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Abstract

This paper presents an explicit reconstruction formula for mag-
netic resonance electrical property tomography (MREPT). We derive
a Dbar problem from the time-harmonic Maxwell equations under the
assumptions that Hz = 0, ∂H+ ̸= 0, and ∂zH

+ = 0, where the z-axis
is parallel to the body axis, H+ ≡ 1

2 (Hx + iHy) is the measured mag-
netic field, and ∂ ≡ 1

2 (∂x−i∂y). Then, by using the generalized Cauchy
formula, the electrical conductivity and permittivity are explicitly ex-
pressed in terms of their boundary values and the measured magnetic
field. We also propose an iterative algorithm based on the explicit
reconstruction formula without the assumption that ∂zH

+ = 0. Nu-
merical simulations show that the proposed methods can reconstruct
the conductivity even with noisy data.

1 Introduction

Recently, magnetic resonance electrical property tomography (MREPT) has
attracted attention as an imaging modality that reconstructs the admit-
tivity from radio-frequency (RF) magnetic fields measured by a magnetic
resonance imaging (MRI) scanner. It can provide important diagnostic in-
formation, since the electrical conductivity and permittivity of cancerous
tissues are different from those of normal tissues [9, 12, 15].

To formulate a problem, let γ = σ + iωϵ be the admittivity to be re-
constructed, where σ and ϵ are the electrical conductivity and permittivity,
respectively, and ω is the Larmor frequency. We assume that the perme-
ability inside the body is homogeneous and the same as that in the free
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space, µ0. Let H and E be the magnetic field and the electric field inside
the body, respectively. Then, the governing equations are obtained from the
time-harmonic Maxwell equations as

∇×H = γE, (1)

∇×E = −iωµ0H, (2)

∇ ·H = 0. (3)

Taking the rotation of Eq. (1) and using Eqs. (1) through (3) gives

−∆H =
∇γ

γ
× (∇×H)− iωµ0γH, (4)

which relates γ to H. The observable quantity with an MRI scanner by
using the so-called B1 mapping technique is not all the components of H =
(Hx,Hy,Hz)

T but the positive rotating magnetic field H+ = 1
2(Hx + iHy),

where the z-axis is parallel to the body axis (see, e.g., [5, 11, 15] and the ref-
erences therein). The MREPT problem is to determine γ from the measured
H+.

For solving the MREPT inverse problem, a number of methods have
been proposed. Assuming the local homogeneity of γ, Haacke et al. [3]
neglected ∇γ in Eq. (4) to derive

∆H = iωµ0γH (5)

and obtained a direct reconstruction formula,

γ =
∆H+

iωµ0H+
. (6)

Katcher et al. [5] and Voigt et al. [13] proposed improving the stability by
taking the local average of both sides of Eq. (5) by integration. However,
the problem with these methods is that large errors occur where γ changes
spatially [8].

Conventional approaches to removing the assumption of locally homoge-
neous admittivity may be categorized into two groups. The first approach
is to obtain the spatial distribution of γ by solving a partial differential
equation (PDE) numerically. Song et al. [10] derived a semilinear elliptic
PDE which gives an implicit relation between inhomogeneous admittivity γ
and H+. Due to the nonlinearity of the PDE, they proposed an iterative
algorithm under the assumptions that Hz = 0 and ∂zγ = 0. Hafalir et al.
[4] introduced the inverse of admittivity,

λ ≡ 1

γ
,
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and transformed Eq. (4) under the same assumptions (Hz = 0 and ∂zγ = 0)
into a linear PDE for λ:

(∂xH
+ − i∂yH

+)∂xλ+ (i∂xH
+ + ∂yH

+)∂yλ+∆H+λ− iωµ0H
+ = 0. (7)

They solved Eq. (7) with an appropriate boundary condition by a finite
element method (FEM). Ammari et al. [1] derived a semi-elliptic PDE for γ
without the assumption ∂zγ = 0, and solved it with an optimization-based
algorithm. A key issue for iterative methods is to provide a good initial
estimate without which the local minimum solution can be obtained. For
the first approach to solving PDEs, another problem is that the Laplacian
of H+ is included in the coefficients of the PDEs which may lead to large
numerical errors when the data include noise.

The second approach is to derive an explicit, pointwise reconstruction
formula. Nachman [6] took the inner product of Eq. (4) and ∇ × H, and
thus obtained a direct reconstruction formula

γ =
∆H · (∇×H)

iωµ0H · (∇×H)
.

