follows from
(14) and (17) that

∥∆2∥ ≤
(3− 2ϵ)ϵ2

(1− ϵ)2
∥D∥ = (3− 2ϵ)ϵ2

(1− ϵ)2
∥A∥. (23)

Omission of ∆2 from (22) yields the following matrix equation for Ẽ =
(ẽij) ∈ Rn×n and D̃ = (d̃ij) = diag(λ̃i) ∈ Rn×n:

D̃ − D̃Ẽ − ẼTD̃ = X̂TAX̂. (24)

Note that D̃ is restricted to being diagonal, which implies that d̃ii = λ̃i and
d̃ij = 0 for i ̸= j.

Summarizing the above-mentioned discussion with (20) and (24), we
obtain the system of matrix equations{

Ẽ + ẼT = R

D̃ − D̃Ẽ − ẼTD̃ = S
(25)

⇔
{

ẽij + ẽji = rij
d̃ij − λ̃iẽij − λ̃j ẽji = sij

(1 ≤ i, j ≤ n), (26)
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whereR = (rij) and S = (sij) are defined asR := I−X̂TX̂ and S := X̂TAX̂,
respectively.

Actually, (25) is surprisingly easy to solve. First, we focus on the diago-
nal parts of Ẽ. From the first equation in (26), it follows that ẽii = rii/2 for
1 ≤ i ≤ n. Moreover, the second equation in (26) also yields (1− 2ẽii)λ̃i =
(1 − rii)λ̃i = sii. Here, rii ≪ 1 due to the assumption that the columns of
X̂ are approximately normalized. Thus, we have

λ̃i =
sii

1− rii
(1 ≤ i ≤ n). (27)

Note that this is equivalent to the Rayleigh quotient λ̃i = (x̂T(i)Ax̂(i))/(x̂
T
(i)x̂(i)),

where x̂(i) is the ith column of X̂.

Next, we focus on the off-diagonal parts of Ẽ. The combination of (26)
and (27) yields{

ẽij + ẽji = rij
λ̃iẽij + λ̃j ẽji = −sij

(1 ≤ i, j ≤ n, i ̸= j),

which are simply 2× 2 linear systems. Therefore, if λ̃i ̸= λ̃j , then we have

ẽij =
sij + λ̃jrij

λ̃j − λ̃i

.

Otherwise, from the first equation in (26) we choose ẽij as

ẽij = ẽji =
rij
2
.

Similar to the Newton–Schulz iteration as mentioned in Section 2, this choice
is quite reasonable for improving the orthogonality of X̂ corresponding to
x̂(i) and x̂(j), which are the ith and jth columns of X̂. Note that, in general,
this does not improve the accuracy of x̂(i) or x̂(j), unless λi and λj are exactly
multiple eigenvalues.

It is not possible to determine whether A has multiple eigenvalues by
using numerical computations, since computed results suffer from rounding
errors as a result of finite precision arithmetic. Instead, we regard λi and
λj as clustered eigenvalues if |λ̃i − λ̃j | ≤ δ for adequate δ. In our algorithm

we set δ := ρ ·maxi ̸=j |sij | with a parameter ρ ≥ 1, where S = X̂TAX̂. The
parameter ρ relaxes the criterion for judging whether λi and λj are clustered
eigenvalues. The larger ρ is, the more safely the algorithm works. Namely,
the use of ρ may avoid the presence of large magnitude values in Ẽ, and
then the orthogonality of X̂ is improved. A side effect of introducing ρ will
appear in our convergence theorem (Theorem 1), which is reflected in the
sufficient condition (55) for quadratic convergence. The justification for the
choice of δ will be explained in the end of this section.
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In Algorithm 1, we present a refinement algorithm for the eigenvalue
decomposition of a real symmetric matrix, which is designed to be iteratively
applied.

Algorithm 1 RefSyEv: Refinement of approximate eigenvectors of a real
symmetric matrix.

Require: A = AT ∈ Rn×n; X̂ ∈ Rn×ℓ; ρ ∈ R with ρ ≥ 1
Ensure: X ′ ∈ Rn×ℓ; emax ∈ R; λ̃ = (λ̃1, . . . , λ̃ℓ); δ ∈ R
1: function [X ′, emax, λ̃, δ]← RefSyEv(A, X̂, ρ)
2: R← I − X̂TX̂
3: S ← X̂TAX̂
4: λ̃i ← sii/(1− rii) for i = 1, . . . , ℓ ▷ Compute approximate

eigenvalues.
5: δ ← ρ ·maxi̸=j |sij |

6: ẽij ←


rij/2 (|λ̃i − λ̃j | ≤ δ)

sij + λ̃jrij

λ̃j − λ̃i

(otherwise)
for 1 ≤ i, j ≤ ℓ▷ Compute Ẽ.

7: emax ← maxi,j |ẽij |
8: X ′ ← X̂ + X̂Ẽ ▷ Update X̂ by X̂(I + Ẽ).
9: end function

To show the behavior of Algorithm 1, we will present Theorem 1 in
Section 4 that states the quadratic convergence of the algorithm, if all the
eigenvalues are simple and well separated. In the case where A has multiple
eigenvalues, we obtain a result similar to Theorem 1 by our convergence
analysis as Theorem 2. For details, see Section 4. To see the numerical
behavior of Algorithm 1, we will present several examples in Section 6,
which demonstrate excellent performance of the algorithm.

Let us consider the most likely scenario where X̂ is computed by some
backward stable algorithm in ordinary floating-point arithmetic with the rel-
ative rounding error unit u. Suppose all the eigenvalues are well separated.
Define E and E′ such that X = X̂(I + E) = X ′(I + E′), where X ′ is ob-
tained by Algorithm 1. Then, the Davis–Kahan theorem for eigenpairs [22,
Theorem 11.7.1] suggests that ∥E∥ = O(βu), where β is the reciprocal of
the maximum relative gap of eigenvalues defined as in (6). As will be stated
in Remark 4 in Section 4, ∥E′∥ = O(max(βuh, β

3u2)). Thus, we should set
uh to not greater than β2u2 in order to achieve quadratic convergence. This
will also be confirmed numerically in Section 6.

Remark 1. For the generalized symmetric definite eigenvalue problem Ax =
λBx where A and B are real symmetric with B being positive definite, a
similar algorithm can readily be derived by replacing the line 2 in Algorithm 1
by R← I − X̂TBX̂.
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Remark 2. It is worth noting that our approach can reproduce the first
order approximation step in the Davies–Modi algorithm as follows. Recall
that DS is a diagonal matrix whose diagonal entries are the eigenvalues of
S and U is the eigenvector matrix of S. Since we see

X̂TAX̂ = S = UDSU
T = e−Y DSe

Y = DS +DSY − Y DS +O(∥Y ∥2) (28)

from (8), we obtain S = D̃S + D̃SỸ1 − Ỹ1D̃S as the linearization process
in the same manner as (24). It is easy to see that D̃S = diag(s11, . . . , snn)
and Ỹ1 is equal to the solution in (11). Hence, if X̃ in Algorithm 1 is an
orthogonal matrix and the diagonal elements of S are sufficiently separated,
then Ẽ is equal to the skew-symmetric matrix Ỹ1 in view of R = O. In
other words, from the viewpoint of the Davies–Modi algorithm, the second
order approximation step is removed and the skew-symmetry of Ẽ is not
assumed in Algorithm 1. Instead, the condition (20) is integrated to improve
the orthogonality. If we assume Ẽ = ẼT in (20), we have

X ′ = X̂(I + Ẽ) = X̂

(
I +

1

2
(I − X̂TX̂)

)
, (29)

which is equivalent to the Newton–Schulz iteration (13). In other words, if
all the eigenvalues are regarded to be clustered, X̂ is refined by the Newton–
Schulz iteration. For the orthogonality, we require the relation (20) only,
while an iteration function for the polar decomposition must be an odd func-
tion such as the Newton–Schulz iteration. In summary, to combine the
Newton–Schulz iteration and the Davies–Modi algorithm sophisticatedly, we
remove unnecessary conditions from both of them, resulting in Algorithm 1
viewed as an ideal method to refine the orthogonality and the diagonality
simultaneously.

