
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Quadratically Convergent Algorithm Based
on Matrix Equations for Inverse Eigenvalue

Problems

Kensuke AISHIMA

METR 2016–16 October 2016

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



A Quadratically Convergent Algorithm Based on

Matrix Equations for Inverse Eigenvalue Problems

Kensuke AISHIMA
Department of Mathematical Informatics

Graduate School of Information Science and Technology
The University of Tokyo

Kensuke Aishima@mist.i.u-tokyo.ac.jp

October 2016

Abstract

We propose a quadratically convergent algorithm for inverse sym-
metric eigenvalue problems based on matrix equations. The basic idea
is seen in the latest study by Ogita and Aishima, while they derive
an efficient iterative refinement algorithm for symmetric eigenvalue
problems using special matrix equations. Since the proposed algo-
rithm for the inverse eigenvalue problems can be viewed as the Newton
method for the matrix equations, the quadratic convergence is natu-
rally proved. Our algorithm is interpreted as an improved version of
the Cayley transform method for the inverse eigenvalue problems. Al-
though the Cayley transform method is one of the effective methods,
the Cayley transform takes O(n3) arithmetic operations to ensure the
orthogonality of the iterative matrices. Our algorithm can refine the
orthogonality without the Cayley transform, which reduces the opera-
tions in each iteration. It is worth noting that our approach overcomes
the limitation of the Cayley transform method to the inverse standard
eigenvalue problems, resulting in an extension to inverse generalized
eigenvalue problems.

1 Introduction

Let A0, A1, . . . , An be real symmetric n×n matrices and λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
n

be real numbers. In addition, let c = [c1, . . . , cn]
T ∈ Rn, Λ∗ = diag(λ∗

1, . . . , λ
∗
n).

Define

A(c) := A0 + c1A1 + · · ·+ cnAn (1)

and denote its eigenvalues by λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c) in the ascending
order. A typical inverse eigenvalue problem is to find c∗ ∈ Rn such that
λi(c

∗) = λ∗
i for all 1 ≤ i ≤ n. Such inverse eigenvalue problems often arise
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in a variety of applications [5, 6, 7]. In this study, we focus on numerical
algorithms for solving the inverse eigenvalue problems above. As in [1, 2, 3,
13], we assume that the prescribed eigenvalues are all distinct, i.e.,

λ∗
1 < λ∗

2 < · · · < λ∗
n. (2)

Let X∗ ∈ Rn×n denote an orthogonal matrix whose columns are the eigen-
vectors of A(c∗). Throughout the paper, I is an identity matrix and O is
a zero matrix. For any matrix, let ∥ · ∥ denote the spectral norm and [·]ij
denote the (i, j) elements for 1 ≤ i, j ≤ n.

In this paper, we propose a new iterative algorithm to solve the inverse
eigenvalue problems. The basic idea to design the proposed algorithm is seen
in the latest study by Ogita–Aishima [15], while they propose an efficient
iterative refinement algorithm for symmetric eigenvalue problems. Similarly
to [15], our algorithm for the inverse eigenvalue problems is derived as fol-
lows. For computed matrices X(k) ∈ Rn×n (k = 0, 1, . . .) in the iterative
process, define E(k) ∈ Rn×n (k = 0, 1, . . .) such that X(k) = X∗(I + E(k)).
Then we compute Ẽ(k) approximating E(k) from the following relations:{

X∗TX∗ = I,
X∗TA(c∗)X∗ = Λ∗.

(3)

After computing Ẽ(k), we can update X(k+1) := X(k)(I − Ẽ(k)), where I −
Ẽ(k) is the first order approximation of (I + Ẽ(k))−1 using the Neumann
series. Under some conditions, we prove E(k) → O and X(k) → X∗ as
k → ∞, where the convergence rates are quadratic. Our algorithm can be
viewed as the Newton method for the matrix equations corresponding to (3).