However, besides the need to measure all the components of H, which is
not the case in practical MR scanners, this equation breaks down when
H · (∇ × H) = 0. Palamodov [7] assumed that Hz = 0, ∂H+ ̸= 0, and
∂zH

+ = 0 and derived a PDE for λ:

∂ζ̄λ = −λh1 − h2, h1 = − ∆H+

2∂ζH+
, h2 =

iωµ0H
+

2∂ζH+
, (8)

where ∂ζ =
1
2(∂x − i∂y) and ∂ζ̄ =

1
2(∂x + i∂y), to which the general solution

was given by

λ = − exp(F )

(
1

πζ
∗ exp(−F )h2 + f

)
, F =

1

πζ
∗ h1. (9)

Here, ∗ represents the 2D convolution and f is a holomorphic function that
satisfies the Riemann-Hilbert type problem (Eq. (12) in [7]) written with
the boundary value of Reλ. Then, by showing the relationship

exp(−F )h2 =
iωµ0

4
∂ζ(H

+)2, (10)

and substituting Eq. (10) into Eq. (9), an expression of λ was derived
(Eq. (11) in [7]):

λ = − iωµ0

4

1

∂ζ(H+)2

(
1

πζ
∗ ∂ζ(H+)2 + f

)
. (11)
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However, Eq. (10) is incorrect in that the dimensions of the left and right
hand sides are different. In fact, they are L2MT−3I−2 and L−2MT−3, respec-
tively, where L,M,T and I are the dimensions of length, mass, time, and
electric current, respectively. Accordingly, Eq. (11) is incorrect.

In this paper, we derive an explicit reconstruction formula of the admit-
tivity from the measured H+ and a given boundary value of γ, assuming
that Hz = 0, ∂H+ ̸= 0, and ∂zH

+ = 0. First, we write Faraday’s law in
the form of a Dbar problem. Then, in a two-dimensional (2D) domain Ω
representing a slice of a body, we apply the generalized Cauchy formula to
express the z-component of the electric field Ez at an arbitrary position in
Ω in terms of H+ in Ω and the boundary value of γ on ∂Ω. Finally, by
using Ampere’s law, γ is reconstructed from the ratio of 4∂H+ to iEz. An
advantage of our method is that it gives an exact, explicit, pointwise re-
construction formula which does not require iterative computation nor the
Laplacian of H+. Furthermore, when we do not assume ∂zH

+ ̸= 0, an iter-
ative algorithm that includes the effect of the changes in physical quantities
with respect to the z-axis is derived in the basis of the explicit reconstruc-
tion formula. This method with low computational cost would provide an
efficient way to obtain a good initial estimate for the conventional iterative
methods.

This paper is organized as follows. In section 2.1, the governing equa-
tions are rewritten with the Dbar derivatives. After three assumptions and
their physical meaning are presented in section 2.2, an explicit reconstruc-
tion formula of γ is derived in section 2.3. In section 2.4, we propose an
iterative algorithm based on the explicit reconstruction method without the
assumption ∂zH

+ ̸= 0. Section 3 is devoted to numerical simulations of the
proposed algorithms. The paper is concluded in section 4.

2 Reconstruction formula based on the general-
ized Cauchy formula

2.1 Governing equations with the Dbar derivatives

First, we rewrite Maxwell’s equations by using the notation

∂ ≡ 1

2
(∂x − i∂y), ∂̄ ≡ 1

2
(∂x + i∂y), H+ ≡ 1

2
(Hx + iHy), E+ ≡ 1

2
(Ex + iEy).

Let us take the (x-component)+i (y-component) of Eq. (2). Then we have

(∂yEz − ∂zEy) + i(∂zEx − ∂xEz) = −iωµ0(Hx + iHy),

which is rewritten as

∂̄Ez − ∂zE
+ = ωµ0H

+. (12)
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Similarly, from the (x-component)+i (y-component) of Eq. (1), it holds that

∂̄Hz − ∂zH
+ = iγE+. (13)

Next, let us consider Eq. (3) + i (z-component of Eq. (2)). Then we have

(∂xHx + ∂yHy + ∂zHz) + i(∂xHy − ∂yHx) = iγEz,

which is rewritten as

4∂H+ + ∂zHz = iγEz. (14)

Eqs. (12), (13), and (14) are the governing equations rewritten with the
Dbar derivatives.