Remark 3. We mention what happens if the algorithm is applied to not
all but a few approximate eigenvectors of A corresponding to well-separated
eigenvalues as an input. In this case, the algorithm does not work as re-
finement of eigenvectors in terms of accuracy. For any ℓ ∈ N, 2 ≤ ℓ < n,
let X̂ℓ ∈ Rn×ℓ comprise any ℓ columns of X̂. When we iteratively apply
Algorithm 1 to A and X̂ℓ, the orthogonality of the columns of X̂ℓ is im-
proved by the iterations, i.e., X̂T

ℓ X̂ℓ → I, and X̂T
ℓ AX̂ℓ converges to some

diagonal matrix. However, this does not necessarily imply that the columns
of X̂ℓ converge to the eigenvectors of A. For that result, we must use all
approximate eigenvectors of A as an input of the algorithm when dealing
with well-separated eigenvalues. For clustered eigenvalues, we will consider
the case ℓ < n to improve an approximation of the eigenspace corresponding
to the clustered eigenvalues in Section 5.
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4 Convergence analysis

In this section, we prove quadratic convergence of Algorithm 1, that is the
basic part of the proposed algorithm, on the assumption that the approx-
imate solutions are modestly close to the exact solutions. Our analysis is
divided into two parts. First, if we assume that A does not have multiple
eigenvalues, then quadratic convergence is proved. Next, we move on to
general analysis to any A. More specifically, if the multiple eigenvalues can
be identified using δ in Algorithm 1, the quadratic convergence also follows.

Recall that the error of the approximate solution is expressed as ∥X̂ −
X∥ = ∥X̂E∥ in view of X = X̂(I + E). The refined approximate solution
is X ′ := X̂(I + Ẽ). It then follows that the error of the refined solution is
expressed as follows:

∥X̂(I + Ẽ)−X∥ = ∥X̂(Ẽ − E)∥.

In addition, recall that Ẽ is the solution of the following equations:

Ẽ + ẼT = R, (30)

D̃ − D̃Ẽ − ẼTD̃ = S, (31)

where

R := I − X̂TX̂, (32)

S := X̂TAX̂. (33)

However, if λ̃i ≈ λ̃j , then (31) is not reflected for the computation of ẽij and
ẽji. In this case, we choose ẽij = ẽji = rij/2 from (30). Such an exceptional
case is considered later in the subsection on multiple eigenvalues.

Briefly, our goal is to prove quadratic convergence

∥X̂(I + Ẽ)−X∥ = O(∥X̂ −X∥2),

which corresponds to

∥X̂(Ẽ − E)∥ = O(∥X̂E∥2),

as X̂ → X. We would like to prove that

∥Ẽ − E∥ = O(∥E∥2) (34)

as ∥E∥ → 0.
To investigate the relationship between E and Ẽ, let

ϵ := ∥E∥,

χ(ϵ) :=
3− 2ϵ

(1− ϵ)2
. (35)
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Then, we see that

E + ET = R+∆1, ∥∆1∥ ≤ χ(ϵ)ϵ2 (36)

from (18) and (19). In addition, we have

D −DE − ETD = S +∆2, ∥∆2∥ ≤ χ(ϵ)∥A∥ϵ2 (37)

from (22) and (23).

4.1 Simple eigenvalues

First, we focus on the situation where the eigenvalues are simple and well
separated. Here, we derive a key lemma that shows (34).

Lemma 1. Let A be a real symmetric n × n matrix. Assume that all the
eigenvalues of A are simple. Suppose that Algorithm 1 is applied to A and
X̂ ∈ Rn×n with ρ ≥ 1, where δ is determined by

S := X̂TAX̂, δ := ρ ·max
i̸=j
|sij |. (38)

Moreover, suppose that

ϵ <
1

ρ
min

(
mini ̸=j |λi − λj |

10n∥A∥
,

1

100

)
, (39)

where ϵ := ∥E∥ and X = X̂(I + E). Then, we obtain

|ẽii − eii| ≤
χ(ϵ)

2
ϵ2 (i = 1, . . . , n) (40)

|ẽij − eij | ≤
(2χ(ϵ) + 21ϵ)∥A∥ϵ2

|λi − λj | − 14∥A∥ϵ2
(i ̸= j) (41)

Proof. First, we estimate the diagonal elements. It is easy to see that

(E − Ẽ) + (E − Ẽ)T = ∆1, ∥∆1∥ ≤ χ(ϵ)ϵ2 (42)

from (30), (32), and (36). Hence, we obtain (40) from the diagonal elements
in (42).

Next, we discuss D̃. From (31) and (37), D̃ and D are determined as
λ̃i = sii/(1− 2ẽii), λi = (sii +∆2(i, i))/(1− 2eii). Thus, we have

λ̃i − λi =
sii(1− 2eii)− (sii +∆2(i, i))(1− 2ẽii)

(1− 2eii)(1− 2ẽii)
(43)

= −(1− 2ẽii)∆2(i, i) + 2(eii − ẽii)sii
(1− 2eii)(1− 2ẽii)

= −∆2(i, i)

1− 2eii
− 2(eii − ẽii)sii

(1− 2eii)(1− 2ẽii)
.
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For the first term on the right-hand side, we see∣∣∣∣∆2(i, i)

1− 2eii

∣∣∣∣ < χ(ϵ)

1− 2eii
∥A∥ϵ2

from (37). Moreover, for the second term,∣∣∣∣ 2(eii − ẽii)sii
(1− 2eii)(1− 2ẽii)

∣∣∣∣ < (1 + 2ϵ+ χ(ϵ)ϵ2)χ(ϵ)

(1− 2eii)(1− 2ẽii)
∥A∥ϵ2

from (33), (37), and (40). In addition, from (35) and ϵ < 1/100 in (55), we
have

χ(ϵ) =
3− 2ϵ

(1− ϵ)2
≤ 3.0405 · · · . (44)

Noting (43) and

χ(ϵ)

1− 2eii
∥A∥ϵ2 + (1 + 2ϵ+ χ(ϵ)ϵ2)χ(ϵ)

(1− 2eii)(1− 2ẽii)
∥A∥ϵ2

=
(1− 2ẽii) + (1 + 2ϵ+ χ(ϵ)ϵ2)

(1− 2eii)(1− 2ẽii)
χ(ϵ)∥A∥ϵ2

≤ 2(1 + 2ϵ+ χ(ϵ)ϵ2)χ(ϵ)

(1− 2ϵ)(1− 2ϵ− χ(ϵ)ϵ2)
∥A∥ϵ2

< 7∥A∥ϵ2,

we have

|λ̃i − λi| < 7∥A∥ϵ2 (i = 1, . . . , n). (45)