In the research fields of the inverse eigenvalue problems, the strengths of
the proposed algorithm are summarized as follows:

• The proposed algorithm is primarily comprising matrix multiplica-
tions, though a typical Newton method [13, Methd I] requires to solve
eigenvalue problems in each iteration

• Although the proposed algorithm is similar to the Cayley transform
method [13, Methd III], the proposed algorithm does not require the
Cayley transform, which reduces the operations in each iteration.

• Our idea can be extended to inverse generalized eigenvalue problems
in [8, 9, 10], while the Cayley transform method cannot be applied to
such problems.

Moreover, we show a sufficient condition on the convergence of the proposed
algorithm, and prove its quadratic convergence.

This paper is organized as follows. Section 2 is devoted to descriptions of
the previous work relevant to this study, and to clarifications of the strengths
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of the proposed algorithm. In Section 3, we derive a new algorithm for the
inverse eigenvalue problems. In Section 4, we provide a detailed convergence
analysis of our algorithm. Moreover, we extend the proposed algorithm
and its convergence analysis to inverse generalized eigenvalue problems in
Section 5. In Section 6, we present some numerical results to illustrate the
convergence theory and to compare the proposed algorithm with the existing
algorithms.

2 Previous work

In this section, we explain some existing algorithms relevant to this study.

2.1 The Newton method and the Cayley transform method

There are many algorithms for solving the inverse eigenvalue problems.
Among them, almost all the quadratically convergent methods are based
on the Newton-like methods in [13] by Friedland, Nocedal, and Overton.

First, let us see a typical method, namely the standard Newton method
as follows. For any c ∈ Rn, define f : Rn → Rn by

f(c) = [λ1(c)− λ∗
1, λ2(c)− λ∗

2, . . . , λn(c)− λ∗
n]

T, (4)

where λi(c
∗) (1 ≤ i ≤ n) are the eigenvalues of A(c) in (1) and λ∗

i (1 ≤ i ≤ n)
are the prescribed eigenvalues. Recall that we assume that all the prescribed
eigenvalues are distinct. Then all the eigenvalues of A(c) are also distinct in
some neighborhood of c∗. Hence, f is analytic in such a neighborhood and
the Jacobi matrix is given by

[J(c)]ij :=
∂[f(c)]i

∂cj
= xi(c)

TAjxi(c), (5)

where xi(c) are the normalized eigenvectors of A(c). In addition, it is easy
to see that

J(c)c = λi(c)− xi(c)
TA0xi(c). (6)

Thus, we obtain the Newton method for f(c) = 0 as follows.
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Algorithm 1 The Newton method [13, Method I]

Require: λ1 < · · · < λn, A0, A1, . . . , An ∈ Rn×n, c(0) ∈ Rn.

1: For A(c(0)), find the eigenpairs (λ
(0)
i ,x

(0)
i ) for all 1 ≤ i ≤ n

2: Let Λ(0) := diag(λ
(0)
1 , . . . , λ

(0)
n ), X(0) := [x

(0)
1 , . . . ,x

(0)
n ]

3: for k := 0, 1, . . . do

4: [J (k)]ij = [x
(k)
i

TAjx
(k)
i ]ij

5: [d(k)]i = λ∗
i − x

(k)
i

TA0x
(k)
i

6: c(k+1) = J (k)−1
d(k)

7: For A(c(k+1)), find the eigenpairs (λ
(k+1)
i ,x

(k+1)
i ) for all 1 ≤ i ≤ n

8: Let Λ(k+1) := diag(λ
(k+1)
1 , . . . , λ

(k+1)
n ), X(k+1) := [x

(k+1)
1 , . . . ,x

(k+1)
n ]

9: end for

This is straightforward for solving inverse problems. In fact, Algorithm 1
can be extended to inverse generalized eigenvalue problems and inverse
quadratic eigenvalue problems [10, 11]. However, we require numerical so-
lutions of the eigenvalue problems for A(c(k+1)) in each iteration. There
are some quasi-Newton methods without exactly solving such eigenvalue
problems. See [13, Method II] and [2, 3, 16] for the details.