2.2 Assumptions

For Eqs. (12) through (14), we make the following assumptions.

• Assumption 1. Hz = 0

• Assumption 2. ∂H+ ̸= 0

• Assumption 3. ∂zH
+ = 0

As pointed out in [4], the |Hz| generated by a birdcage RF coil used in an
MRI scanner is very small and can be neglected in its central regions. This
is the basis of Assumption 1, and it is commonly assumed in the literatures
[1, 7, 8, 10].

Assumption 2 is also typical for MREPT ([1, 7]). If ∂H+ = 0, then from
Eq. (14) with Assumption 1, we have γEz = 0, and hence Ez = 0 since
γ ̸= 0. In this case, γ cannot be determined from Eq. (14). Assumption 2 is
necessary to avoid this situation. A Method for avoiding it and one for the
case where ∂H+ ≃ 0 are discussed in [4].

When Assumption 3 is assumed in addition to Assumption 1, from
Eq. (13), it holds that

E+ = 0, (15)

that is, the electric currents flow only in the z-direction. This is the meaning
of Assumption 3. It is assumed in Theorem 1 in [7]. We remark that in
Theorem 2 in [7], a method is proposed that does not require Assumption
3.

In section 2.3, under Assumptions 1 through 3, we set Ω to be a 2D
slice of a body and derive an explicit reconstruction formula of γ in terms
of H+ in Ω and γ on Γ ≡ ∂Ω. An iterative algorithm that does not require
Assumption 3 will be proposed in section 2.4.

5



2.3 Explicit reconstruction method

We now derive a reconstruction formula. From Eq. (14) with Assumption
1, we have

4∂H+ = iγEz. (16)

As mentioned in section 2.2, from Assumptions 1 and 2 and γ ̸= 0, it holds
that Ez ̸= 0, and hence

γ =
4∂H+

iEz
. (17)

To determine γ by using Eq. (17), we express Ez in terms of H+ and the
boundary value of Ez. For that purpose, let us substitute Eq. (15) into
Eq. (12), then we have

∂̄Ez = ωµ0H
+. (18)

This is the so-called Dbar problem. Generally, for a simply connected 2D
domain Ω bounded by a simple closed contour Γ = ∂Ω, if f is continuous on
Γ and is a solution to a Dbar problem ∂̄f = g, then the generalized Cauchy
formula holds [2]:

f(w, w̄) =
1

2πi

∫
Γ

f(ζ, ζ̄)

ζ − w
dζ − 1

π

∫ ∫
Ω

g(ζ, ζ̄)

ζ − w
dξdη, w ∈ Ω, (19)

where ζ = ξ + iη. Note that the notation f(w, w̄) is used for f at w ∈ Ω,
since it is not holomorphic when g ̸= 0. Hence, for the Dbar problem (18),
we obtain an expression for Ez at an arbitrary point w ∈ Ω in terms of its
boundary value and H+ in Ω as follows:

Ez(w, w̄) =
1

2πi

∫
Γ

Ez(ζ, ζ̄)

ζ − w
dζ − ωµ0

π

∫ ∫
Ω

H+(ζ, ζ̄)

ζ − w
dξdη, w ∈ Ω.

(20)

Here, from Eq. (16), Ez on Γ can be replaced with 4∂H+

iγ , so that we have

Ez(w, w̄) = − 1

π

∫
Γ

2
γ∂H

+

ζ − w
dζ − ωµ0

π

∫ ∫
Ω

H+(ζ, ζ̄)

ζ − w
dξdη, w ∈ Ω.

(21)

By substituting Eq. (21) into Eq. (17), we arrive at

γ(w, w̄) =
4πi∂H+(w, w̄)∫

Γ

2
γ(ζ,ζ̄)

∂H+(ζ, ζ̄)

ζ − w
dζ + ωµ0

∫ ∫
Ω

H+(ζ, ζ̄)

ζ − w
dξdη

, w ∈ Ω.

(22)
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Eq. (22) is our explicit reconstruction formula for an inhomogeneous γ, under
the assumptions Hz = 0, ∂H+ ̸= 0, and ∂zH

+ = 0; it does not include the
Laplacian of H+ or any arbitrary parameters and it enables us to compute
γ point by point from the measured H+ and the boundary value of γ.