In what follows, we estimate the off-diagonal elements of Ẽ. Combin-
ing (37) with (45), we have

D̃ − D̃E − ETD̃ = S + ∆̃2,

where off-diagonal elements of |∆2 − ∆̃2| are less than 14∥A∥ϵ3. In other
words,

|∆̃2(i, j)| ≤ (χ(ϵ) + 14ϵ)∥A∥ϵ2 (46)

for i ̸= j from (37), where ∆̃2(i, j) are the (i, j) elements of ∆̃2. In addition,
from (31), it follows that

D̃(E − Ẽ) + (E − Ẽ)TD̃ = −∆̃2. (47)

Combining (47) with (42), we estimate the off-diagonal elements of Ẽ.
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For all i ̸= j, we derive

ρ|sij | ≤ ρ((|λi|+ |λj |)ϵ+ χ(ϵ)∥A∥ϵ2)
≤ ρ(2 + χ(ϵ)ϵ)∥A∥ϵ

<
mini ̸=j |λi − λj |

2
< min

i̸=j
|λi − λj | − 15∥A∥ϵ2,

where the first, third, and forth inequalities are due to (37), (55) and (44),
and ∥A∥∥E∥2 < mini ̸=j |λi−λj |/1000 obtained from (55), respectively. Not-
ing (45), we find that

|λ̃i − λ̃j | ≥ |λi − λj | − 14∥A∥ϵ2 > δ (= ρmax
i ̸=j
|sij |).

Hence, we focus on the linear system corresponding to such i, j. From (42),
(46) and (47), we have

(eij − ẽij) + (eji − ẽji) = ϵ1, |ϵ1| ≤ χ(ϵ)ϵ2, (48)

λ̃i(eij − ẽij) + λ̃j(eji − ẽji) = ϵ2, |ϵ2| ≤ (χ(ϵ) + 14ϵ)∥A∥ϵ2. (49)

It then follows that

eij − ẽij =
ϵ2 − λ̃jϵ1

λ̃i − λ̃j

, eji − ẽji =
ϵ2 − λ̃iϵ1

λ̃j − λ̃i

.

Therefore, using (45), we obtain

|ẽij − eij | ≤
(2χ(ϵ) + 21ϵ)∥A∥ϵ2

|λ̃i − λ̃j |
≤ (2χ(ϵ) + 21ϵ)∥A∥ϵ2

|λi − λj | − 14∥A∥ϵ2
(50)

From Lemma 1, the following two lemmas are readily accessible.

Lemma 2. Under the same assumptions as for Lemma 1, we have

∥Ẽ − E∥ < 7

10
ϵ. (51)

Proof. In view of ∥Ẽ − E∥2 ≤
∑

i,j |ẽij − eij |2 in (40) and (41), we obtain

∥Ẽ − E∥ ≤ (2χ(ϵ) + 21ϵ)n∥A∥ϵ2

mini̸=j |λi − λj | − 14∥A∥ϵ2
. (52)

From (44), we have

∥Ẽ − E∥ < 6.4n∥A∥ϵ2

mini̸=j |λi − λj | − 14∥A∥ϵ2
<

6.4ϵ

10(1− 2
100n)

<
7

10
ϵ. (53)
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Lemma 3. Under the same assumptions as for Lemma 1, we have

lim sup
ϵ→0

∥Ẽ −E∥
ϵ2

≤ 6n∥A∥
mini̸=j |λi − λj |

. (54)

Proof. From (35), we have χ(0) = 3. Combining that with (52), we ob-
tain (54).

Based on the above lemmas, we obtain a main theorem that states the
quadratic convergence of Algorithm 1, if all the eigenvalues are simple and
well-separated.

Theorem 1. Let A be a real symmetric n× n matrix. Assume that all the
eigenvalues λi of A are simple. Suppose that Algorithm 1 is applied to A
and X̂ ∈ Rn×n for some ρ ≥ 1, and X ′ is obtained. Define E and E′ such
that X = X̂(I + E) and X = X ′(I + E′), respectively. If

∥E∥ < 1

ρ
min

(
mini ̸=j |λi − λj |

10n∥A∥
,

1

100

)
, (55)

then

∥E′∥ < 5

7
∥E∥, (56)

lim sup
∥E∥→0

∥E′∥
∥E∥2

≤ 6n∥A∥
mini ̸=j |λi − λj |

. (57)

Proof. Noting X ′(I + E′) = X̂(I + E) (= X), we have

X ′E′ = X̂(E − Ẽ).

Therefore, we obtain

E′ = (I + Ẽ)−1(E − Ẽ). (58)

Noting ∥Ẽ∥ ≤ 1/50 from Lemma 1 and (51), we have

∥E′∥ ≤ ∥Ẽ − E∥
1− ∥Ẽ∥

<
5

7
∥E∥. (59)

Finally, using (58) and (54), we obtain (57).

Remark 4. In practice, the accuracy of a refined eigenvector matrix X ′ is
restricted by the computational precision being used. Since X̂ is improved
quadratically in the exact arithmetic, the computational precision used in the
algorithm must correspond to ∥E∥2 for preserving the convergence property
of the algorithm. In general, if Algorithm 1 is performed in higher-precision
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arithmetic with the relative rounding error unit uh, then due to the rounding
errors,

∥E′∥ = O(max(βuh, β∥E∥2)), β :=
∥A∥

minλi ̸=λj
|λi − λj |

. (60)

This is obtained as follows. Let R̂, Ŝ, Ê, X̂ ′ denote the computed results of
R, S, Ẽ, X ′, respectively. Then, define E′ such that X = X̂ ′(I +E′). From
a standard rounding error analysis, we have

R̂ = R+∆R, ∥∆R∥ = O(uh),

Ŝ = S +∆S , ∥∆S∥ = O(∥A∥uh),

Ê = Ẽ +∆E ,

where

∥∆E∥ = ∥Ê − Ẽ∥ ≤ ∥∆S∥+ ∥A∥∥∆R∥
minλi ̸=λj

|λi − λj |
(1 +O(β∥E∥2)) = O(βuh), (61)

due to line 6 in Algorithm 1. Then, combining (57) and (61) yields (60).

4.2 Multiple eigenvalues

Multiple eigenvalues require some care. We might not be able to solve the
linear system given by (30) and (31) in the case λ̃i ≈ λ̃j corresponding to
multiple eigenvalues λi = λj , and hence, we use the first equation (30) only,

i.e., ẽij = ẽji = rij/2 for |λ̃i − λ̃j | ≤ δ. This exceptional process is relevant
to the definitions of X and E. Suppose λi, i ∈ M := {i1, i2, . . . , ip}, are
multiple eigenvalues. Then, the ikth columns of X for 1 ≤ k ≤ p are not
unique: for XM := [x(i1), . . . , x(ip)] ∈ Rn×p, the columns of XMQ are also
eigenvectors of A for any orthogonal matrix Q ∈ Rp×p. Hence, let {X} be
the set of the n×n eigenvector matrices of A, and {E} := {X̂−1X−I : X ∈
{X}}.