In [13, Method III], a different approach is proposed with the use of the
matrix exponential and the Cayley transform. Note that the solution of the
inverse eigenvalue problem can be described as

X∗TA(c∗)X∗ = Λ∗, (7)

where X∗ is an orthogonal matrix. Let c(k) and X(k) denote the current
approximations of c∗ and X∗ respectively, where X(k) is assumed to be an
orthogonal matrix. Let us write X∗ = X(k)eY

(k)
, where Y (k) is a skew-

symmetric matrix. Then, using (7) and the Taylor series of the exponential
function, we have

X(k)TA(c∗)X(k) = eY
(k)
Λ∗e−Y (k)

= Λ∗ + Y (k)Λ∗ − Λ∗Y (k) +O(∥Y (k)∥2).

Similarly to the standard Newton method, omitting the second order term
in Y (k), we obtain the following equation

X(k)TA(c(k+1))X(k) = Λ∗ + Ỹ (k)Λ∗ − Λ∗Ỹ (k), (8)

where let Ỹ (k) be the skew-symmetric matrix in the same manner as Y (k).
We find c(k+1) by the diagonal elements of the equation above. More specif-
ically, letting

[J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n)

[d(k)]i = λ∗
i − x

(k)
i

TA0x
(k)
i (1 ≤ i ≤ n)
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in a similar way to Algorithm 1, we see

c(k+1) = (J (k))−1d(k).

Once c(k+1) is obtained, from the off-diagonal elements of (8), we have

[Ỹ (k)]ij = −[Ỹ (k)]ji = − [S(k+1)]ij
λ∗
j − λ∗

i

(1 ≤ i, j ≤ n, i ̸= j). (9)

Hence, the skew-symmetric matrix Ỹ (k) can be obtained. Now construct an
orthogonal matrix Z(k) using the Cayley transform

Z(k) = (I + Ỹ (k)/2)(I − Ỹ (k)/2)−1(≈ eỸ
(k)
)

and compute X(k+1) = X(k)Z(k). This algorithm is the so-called Cayley
transform method below.

Algorithm 2 The Cayley transform method [13, Method III].

Require: λ1 < · · · < λn, A0, . . . , An ∈ Rn×n; an orthogonal matrix X(0) ∈
Rn×n

1: for k = 0, 1, . . . do

2: [J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n)

3: [d(k)]i = λ∗
i − x

(k)
i

TA0x
(k)
i (1 ≤ i ≤ n)

4: c(k+1) = (J (k))−1d(k)

5: S(k+1) = X(k)TA(c(k+1))X(k)

6: [Ỹ (k)]ij = −[Ỹ (k)]ji = −[S(k+1)]ij/(λ
∗
j − λ∗

i ) (1 ≤ i, j ≤ n, i ̸= j)

7: X(k+1) = X(k)(I − Ỹ (k)/2)(I + Ỹ (k)/2)−1

8: end for

This algorithm appears to be important in the research fields of inverse
eigenvalue problems. From the mathematical view points, a geometric in-
terpretation is introduced in [4, 5, 7]. To reduce the computational cost,
[1, 17] introduce some inexact solvers in line 4.

One may notice that, in general, constructing J (k) requires O(n4) oper-
ations. However, from the practical view points, there are some examples
such as the number of the nonzero elements of Aj is O(n) for each j. The
Toeplitz inverse problem is a typical example, which is used in our numeri-
cal tests in Section 6. See Examples 3 and 4 for details. In such situations,
Algorithms 1 and 2 can be computed in O(n3) operations.