As in [1, 4, 7], we assume that γ on Γ is given. We note that in practical
situations, the Dirichlet boundary condition could be given in the following
two ways. First, as in [1], we assume γ is a constant and that it is known
a priori near the body surface where Γ is set. Second, Ω is taken as a local
region of interest (ROI) inside which it is possible that a small cancer exists,
and γ on its boundary is set to be that of normal tissue.

2.4 A reconstruction algorithm without Assumption 3: ∂zH
+ =

0

Next, we consider an algorithm that does not require Assumption 3. We
assume that H+ is measured on several planes z = zn (n = 1, · · · , N). In
this case, from Eq. (13) with Assumption 1, it holds that

E+ =
i∂zH

+

γ
(̸= 0), (23)

and we should take ∂zE
+ into account in Eq. (12). Eq. (23) shows that,

once γ is obtained, E+ can be computed on several planes that have different
z-coordinates, from which ∂zE

+ can be also computed. We now propose the
following algorithm.

1) Ignore ∂zE
+ first, and obtain an initial estimate of γ by using the ex-

plicit reconstruction formula (22) for each plane z = zn (n = 1, · · · , N).

2) With the reconstructed γ, compute E+ by using Eq. (23).

3) Compute ∂zE
+ and substitute it into

∂̄Ez = ωµ0H
+ + ∂zE

+, (24)

which gives a renewed Dbar problem that includes the effect of ∂zE
+.

The corrected value of γ is then obtained by

γ(w, w̄) =
4πi∂H+(w, w̄)∫

Γ

2
γ∂H

+

ζ − w
dζ +

∫ ∫
Ω

ωµ0H
+(ζ, ζ̄) + ∂zE

+(ζ, ζ̄)

ζ − w
dξdη

.

(25)

Go back to 2), if necessary.
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3 Numerical verification

3.1 Explicit reconstruction formula (22)

In this section, we numerically verify the reconstruction formula (22). We
compare our method with one that uses Eq. (6) which, following [4], we call
“std-MREPT method”.

As shown in Fig. 1 (Model 1), we examined a model composed of three
cylinders (conductivity : 1 S/m, radii: 5 mm, 10 mm, 15 mm) embedded
in a cylinder (conductivity: 0.5 S/m, radius: 100 mm). The height and
the relative permittivity of each of the cylinders were 2000 mm (−1000 ≤
z ≤ 1000 mm) and 80, respectively. A plane wave with a frequency of
64 MHz where H and E were parallel to the y and z-axes, respectively,
was input from the negative to the positive x-axis direction. A forward
solution was computed by an FEM software, ANSYS HFSS (ANSYS Japan).
Ω was defined to be 136 mm by 136 mm square centered at the origin
in the plane z = 0. In Ω, 68 by 68 pixels were set; the resolution was
2 mm. Gaussian noises was added to both the real and the imaginary
parts of H+. We let d be the ratio of the standard deviation of the noise
to that of |H+| in Ω, and we examined the cases where d = 0 (noiseless)
and d = 0.01. To compute ∂H+ at the pixel (l,m), as in [4], we used
a second-order polynomial as a local approximation to H+. Specifically,
for the 3×3 pixels centered at (l,m), H+ was approximated by the second-
degree polynomialH+

lm ≃ c00+c10xlm+c01ylm+c20x
2
lm+2c11xlmylm+c02y

2
lm,

from which we obtained an approximation for ∂H+ as ∂H+
l,m ≃ 1

2((c10 +
2c20xlm + 2c11ylm)− i(c01 + 2c11xlm + 2c02ylm)).

(a) (b)

20mm
30mm

10mm

200mm

Figure 1: Model 1: three cylinders (conductivity: 1S/m) were embedded in
a cylinder (conductivity: 0.5S/m)
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Note that in the integral of H+ over Ω in Eq. (22), it holds that∫ ∫
Uϵ(w)

H+(ζ, ζ̄)

ζ − w
dξdη = 0, (26)

where Uϵ(w) is a circle centered at w with a radius of ϵ. Because of this,
we remove H+ at pixel including w and use the values at the other 682 − 1
pixels when numerically computing