The key idea of the proof of quadratic convergence below is to define an
eigenvector matrix Y ∈ {X} as follows. For any Xα ∈ {X}, there is a per-
mutation matrix P such that XαP = [XM, XK]. Suppose an approximation
X̂ of Xα is nonsingular. Then, splitting (X̂P )−1XM into the first p rows
Vα ∈ Rp×p and the rest (n− p) rows Wα ∈ R(n−p)×p, we have

(X̂P )−1XM = PTX̂−1XM =

[
Vα

Wα

]
=

[
C

WαQ
T
α

]
Qα

in view of the polar decomposition Vα = CQα, where C ∈ Rp×p is symmetric
and positive definite, and Qα ∈ Rp×p is orthogonal. Note that, although
XMQ for any orthogonal matrix Q ∈ Rp×p is also the eigenvector matrix,
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the symmetric positive definite matrix C is independent of Q. In other
words, we have

(X̂P )−1(XMQ) = PTX̂−1(XMQ) =

[
VαQ
WαQ

]
=

[
C

WαQ
T
α

]
QαQ,

where VαQ = C(QαQ) is the unique polar decomposition of VαQ. Hence, we
define the unique matrix Y := [XMQT

α , XK]P
T for all the matrices in {X},

where Y depends on X̂ only. Then, the corresponding error term F = (fij)
is uniquely determined as

F := X̂−1Y − I = [X̂−1XMQT
α , X̂

−1XK]P
T − I

= P

[
C − I ∗
∗ ∗

]
PT,

which implies fij = fji corresponding to the multiple eigenvalues λi = λj .
Therefore,

fij = fji =
rij +∆1(i, j)

2
(62)

from (36), where ∆1(i, j) denote (i, j) elements of ∆1 for all i, j. Also note
that, if X̂ is an exact eigenvector matrix, ∥F∥ = 0 holds. Our aim is to prove
∥F∥ → 0 in the iterative refinement for X̂ ≈ Y ∈ {X}, where Y depends
on X̂. To this end, for the refined X ′, we also define an eigenvector matrix
Y ′ ∈ {X} and F ′ := (X ′)−1Y ′ − I such that the submatrices of (X ′)−1Y ′

corresponding to the multiple eigenvalues are symmetric positive definite.
Note that the eigenvector matrix Y is changed to Y ′ corresponding to X ′

after the refinement. For the convergence analysis, define the index setsMk,
k = 1, 2, . . . ,M , for multiple eigenvalues {λi}i∈Mk

satisfying the following
conditions: 

(a)Mk ⊆ {1, 2, . . . , n} with nk := |Mk| ≥ 2
(b) λi = λj , ∀i, j ∈Mk

(c) λi ̸= λj , ∀i ∈Mk, ∀j ∈ {1, 2, . . . , n} \Mk

. (63)

Using the above definitions, we obtain the following key lemma to prove
quadratic convergence.

Lemma 4. Let A be a real symmetric n×n matrix with multiple eigenvalues
and the index setsMk, k = 1, 2, . . . ,M satisfy (63). For a given X̂ ∈ Rn×n,
let {X} be the set of the n× n eigenvector matrices for A and

{E} := {X̂−1X − I : X ∈ {X}}. (64)

Then, there exists a unique Y ∈ {X} such that, for all k, the nk × nk

submatrices of X̂−1Y corresponding to {λi}i∈Mk
be symmetric and positive
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definite. Furthermore, define F ∈ {E} such that Y = X̂(I + F ). Then, for
any E ∈ {E},

∥F∥ ≤ 3∥E∥. (65)

Proof. For any E in (64), let Ediag denote the block diagonal part of E
whose nk × nk block corresponds to nk multiple eigenvalues, i.e.,

Ediag(i, j) :=

{
eij (λi = λj)
0 (otherwise)

where diag(λ1, . . . , λn) = XTAX. Here, we consider the polar decomposi-
tion

I + Ediag =: HU, (66)

where H is a symmetric positive definite matrix, and U is an orthogonal
matrix. Then, we have

Y = XUT (67)

from the definition of Y and

F = X̂−1Y − I (68)

= X̂−1XUT − I

= (E + I)UT − I

= (E − Ediag +HU)UT − I

= (E − Ediag)U
T +H − I,

where the first, second, third, and fourth equalities are consequences of the
definition of F , (67), (64), and (66), respectively. In addition, we see that

∥H − I∥ ≤ ∥Ediag∥ (69)

because all the eigenvalues of H range over the interval [1 − ∥Ediag∥, 1 +
∥Ediag∥] from (66). In addition, note that

∥Ediag∥ ≤ ∥E∥. (70)

Therefore, we obtain

∥F∥ = ∥(E − Ediag)U
T + (H − I)∥ ≤ 3∥E∥ (71)

from (68), (69), and (70), giving us (65).

On the basis of Theorem 1 and Lemma 4, we see the quadratic conver-
gence for a real symmetric matrix A that has multiple eigenvalues.
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Theorem 2. Let A be a real symmetric n × n matrix with multiple eigen-
values and the index sets Mk, k = 1, 2, . . . ,M satisfy (63). In addition, let
{X} be the set of the n× n eigenvector matrices for A. Suppose that Algo-
rithm 1 is applied to A and X̂ ∈ Rn×n for some ρ ≥ 1, and X ′ is obtained.
Define S = (sij) ∈ Rn×n such that S = X̂TAX̂, and

δ := ρ ·max
i ̸=j
|sij |.

For all k, let the nk×nk submatrices of X̂−1Y and (X ′)−1Y ′ corresponding
to {λi}i∈Mk

be symmetric and positive definite, where Y, Y ′ ∈ {X}. Fur-

thermore, define F and F ′ such that Y = X̂(I + F ) and Y ′ = X ′(I + F ′),
respectively. Suppose that

ϵF := ∥F∥ < 1

3ρ
min

(
minλi ̸=λj

|λi − λj |
10n∥A∥

,
1

100

)
. (72)

In addition, assume that

14∥A∥∥F∥2 < δ. (73)

Then, we obtain

∥F ′∥ < 5

7
∥F∥, (74)

lim sup
∥F∥→0

∥F ′∥
∥F∥2

≤ 3

(
6n∥A∥

minλi ̸=λj
|λi − λj |

)
. (75)

Proof. First, we see that

|ẽij − fij | ≤
(2χ(ϵF ) + 21ϵF )∥A∥ϵ2F
|λi − λj | − 14∥A∥ϵ2F

for i ̸= j corresponding to λi ̸= λj

similar to the proof of (50) in Lemma 1. Concerning the multiple eigenvalues
λi = λj , (45) yields |λ̃i − λ̃j | ≤ 14∥A∥ϵ2F < δ from assumption (73). Recall

that ẽij = ẽji = rij/2 whenever |λ̃i − λ̃j | < δ in Algorithm 1. Hence, from
(62), we have

|ẽij − fij | ≤
χ(ϵF )

2
ϵ2F for i = j corresponding to λi = λj . (76)

Therefore, we have

∥F − Ẽ∥ ≤
∑

1≤i,j≤n

√
|fij − ẽij |2 ≤

(2χ(ϵF ) + 21ϵF )n∥A∥ϵ2F
minλi ̸=λj

|λi − λj | − 14∥A∥ϵ2F
(77)

similar to the proof of Lemma 1.
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Next, we define

G := (X ′)−1Y − I.

Then, we have

G = (I + Ẽ)−1(F − Ẽ) (78)

similar to (58). Similar to the proof of (59), we have

∥G∥ < 5

21
∥F∥

from (77) and (72). Using (65), we have

∥F ′∥ ≤ 3∥G∥, (79)

where G := (X ′)−1Y − I for Y ∈ {X}, F ′ = (X ′)−1Y ′ − I for Y ′ ∈ {X},
and the submatrices of (X ′)−1Y ′ corresponding to the multiple eigenvalues
are symmetric positive definite. Therefore, we obtain (74). Since we see

lim sup
ϵ→0

∥G∥
∥F∥2

≤ 6n∥A∥
minλi ̸=λj

|λi − λj |

from (78) and Lemma 3, we obtain (75) from (79).