2.2 Strength of the proposed algorithm

Here we note that our new algorithm is based on the matrix equations in
(3). Clearly, the second equation in (3) corresponds to (7) in Algorithm 2,
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where X(0) is assumed to be an orthogonal matrix. In contrast, the first
equation in (3) plays a role in the improvement of the orthogonality. Hence,
X(k) for k = 0, 1, . . . are not necessarily be orthogonal. Thus, the Cayley
transform (I − Ỹ (k)/2)(I + Ỹ (k)/2)−1 in the last step in Algorithm 2 is not
required in our algorithm. In this sense, our approach is straightforward and
convincing. Moreover, on the basis of this feature, this proposed algorithm
is extended to inverse generalized eigenvalue problems in Section 5.

In addition, note that this study is relevant to the research of the iterative
refinement algorithms for the symmetric eigenvalue problems as follows.

In particular, the Davies–Modi algorithm [12] for symmetric eigenvalue
problems is based on the same idea as the Cayley transform method (Algo-
rithm 2). The Davies–Modi algorithm is also based on the matrix equation

XTAX = Λ,

where A is a symmetric matrix, X is a normalized eigenvector matrix, and Λ
is a diagonal matrix whose diagonal elements are the eigenvalues of A. The
idea is also seen in Jahn’s method [14, 18]. As in Algorithm 2, the Davies–
Modi algorithm requires an orthogonal matrix X̂ approximating X. In each
iteration, the Cayley transform is indispensable to ensure the orthogonality
of the iterative matrices.

Recently, Ogita–Aishima [15] have proposed a new iterative refinement
algorithm based on the following matrix equations:{

XTX = I (orthogonality)
XTAX = Λ (diagonality)

This corresponds to the proposed algorithm for inverse eigenvalue problems.
In other words, this study is interpreted as a unified view on quadratically
convergent algorithms for eigenvalue problems and inverse eigenvalue prob-
lems based on the matrix equations. To the best of our knowledge, such a
unified development of algorithms is provided for the first time.

Finally, we explain the present status of numerical algorithms for mul-
tiple eigenvalues in inverse eigenvalue problems. There exists a numerical
algorithm using smoothed LU factorization for solving inverse eigenvalue
problems, even if there are some multiple eigenvalues [9]. However, this
requires n times LU factorization in each iteration, resulting in O(n4) op-
erations, even if Ai for 1 ≤ i ≤ n are sparse matrices such as the Toeplitz
inverse eigenvalue problems. The smoothed QR factorization method [8]
has the same property. Actually, Friedland, Nocedal, and Overton [13] and
Dai–Lancaster [10] proposed some modified algorithms for multiple eigen-
values under an assumption on the number of multiple eigenvalues. Re-
cently, detailed convergence analysis based on a relative generalized Jaco-
bian matrix has been shown in [17]. In addition, for the standard eigenvalue
problems, Ogita–Aishima algorithm [15] works well for multiple eigenvalues.
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Furthermore, [15] shows a reasonable idea to overcome the difficulty for
ill-conditioned problems, where the matrix has nearly multiple eigenvalues.
Although it appears to be possible to introduce such ideas above in our al-
gorithm for inverse eigenvalue problems, in general some nontrivial analysis
is required for handling multiple eigenvalues. In this paper, we assume that
all the prescribed eigenvalues are distinct in the same manner as [1, 2, 3].
Handling multiple eigenvalues is regarded as a future work.

3 Proposed algorithm

In this section, we derive a new algorithm based on the relations in (3). For
a given X(k) ∈ Rn×n, define E(k) ∈ Rn×n such that

X(k) = X∗(I + E(k)), (10)

where X(k) is assumed to be sufficiently close to X∗.
First, using X∗TX∗ = I in (3), we have

I + E(k) + E(k)T +∆
(k)
1 = X(k)TX(k), ∆

(k)
1 := E(k)TE(k). (11)

Since we assume ∥E(k)∥ is sufficiently small, omitting the quadratic term

∥∆(k)
1 ∥ ≤ ∥E(k)∥2, we obtain the following matrix equation for Ẽ(k):

Ẽ(k) + Ẽ(k)T = I −X(k)TX(k). (12)

Next, noting X∗TA(c∗)X∗ = Λ∗ in (3), we have

Λ∗ + Λ∗E(k) + E(k)TΛ∗ +∆
(k)
2 = X(k)TA(c∗)X(k), ∆

(k)
2 := E(k)TΛ∗E(k).