∫ ∫
Ω

H+

ζ−wdξdη.
Fig. 2 (a) and (b) show the reconstructed conductivity when d = 0 by our

method and the std-MREPT method, respectively. Our method performed a
good reconstruction of the domains with higher conductivity, irrespective of
the diameter of the domain, while in the std-MREPT method large errors
were observed on the boundary, where the conductivity is discontinuous.
Fig. 2 (c) and (d) show the reconstructed conductivity when d = 0.01 by
our method and the std-MREPT method, respectively. The std-MREPT
method, which requires the computation of the Laplacian of H+, was unable
to reconstruct the distribution of γ due to noise; in contrast, in each of the
three domains, the conductivity estimated by our method was higher than
that of the background even with noisy data. Note that the range of the
electrical conductivity in Fig. (b) and (d) was restricted from -5 to 5 S/m
for visibility, although the maximum of the absolute values in Fig. (b) and
(d) were about 50 and 400, respectively.

3.2 Algorithm in section 2.4

To evaluate the effectiveness of the algorithm presented in section 2.4 when
∂zγ ̸= 0 and hence ∂zH

+ ̸= 0, we performed a simulation of the fol-
lowing, which we call Model 2: a short cylinder (conductivity: 0.5S/m;
radius: 10 mm) with the length of 20 mm was inserted coaxially in an-
other cylinder (conductivity: 0.25S/m; radius: 200 mm; length: 2000 mm)
such that −10 < z < 10 mm. In this case, γ changes discontinuously
along the z-axis at z = ±10 mm. We assumed that H+ was observed
at ten different layers, where z = 0, 2, · · · , 18, 20 mm. To compute ∂zE

+

at (l,m, n) in step 3) in the algorithm, we took 3 × 3 × 3 pixels around
(l,m, n) and approximated E+ by the second-degree polynomial E+

l,m,n =

d000 + d100xlmn + d010ylmn + d001zlmn + d200x
2
lmn + d020y

2
lmn + d002z

2
lmn +

2d110xlmnylmn + 2d011ylmnzlmn + 2d101zlmnxlmn from which we obtained
∂zE

+
l,m,n ≃ d001 + 2d002zlmn + 2d011ylmn + 2d101xlmn.
First, we examined the noiseless case (d = 0). Fig. 3 shows the true con-

ductivity at z = 8 mm and 12 mm, the conductivity estimated by the explicit
reconstruction method using Eq. (22), and the conductivity reconstructed
using a single application of the steps 2) and 3) of the algorithm presented
in section 2.4 for an initial estimate given by Eq. (22). We observe that
although the conductivity obtained by the explicit reconstruction method
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Figure 2: Numerical simulation: (a) estimated by the proposed method
without noise (d = 0), (b) estimated by the std-MREPT method without
noise (d = 0), (c) estimated by the proposed method (d = 0.01), (d) esti-
mated by the std-MREPT (d = 0.01).
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reflected the true values, these results were improved by the correction steps
2) and 3) of the algorithm in section 2.4.

Fig. 4 shows the results when d = 0.01. Even in this case, at z =
8 mm, including the corrections clarifies the domain where the conductivity
is different from the background.

The left and right panels of Fig. 5 show the conductivity along the z-axis
when d = 0 and d = 0.01, respectively. We observe in both cases that the
reconstructed values are improved by the algorithm in section 2.4, which
takes ∂zE

+ into account. This approach has a low computational cost and
could be used as an initial solution for an optimization algorithm such as
that presented in [1].

z=12mm

with correction

z=8mm

explicittrue
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d
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c
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d
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ity
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Figure 3: Reconstructed conductivity of a short cylinder at z = 8, 12 mm
when d = 0: (left column) true conductivity, (center column) the conduc-
tivity estimated by the explicit reconstruction method using Eq. (22), (right
column) the conductivity after applying steps 2) and 3) of the algorithm
presented in section 2.4.

4 Conclusion

In this paper, we derived an explicit reconstruction formula for MREPT.
Assuming that Hz = 0, ∂H+ ̸= 0, and ∂zH

+ = 0, an explicit, pointwise
reconstruction formula for the admittivity was derived by using the gener-
alized Cauchy formula for a Dbar problem. As an extension of this, we also
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Figure 4: Results when d = 0.01.
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Figure 5: Reconstructed conductivity along the z-axis before and after ap-
plying the correction given in the algorithm presented in section 2.4: (left)
d = 0 (noiseless), (right) d = 0.01.

12



proposed an algorithm that does not require the assumption that ∂zH
+ = 0.

Both algorithms were verified numerically.
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