In the iterative refinement, Theorem 2 shows that the error term ∥F∥ is
quadratically convergent to zero, if the multiple eigenvalues can be identified
by δ. Note that X̂ is also convergent to some fixed eigenvector matrix X,
because Theorem 2 and (77) imply ∥Ẽ∥/∥F∥ → 1 as ∥F∥ → 0 in X ′ :=
X̂(I + Ẽ), where ∥F∥ is quadratically convergent to zero.

In this paper, we cannot prove that δ satisfies (73) and cannot develop
a strategy to mathematically achieve (73). However, we stress that δ =
O(∥F∥) is expected to be sufficiently larger than ∥F∥2, and (73) appears to
be realized numerically for some appropriate ρ.

4.3 The complex case

For an Hermitian matrix A ∈ Cn×n, we must note that, for any unitary
diagonal matrix U , XU is also an eigenvector matrix; there is a continuum
of normalized eigenvector matrices, in contrast to the real case. Related to
this, note that (25) is replaced with Ẽ + ẼH = R in the complex case, and
hence the diagonal elements ẽii for i = 1, . . . , n are not uniquely determined
in C. Now, choose ẽii = rii/2 ∈ R for i = 1, . . . , n. Then, we can prove
quadratic convergence using the polar decomposition in the same way as
in the discussion of multiple eigenvalues in the real case. More precisely,
we define a normalized eigenvector matrix Y as follows. First, we focus on

24



the situation where all the eigenvalues are simple. Define Y such that all
the diagonal elements of X̂−1Y are positive real numbers. In addition, let
F := X̂−1Y − I. Then, we see quadratic convergence of F in the same way
as in Theorem 2.

Corollary 1. Let A ∈ Cn×n be an Hermitian matrix whose eigenvalues are
all simple. In addition, let {X} be the set of the n×n unitary matrices whose
columns are the eigenvectors of A. Suppose that Algorithm 1 is applied to A
and X̂ ∈ Rn×n for some ρ ≥ 1, and X ′ is obtained. Define S = (sij) ∈ Rn×n

such that S = X̂HAX̂, and

δ := ρ ·max
i ̸=j
|sij |.

Let all the diagonal elements of X̂−1Y and (X ′)−1Y ′ be positive real num-
bers, where Y, Y ′ ∈ {X}. Furthermore, define F and F ′ such that Y =
X̂(I + F ) and Y ′ = X ′(I + F ′), respectively. Suppose that

ϵF := ∥F∥ < 1

3ρ
min

(
minλi ̸=λj

|λi − λj |
10n∥A∥

,
1

100

)
.

Then, we obtain

∥F ′∥ < 5

7
∥F∥,

lim sup
∥F∥→0

∥F ′∥
∥F∥2

≤ 3

(
6n∥A∥

minλi ̸=λj
|λi − λj |

)
.

For a general Hermitian matrix, we define Y in the same manner as in
Theorem 2, resulting in the following corollary.

Corollary 2. Let A ∈ Cn×n be an Hermitian matrix with multiple eigen-
values and the index sets Mk, k = 1, 2, . . . ,M satisfy (63). In addition, let
{X} be the set of the n×n unitary matrices whose columns are the eigenvec-
tors of A. Suppose that Algorithm 1 is applied to A and X̂ ∈ Rn×n for some
ρ ≥ 1, and X ′ is obtained. Define S = (sij) ∈ Rn×n such that S = X̂HAX̂,
and

δ := ρ ·max
i ̸=j
|sij |.

In addition, define Y, Y ′ ∈ {X} satisfying the following conditions. Let all
the diagonal elements of X̂−1Y and (X ′)−1Y ′ be positive real numbers, and,
for all k, the nk × nk submatrices of X̂−1Y and (X ′)−1Y ′ corresponding to
{λi}i∈Mk

be symmetric and positive definite. Furthermore, define F and F ′

such that Y = X̂(I + F ) and Y ′ = X ′(I + F ′), respectively. Suppose that

ϵF := ∥F∥ < 1

3ρ
min

(
minλi ̸=λj

|λi − λj |
10n∥A∥

,
1

100

)
.
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In addition, assume that

14∥A∥∥F∥2 < δ.

Then, we obtain

∥F ′∥ < 5

7
∥F∥,

lim sup
∥F∥→0

∥F ′∥
∥F∥2

≤ 3

(
6n∥A∥

minλi ̸=λj
|λi − λj |

)
.

In addition, note that X̂ is convergent to some fixed eigenvector matrix
X in the same manner as the real case.

5 Algorithm for clustered eigenvalues

In this section, we propose the complete version of a refinement algorithm for
the eigenvectors of symmetric matrices, which can also deal with clustered
eigenvalues.

In the first place, we concretely show the drawback of Algorithm 1 con-
cerning clustered eigenvalues. For this purpose, we again take the matrix
A as in example (7) with ε = 2−50 ≈ 10−15. Recall that λ1 = −1, λ2 = 2,
λ3 = 2+2ε, i.e., λ2 and λ3 are nearly double eigenvalues. In the same way as
before, we adopt the MATLAB built-in function eig in binary64 for obtain-

ing X(0) := X̂, which means u ≈ 10−16 as the relative rounding error unit.
Then, we iteratively apply Algorithm 1 to A and X(ν) starting from ν = 0.
To check on the accuracy of X(ν) with respect to the orthogonality and the
diagonality, we display R(ν) := I − (X(ν))TX(ν) and S(ν) := (X(ν))TAX(ν).

For X(0), we have the following results:

R(0) ≈

-2.7e-16 -1.3e-16 -6.8e-17

-1.3e-16 1.4e-16 -5.0e-17

-6.8e-17 -5.0e-17 -2.2e-16

 , S(0) ≈

-1.0e+00 -1.3e-16 -6.8e-17

-1.3e-16 2.0e+00 1.7e-17

-6.8e-17 1.7e-17 2.0e+00


We apply Algorithm 1 to A and X(0) with ρ = 1 in the exact arithmetic.
The result is as follows:

R(1) ≈

 5.4e-32 -3.2e-18 6.0e-18

-3.2e-18 -2.2e-03 -8.3e-18

6.0e-18 -8.3e-18 -2.2e-03

 , S(1) ≈

-1.0e+00 -3.2e-18 6.0e-18

-3.2e-18 2.0e+00 1.7e-17

6.0e-18 1.7e-17 2.0e+00


From the result, we confirm that the orthogonality of X(ν), especially ap-
proximate eigenvectors corresponding to λ2 and λ3, is much worse than
that to λ1, and the diagonality is almost not improved. This result is con-
sistent with the convergence analysis in the previous section because the
error ϵ = ∥E∥ in Theorem 1 is not sufficiently small in this example though
the radius of convergence in (55) is maximized at ρ = 1.
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-

Jk−1 Jk Jk+1

Figure 1: The relationship between λ̃i and Jk (Short vertical lines denote
λ̃i).