(13)

As in (12), omitting ∆
(k)
2 , we have the following equation for Ẽ(k) and c(k+1):

Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗ = X(k)TA(c(k+1))X(k). (14)

Combining (12) and (14), we obtain the following equations:{
I + Ẽ(k) + Ẽ(k)T = X(k)TX(k),

Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗ = X(k)TA(c(k+1))X(k),
(15)

where the elements of Ẽ(k) and c(k+1) are unknown variables.
Since we see n2 + n unknown variables in (15), at first glance O(n6) op-

erations appear to be required for solving the linear system above. However,
Ẽ(k) and c(k+1) can be obtained in at most O(n4) operations indeed. As in
Section 2, if the number of the nonzero elements of Ai for each i is O(n)
such as the Toeplitz inverse problem, Ẽ(k) and c(k+1) can be obtained in
O(n3) operations as shown below.
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First, noting the diagonal parts of Ẽ in the first equation, we see

[Ẽ(k)]ii =
x
(k)
i

Tx
(k)
i − 1

2
(1 ≤ i ≤ n). (16)

Next, to compute c(k+1), note that the left hand-side of the second equa-
tion in (15) satisfies

[Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗]ii = λ∗
ix

(k)
i

Tx
(k)
i (1 ≤ i ≤ n) (17)

for the diagonal parts. Here, letting

[J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n), (18)

we have

[X(k)TA(c(k+1))X(k)]ii = [J (k)c(k+1)]i + x
(k)
i

TA0x
(k)
i (1 ≤ i ≤ n). (19)

Therefore, letting

[d(k)]i = λ∗
ix

(k)
i

Tx
(k)
i − x

(k)
i

TA0x
(k)
i (1 ≤ i ≤ n), (20)

we obtain
c(k+1) = (J (k))−1d(k). (21)

Finally, we compute the off-diagonal parts of Ẽ(k) as follows. Using (21),
in each (i, j) element of (15) we see the following 2× 2 linear system{

[Ẽ(k)]ij + [Ẽ(k)]ji = x
(k)
i

Tx
(k)
j

λ∗
i [Ẽ

(k)]ij + λ∗
j [Ẽ

(k)]ji = x
(k)
i

TA(c(k+1))x
(k)
j

(1 ≤ i, j ≤ n, i ̸= j).

Therefore, we obtain

[Ẽ(k)]ij =
λ∗
jx

(k)
i

Tx
(k)
j − x

(k)
i

TA(c(k+1))x
(k)
j

λ∗
j − λ∗

i

(1 ≤ i, j ≤ n, i ̸= j), (22)

where we now assume all the prescribed eigenvalues are distinct. As a result,
we can compute the next step

X(k+1) = X(k)(I − Ẽ(k)), (23)

where I − Ẽ(k) is the first order approximation of (I + Ẽ(k))−1 using the
Neumann series. In Algorithm 3, we present the proposed algorithm.
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Algorithm 3 The proposed algorithm.