To solve the problem above, recall that the eigenspace spanned by all the
eigenvectors corresponding to clustered eigenvalues is not sensitive to per-
turbations, as staed by the Davis–Kahan theorem in (4). In addition, noting
the convergence analysis in Section 4.2 for multiple eigenvalues, we consider
relaxing the criterion for judging whether A has clustered eigenvalues by
setting ρ larger, in order to identify the eigenspace corresponding to the
clustered eigenvalues. Heuristics suggest that ρ satisfying 102 ≤ ρ ≤ 1014

is a good choice (see the numerical results in Section 6). Following are the
results of two iterations for ρ = 103:

R(1) ≈

 5.4e-32 2.7e-32 2.9e-32

2.7e-32 3.3e-32 1.2e-32

2.9e-32 1.2e-32 4.2e-32

 , S(1) ≈

 -1.0e+00 2.7e-32 2.9e-32

2.7e-32 2.0e+00 -8.3e-17

2.9e-32 -8.3e-17 2.0e+00


R(2) ≈

 2.2e-63 2.1e-63 2.3e-63

2.1e-63 1.7e-63 1.4e-63

2.3e-63 1.4e-63 2.3e-63

 , S(2) ≈

 -1.0e+00 2.1e-63 2.3e-63

2.1e-63 2.0e+00 -8.3e-17

2.3e-63 -8.3e-17 2.0e+00


We can confirm fromR(ν) that the orthogonality ofX(ν) is improved quadrat-
ically due to ρ≫ 1. Moreover, we see from S(ν) that the diagonality corre-
sponding to the simple eigenvalue λ1 is also improved quadratically. On the
other hand, the refinement of the diagonality stagnates with respect to the
nearly double eigenvalues λ2 and λ3. In what follows, we overcome such a
problem for a general symmetric matrix A.

Suppose that Algorithm 1 is applied to a symmetric matrix A ∈ Rn×n

and its approximate eigenvector matrix X̂ ∈ Rn×n. Then, we obtain X ′, λ̃
and δ, where X ′ ∈ Rn×n is a refined approximate eigenvector matrix, and
δ ∈ R is the criterion whether approximate eigenvalues are clustered. Using
λ̃ and δ, we can easily obtain the index sets Jk, k = 1, 2, . . . ,M , for clusters
of approximate eigenvalues {λ̃i}i∈Jk

satisfying all the following conditions
(see also Fig. 1):

(a) Jk ⊆ {1, 2, . . . , n} with nk := |Jk| ≥ 2

(b) min
j∈Jk\{i}

|λ̃i − λ̃j | ≤ δ, ∀i ∈ Jk

(c) |λ̃i − λ̃j | > δ, ∀i ∈ Jk, ∀j ∈ {1, 2, . . . , n} \Jk

. (80)

Now the problem is how to refine X ′(:,Jk) ∈ Rn×nk , which denotes the
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matrix comprising approximate eigenvectors corresponding to the clustered
approximate eigenvalues {λ̃i}i∈Jk

.

5.1 Outline of the proposed algorithm

From the observation on the numerical results at the beginning of this sec-
tion, we develop the following procedure for the refinement:

1. Find clusters of approximate eigenvalues of A, and obtain the index
sets Jk, k = 1, 2, . . . ,M , for the clusters.

2. Define Vk := X ′(:,Jk) ∈ Rn×nk where nk := |Jk|.

3. Compute Tk := V T
k (A−µkI)Vk where µk := λ̃p with |λ̃p| = mini∈Jk

|λ̃i|.

4. Perform the following procedure for each Tk.

i) Execute the eigenvalue decomposition of Tk such that Tk = WkDkW
T
k

where Wk is the eigenvector matrix of Tk.

ii) Update X ′(:,Jk) by VkWk.

This procedure is interpreted as follows. We first apply an approximately
similarity transformation to A using the refined eigenvector matrix X ′ such
as S := (X ′)TAX ′. Then, we divide the problem for S into subproblems
for Sk, k = 1, 2, . . . ,M , corresponding to the clusters. After that, we apply
a diagonal shift to Sk such as Tk := Sk − µkI for relatively separating
the clustered eigenvalues around µk. Instead of these to obtain Tk, we
actually perform the steps 2 and 3 in view of computational efficiency and
accuracy. Finally, we update the columns of X ′ corresponding to Jk using
the eigenvector matrix Wk of Tk by VkWk.

5.2 The proposed algorithm

In Algorithm 2, we present the complete version of a refinement algorithm
for the eigenvalue decomposition of a real symmetric matrix A, which can
also be applied to the case where A has clustered eigenvalues.

Here, the function FL(C) rounds an input matrix C ∈ Rn×n to the matrix
T ∈ Fn×n nearest to C, where F is a set of ordinary floating-point numbers
such as IEEE 754 binary64 format. Moreover, the function eig(T ) is similar
to the MATLAB’s one, which computes all approximate eigenvectors of an
input matrix T ∈ Fn×n by using ordinary floating-point arithmetic, and
is expected to adopt some backward stable algorithm as implemented in
the LAPACK routine xSYEV. To obtain sufficiently accurate approximate
eigenvectors of A corresponding to Jk, we iteratively apply Algorithm 1

(RefSyEv) to A − µkI and V
(ν)
k until the approximate eigenvectors as the
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Algorithm 2 RefSyEvCL: Refinement of approximate eigenvectors of a real
symmetric matrix with clustered eigenvalues.

Require: A, X̂ ∈ Rn×n with A = AT; ρ ∈ R with ρ ≥ 1
Ensure: X ′ ∈ Rn×n

1: function X ′ ← RefSyEvCL(A, X̂, ρ)
2: [X ′, emax, λ̃, δ]← RefSyEv(A, X̂, ρ) ▷ Apply Algorithm 1 to A and

X̂.
3: if emax ≥ 1, return, end if ▷ Improvement cannot be expected.
4: Determine the index sets Jk, k = 1, . . . ,M , as in (80) for eigenvalue

clusters using λ̃ and δ. ▷ M : The number of clusters.
5: for k ← 1, 2, . . . ,M do ▷ Refine eigenvectors for each cluster.
6: Vk ← X ′(:,Jk) ▷ Pick out Vk ∈ Rn×nk where nk := |Jk|.
7: µk ← λ̃p s.t. |λ̃p| = mini∈Jk

|λ̃i| ▷ Determine the shift constant
µk.

8: Ak ← A− µkI ▷ Shift A for separating clustered eigenvalues.
9: Tk ← FL(V T

k AkVk) ▷ Round V T
k AkVk to floating-point.

10: [Wk,∼]← eig(Tk) ▷ Compute eigenvectors of Tk in
floating-point.

11: ν ← 1; V
(1)
k ← Vk ·Wk

12: repeat

13: [V
(ν+1)
k , fmax]← RefSyEv(Ak, V

(ν)
k , ρ) ▷ Apply Alg. 1 to Ak

and V
(ν)
k .

14: if fmax ≥ 1, return, end if ▷ Improvement cannot be
expected.

15: ν ← ν + 1
16: until fmax ≤ emax

17: X ′(:,Jk)← V
(ν)
k ▷ Update X ′.

18: end for
19: end function

columns of V
(ν)
k become as accurate as those associated with well-separated

eigenvalues, which corresponds to the lines from 12 to 16 in Algorithm 2.
For the example (7), we apply Algorithm 2 (RefSyEvCL) to A and the

same initial guess X(0) as before. Following are the results of two iterations
for ρ = 103:

R(1) ≈

 5.4e-32 -2.9e-32 2.8e-32

-2.9e-32 1.4e-33 7.9e-49

2.8e-32 7.9e-49 1.4e-33

 , S(1) ≈

-1.0e+00 -2.9e-32 2.8e-32

-2.9e-32 2.0e+00 -1.0e-48

2.8e-32 -1.0e-48 2.0e+00


R(2) ≈

 2.2e-63 -1.6e-63 1.5e-63

-1.6e-63 8.1e-64 -7.9e-64

1.5e-63 -7.9e-64 7.6e-64

 , S(2) ≈

-1.0e+00 -1.6e-63 1.5e-63

-1.6e-63 2.0e+00 -7.9e-64

1.5e-63 -7.9e-64 2.0e+00


From the results, we can see that Algorithm 2 works well for this example,
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i.e., the approximate eigenvectors corresponding to the nearly double eigen-
values λ2 and λ3 are also improved in terms of the orthogonality and the
diagonality.

6 Numerical results

We present several numerical results to illustrate the effectiveness of the
proposed algorithms (Algorithms 1 and 2) for symmetric eigenvalue decom-
position. Numerical experiments in this section were conducted using MAT-
LAB R2015b on our PC with 2.9 GHz Intel Xeon CPU E5-4617 (6 cores × 4
CPUs) and 1 TB of main memory. We adopt IEEE 754 binary64 (formerly
double precision) as the working precision of floating-point arithmetic.

6.1 Convergence property

We confirm the convergence property of the proposed algorithms. For this
purpose, we first generate real symmetric positive definite matrices with var-
ious distributions of eigenvalues using MATLAB’s built-in function randsvd
from Higham’s test matrices [15] by the following MATLAB command:

>> A = gallery(’randsvd’,n,-cnd,mode);

The eigenvalue distribution and the condition number of A can be controlled
by the input arguments mode ∈ {1, 2, 3, 4, 5} and cnd =: α ≥ 1, as follows:

1. one large: λ1 ≈ 1, λi ≈ α−1, i = 2, . . . , n

2. one small: λn ≈ α−1, λi ≈ 1, i = 1, . . . , n− 1

3. geometrically distributed: λi ≈ α−(i−1)/(n−1), i = 1, . . . , n

4. arithmetically distributed: λi ≈ 1−(1−α−1)(i−1)/(n−1), i = 1, . . . , n

5. random with uniformly distributed logarithm: λi ≈ α−r(i), i = 1, . . . , n,
where r(i) are pseudo-random values drawn from the standard uniform
distribution on (0, 1).

Here, κ(A) ≈ cnd for cnd < u−1 ≈ 1016. Note that for mode ∈ {1, 2}
there are clustered eigenvalues, which are not exactly but nearly multiple
eigenvalues as a result of rounding errors when A is generated using randsvd,
i.e., all the multiple eigenvalues are slightly separated by the perturbation.
Therefore, we expect that Algorithm 1 (RefSyEv) does not work effectively
for mode ∈ {1, 2}.

We set n = 10 and cnd = 108. Here, we performed numerical experi-
ments for some dozens of seeds for the random number generator, and all
the results were similar to those provided in this section. Therefore, we
adopt the default seed as a typical example by the MATLAB command
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Figure 2: Results of iterative refinement by Algorithm 1 (RefSyEv, ρ = 1) for
symmetric and positive definite matrices generated by randsvd with n = 10
and κ(A) ≈ 108.

rng(’default’) to ensure the reproducibility. Moreover, we compute X̂(0)

as an initial approximate eigenvector matrix using the MATLAB function
eig for the eigenvalue decomposition in IEEE binary64 floating-point arith-
metic. Therefore, X̂(0) suffers from rounding errors. To see the behavior
of Algorithm 1 exactly, in Algorithm 1 we use the Symbolic Math Toolbox
for MATLAB. In addition, we set ρ = 1 in Algorithm 1. The results are
displayed in Fig. 2, which provides max1≤i≤n |λ̂i − λi|/|λi| as the maximum

relative error of computed eigenvalues (left), ∥I−X̂TX̂∥ as the orthogonality
of a computed eigenvector matrix X̂ (center) and ∥offdiag(X̂TAX̂)∥/∥A∥ as
the diagonality of X̂TAX̂ (right). Here, offdiag(·) denotes the off-diagonal
part. The horizontal axis shows the number of iterations of Algorithm 1.

In the case of mode ∈ {3, 4, 5}, Algorithm 1 converges quadratically, as
expected. On the other hand, in the case of mode ∈ {1, 2}, the algorithm fails
to improve the accuracy of initial approximate eigenvectors. This is because
the test matrices for mode ∈ {1, 2} have nearly multiple eigenvalues, and the
assumption (55) for the convergence of Algorithm 1 is not satisfied for these
eigenvalues.

To confirm the behavior of Algorithm 2 (RefSyEvCL), we apply it to the
same examples with various ρ. The results are displayed in Fig. 3, whose
horizontal axis shows the number of iterations of Algorithm 2. It can be seen
from the results that Algorithm 2 also works very well for 102 ≤ ρ ≤ 1014,
even in the case of mode ∈ {1, 2}, indicating quadratic convergence.

We mention that Algorithm 1 works perfectly for exactly multiple eigen-
values. Let A = I + eeT ∈ Rn×n with e = (1, . . . , 1)T. Then A is exactly
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Figure 3: Maximum relative error of computed eigenvalues refined by Al-
gorithm 2 (RefSyEvCL) with various ρ for symmetric and positive definite
matrices generated by randsvd with n = 10, κ(A) ≈ 108, mode ∈ {1, 2}.

representable in the IEEE 754 binary64 floating-point format and has ex-
actly (n − 1)-fold eigenvalues (λi = 1, i = 1, . . . , n − 1, λn = n + 1). In
the same way as in the above examples, we apply Algorithm 1 for A with
n = 10. The results are displayed in Fig. 4.

From the results, we can see that Algorithm 1 also converges quadrati-
cally for the matrix having exactly multiple eigenvalues, which is consistent
with our convergence analysis in Theorem 2.

Second, we show the results for the Wilkinson matrix [26] with n = 21,
which is symmetric and tridiagonal with pairs of nearly but not exactly equal
eigenvalues. The Wilkinson matrix Wn = (wij) ∈ Rn×n consists of diagonal

entries wii := |n−2i+1|
2 , i = 1, 2, . . . , n, and off-diagonal entries being all

ones. We apply Algorithm 2 with various ρ to the Wilkinson matrix. The
results are displayed in Fig. 5. From the results, we can see that Algorithm 2
works well in the case where 102 ≤ ρ ≤ 1014, especially it does very well if
appropriate ρ is chosen such as ρ = 1014.

Third, we show the convergence behavior of Algorithm 1 with limited
computational precision for larger matrices with various condition numbers.
For this purpose, we generate test matrices by again using randsvd with
n = 100, and mode = 3 and varying cnd from 103 to 1015. In the same way
as in the previous examples, we use eig in binary64 for calculating a matrix
of initial approximate eigenvectors. Moreover, we represent X̂ = X̂1 + X̂2

in “double-double” precision format [8] with the leading part X̂1 and the
trailing part X̂2 to simulate twice the working precision by using the concept
of error-free transformations [18, 20, 21, 23, 24]. Then the maximum relative
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Figure 4: Results of iterative refinement by Algorithm 1 (RefSyEv, ρ = 1)
for a symmetric 10 × 10 matrix A = I + eeT with e = (1, . . . , 1)T having
exactly 9-fold eigenvalues.

accuracy of the computed results is limited to uh = u2, that is approximately
10−32 in this case, since u = 2−53 ≈ 10−16 for binary64. Here, we set ρ = 1
in Algorithm 1. The results are displayed in Fig. 6.