Require: λ1 < · · · < λn, A0, . . . , An ∈ Rn×n; X(0) ∈ Rn×n

1: for k = 0, 1, . . . do
2: R(k) = X(k)TX(k)

3: [Ẽ(k)]ii = ([R(k)]ii − 1)/2 (1 ≤ i ≤ n)

4: [J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n)

5: [d(k)]i = λ∗
i [R

(k)]ii − x
(k)
i

TA0x
(k)
i (1 ≤ i ≤ n)

6: c(k+1) = (J (k))−1d(k)

7: S(k+1) = X(k)TA(c(k+1))X(k)

8: [Ẽ(k)]ij = (λ∗
j [R

(k)]ij − [S(k+1)]ij)/(λ
∗
j − λ∗

i ) (1 ≤ i, j ≤ n, i ̸= j)

9: X(k+1) = X(k)(I − Ẽ(k))
10: end for

Compared with Algorithm 2 in terms of the arithmetic operations, the
Cayley transform (I − Ỹ (k)/2)(I + Ỹ (k)/2)−1 is replaced with X(k)TX(k)

corresponding to the refinement of the orthogonality of X(k) in our algo-
rithm. As a result, our approach reduces the arithmetic operations in each
iteration.

4 Convergence analysis

In this section, we prove quadratic convergence of the proposed algorithm
on the assumption that, for some k, X(k) is sufficiently close to X∗.

Recall that the error of the approximate solution is expressed as ∥X(k)−
X∗∥ = ∥E(k)∥ in view of X(k) = X∗(I + E(k)). The next approximate
solution is

X(k+1) := X(k)(I−Ẽ(k)) = X∗(I+E(k))(I−Ẽ(k)) = X∗(I+E(k)−Ẽ(k)−E(k)Ẽ(k)).

The purpose is to prove

∥X(k+1) −X∗∥ = O(∥X(k) −X∗∥2),

which corresponds to

∥Ẽ(k) − E(k)∥ = O(∥E(k)∥2),

as k → ∞.
From (11), (13), and (15), we have{

(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T) + ∆
(k)
1 = O

Λ∗(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T)Λ∗ +∆
(k)
2 = X(k)TA

(k)
∆ X(k)

(24)

A
(k)
∆ := A(c∗)−A(c(k+1)), ∥∆(k)

1 ∥ ≤ ∥E(k)∥2, ∥∆(k)
2 ∥ ≤ ∥Λ∗∥∥E(k)∥2
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For the convergence analysis, let

[J∗]ij := x∗
i
TAjx

∗
i , (25)

corresponding to the definition of J (k) in (18). We see the next lemma for
J∗.

Lemma 1. We define J∗ as [J∗]ij = x∗
i
TAjx

∗
i . Suppose that J∗ is nonsin-

gular. Then, we have

∥J∗−1∥
√
n

√√√√ n∑
ℓ=1

∥Aℓ∥2 ≥ 1.

Proof. It is easy to see that

∥J∗−1∥−1 ≤ ∥J∗∥ ≤

√√√√ n∑
i=1

n∑
j=1

|x∗
i
TAjx∗

i |2 ≤
√
n

√√√√ n∑
ℓ=1

∥Aℓ∥2.

This completes the proof.

Note that, if J∗ is nonsingular, X∗ is locally unique due to (11) and (13)
where the left hand-sides are simple quadratic functions of E(k). The next
lemma is essential to prove the quadratic convergence.

Lemma 2. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 <

· · · < λ∗
n be prescribed eigenvalues. Suppose that there exists some X∗ such

that J∗ in (25) is nonsingular, and Algorithm 3 is applied to X(0) ∈ Rn×n.
Moreover, for some k, suppose that

∥E(k)∥ ≤
mini ̸=j |λ∗

i − λ∗
j |

6n∥Λ∗∥(1 + α)
, (26)

where X(k) = X∗(I + E(k)) and

α := ∥J∗−1∥
√
n

√√√√ n∑
ℓ=1

∥Aℓ∥2 ≥ 1. (27)

Then, we obtain

∥Ẽ(k) − E(k)∥ ≤ 2n∥Λ∗∥(1 + α)

C
(k)
α mini̸=j |λ∗

i − λ∗
j |
∥E(k)∥2, (28)

∥Ẽ(k) − E(k)∥ ≤ 24

47
∥E(k)∥, (29)

where

C(k)
α = 1− α(2 + ∥E(k)∥)∥E(k)∥. (30)