From the results in Fig. 6, we see that the quadratic convergence of
Algorithm 1 can be confirmed until the relative accuracy of the computed
results (MaxRelErr), the orthogonality of the computed eigenvectors (∥R∥),
and their relative diagonality (∥Soff∥/∥A∥) attain approximately uh = u2 ≈
10−32, except for the case cnd = 1015 (κ(A) ≈ 1015). This result is consistent
with the discussion in Remark 4. In the case of cnd = 1015, Algorithm 1
does not work effectively due to the ill-conditionedness of A, i.e., smaller
magnitude eigenvalues of A are regarded as nearly multiple, compared to
the largest magnitude eigenvalue of A. This problem can be resolved by
Algorithm 2. The results obtained by Algorithm 2 are displayed in Fig. 7,
which shows that Algorithm 2 can effectively improve eigenvectors even if
A is ill-conditioned.

6.2 Computational speed

To evaluate the computational speed of Algorithm 1, we first compare com-
puting time for Algorithm 1 with that for the “MP-approach” which means
a native approach using multiple-precision arithmetic. Note that the timing
should be observed for reference because the computing time for Algorithm 1
strongly depends on the implementation of accurate matrix multiplication.
For this purpose, we adopt an efficient method by Ozaki et al. [21], which can
utilize fast matrix multiplication routines such as xGEMM in Basic Linear
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Figure 5: Results of iterative refinement by Algorithm 2 (RefSyEvCL) with
various ρ for the Wilkinson matrix with n = 21.

Algebra Subprograms (BLAS). As an MP-approach, we use Advanpix Mul-
tiprecision Computing Toolbox version 3.8.5.9059 [2], which utilizes well-
known, fast, and reliable multiple-precision arithmetic libraries including
GMP and MPFR. In the toolbox, the MRRR algorithm [10] via House-
holder’s reduction is used for solving symmetric eigenvalue problems.

As test matrices, we generate pseudo-random real symmetric n × n
matrices with n ∈ {500, 1000} using the MATLAB function randn such
as B = randn(n) and A = B + B’. We use eig in binary64, which adopts
DSYEV in LAPACK, and then iteratively refine the computed eigenvalues
and eigenvectors three times. Here, we set ρ = 1 in Algorithm 1. In the
multiple-precision toolbox, we can control the arithmetic precision d in dec-
imal digits using the command mp.Digits(d). In particular, IEEE 754 bi-
nary128 arithmetic is supported as a special case for d = 34, which is faster
than the cases for d < 34. Corresponding to the results of Algorithm 1, we
adjust d for ν = 1, 2, 3. For timing fairness, we adopt d = max(d, 34). In Ta-
bles 1 and 2, we display the maximum relative error of computed eigenvalues
λ̂i and the measured computing time.

From the tables, it can be seen that Algorithm 1 quadratically improves
the accuracy of the computed eigenvalues. The accuracy of the results ob-
tained using the MP-approach corresponds to the arithmetic precision d.
Note that on the timing for Algorithm 1, the symmetry of X̂TX̂ or X̂TAX̂
was not considered for their computations. Nevertheless, Algorithm 1 is con-
siderably faster than the MP-approach, especially for larger n. For larger
ν, there must be some cross point at which the MP-approach outperforms
the proposed method in terms of computing time, though it may be out of
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Figure 6: Results of iterative refinement by Algorithm 1 (RefSyEv) with
ρ = 1 using double-double precision format for symmetric positive definite
matrices generated by randsvd with n = 100, mode = 3 and various condition
numbers.

range of the floating-point numbers and arithmetic being used.
We deal with more large-scale problems. We aim to obtain maximally

accurate all eigenpairs of a given real symmetric n×n matrix A in binary64
format. For this purpose, we apply the MATLAB function eig in binary64
to A for calculating its initial approximate eigenvector matrix X̂, and then
refine X̂ by Algorithm 1 with double-double precision format as mentioned
in the previous section. After that, we round the computed results back
to binary64 format. As a matrix multiplication routine in double-double
precision format, we adopt the method in [21] again.

Test matrices are generated by using the MATLAB function randsvd with
n ∈ {4000, 8000, 16000}, cnd = 108 and mode = 3. As numerical results, the
following items are provided:

• MaxRelErr: max
1≤i≤n

|λ̂i − λi|
|λi|

(on accuracy of eigenvalues)

• ∥R∥: ∥I − X̂TX̂∥ (on orthogonality of eigevectors)

• ∥Soff∥/∥A∥:
∥offdiag(X̂TAX̂)∥

∥A∥
(on diagonality of eigevectors)

The results are displayed in Table 3.
From Table 3, it can be seen that Algorithm 1 improves the accuracy

of the computed results up to the limit of binary64 (u = 2−53 ≈ 10−16).
Computing time for the proposed refinement algorithm is comparable to that
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Figure 7: Results of iterative refinement by Algorithm 2 (RefSyEvCL) with
ρ = 109 using double-double precision format for symmetric positive definite
matrices generated by randsvd with n = 100, mode = 3 and various condition
numbers.

for eig in binary64, especially for larger n. It turns out that the proposed
algorithms become useful for large-scale problems in practice if fast routines
of accurate matrix multiplication are available.

7 Conclusion

We proposed novel refinement algorithms for the eigenvalue decomposition
of real symmetric matrices, which can iteratively be applied. Quadratic con-
vergence of the basic algorithm (Algorithm 1) was proved for well-separated
eigenvalues as well as multiple ones in the same manner as in Newton’s
method. The complete version of the refinement algorithm (Algorithm 2)
can improve approximate eigenvectors corresponding to not only well-separated
eigenvalues but also clustered ones. As shown theoretically and numerically,
Algorithm 2 works well, provided that backward stable algorithms for the
eigenvalue decomposition are available in ordinary floating-point arithmetic.

The proposed algorithms benefit from the availability of high efficiency
matrix multiplication in higher-precision arithmetic in practice. Numerical
results showed excellent performance of the proposed algorithms in terms of
convergence rate and measured computing time. The accuracy of the results
could be improved up to the limit of computational precision in use.
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Table 1: Results for a pseudo-random real symmetric matrix, n = 500.

Proposed algorithm eig (binary64) ν = 1 ν = 2 ν = 3

maxi |λ̂i − λi|/|λi| 2.2× 10−14 3.8× 10−28 2.2× 10−55 1.9× 10−107

Elapsed Time (s) 0.09 2.23 4.42 12.69
(accumulated) 2.32 6.74 19.43

MP-approach mp.Digits(d) d = 34 d = 58 d = 109

maxi |λ̂i − λi|/|λi| 2.6× 10−32 1.2× 10−55 1.6× 10−106

Elapsed Time (s) 7.35 74.10 85.04

Table 2: Results for a pseudo-random real symmetric matrix, n = 1000.

Proposed algorithm eig (binary64) ν = 1 ν = 2 ν = 3

maxi |λ̂i − λi|/|λi| 1.5× 10−14 1.3× 10−27 5.9× 10−53 7.3× 10−102

Elapsed Time (s) 0.22 11.19 29.05 83.19
(accumulated) 11.41 40.46 123.65

MP-approach mp.Digits(d) d = 34 d = 56 d = 105

maxi |λ̂i − λi|/|λi| 1.3× 10−31 6.0× 10−53 2.0× 10−102

Elapsed Time (s) 50.18 538.82 646.33
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