10



Proof. First, we estimate the diagonal elements of Ẽ(k) − E(k). We see

|[Ẽ(k)]ii − [E(k)]ii| =
|[∆(k)

1 ]ii|
2

≤ ∥E(k)∥2

2
(i = 1, . . . , n) (31)

from the first equation in (24).
Next, we discuss c(k+1) using the second equation in (24). In the left-

hand side, we have

|[Λ∗(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T)Λ∗ +∆
(k)
2 ]ii| ≤ ∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥

from (31). It then follows that√√√√ n∑
i=1

|[Λ∗(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T)Λ∗ +∆
(k)
2 ]ii|2

≤
√
n(∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥).

Therefore, from the diagonal elements of the second equation in (24), we
obtain

∥c(k+1) − c∗∥ ≤ ∥J (k)−1∥
√
n(∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥)

≤ 2∥J (k)−1∥
√
n∥Λ∗∥∥E(k)∥2. (32)

Concerning ∥J (k)−1∥, noting x
(k)
i = x∗

i +
∑n

ℓ=1[E
(k)]ℓix

∗
ℓ from the definition

in (10), we see

|[J∗]ij − [J (k)]ij | = |x∗
i
TAjx

∗
i − x

(k)
i

TAjx
(k)
i |

= |2x∗
i
TAj

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ +

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ
TAj

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ |

≤ (2 + ∥E(k)∥)∥E(k)∥∥Aj∥

from ∥
∑n

ℓ=1[E
(k)]ℓix

∗
ℓ∥ ≤ ∥E(k)∥. Using the Weyl’s inequality for singular

values, we have

∥J (k)−1∥−1 ≥ ∥J∗−1∥−1 −
√
n(2 + ∥E(k)∥)∥E(k)∥

√√√√ n∑
ℓ=1

∥Aℓ∥2.

Hence, we obtain

∥J (k)−1∥ ≤ ∥J∗−1∥
(
1− α(2 + ∥E(k)∥)∥E(k)∥

)−1
= ∥J∗−1∥C(k)

α

−1
(33)

from (27) and (30). We prove C
(k)
α in the right-hand side is positive as

follows. Since we assume (26), we have

∥E(k)∥ ≤ 1

n

1

3(1 + α)
≤ min(1/12, 1/6α) (34)

11



for n ≥ 2 and α ≥ 1. Hence, we see

C(k)
α = 1− α(2 + ∥E(k)∥)∥E(k)∥ ≥ 1− 1/3− 1/72 =

47

72
> 0. (35)

Using the inequalities (32) and (33), we estimate the off-diagonal ele-
ments of Ẽ(k) − E(k). Similarly to (22), from (24), we have

|[Ẽ(k)]ij − [E(k)]ij |

≤
|λ∗

j ||[∆
(k)
1 ]ij |+ |[∆(k)

2 ]ij |+ |
∑n

ℓ=1(c
(k+1)
ℓ − c∗ℓ )x

(k)
i

TAℓx
(k)
j |

|λ∗
i − λ∗

j |
. (36)

Noting that

|
n∑

ℓ=1

(c
(k+1)
ℓ − c∗ℓ)x

(k)
i

TAℓx
(k)
j | ≤

n∑
ℓ=1

|c(k+1)
ℓ − c∗ℓ |∥Aℓ∥(1 + ∥E(k)∥)2

≤ (1 + ∥E(k)∥)2∥c(k+1) − c∗∥

√√√√ n∑
ℓ=1

∥Aℓ∥2,

we have

|[Ẽ(k)]ij − [E(k)]ij |

≤
2∥Λ∗∥∥E(k)∥2 + (1 + ∥E(k)∥)2∥c(k+1) − c∗∥

√∑n
ℓ=1 ∥Aℓ∥2

|λ∗
i − λ∗

j |

≤
2∥Λ∗∥∥E(k)∥2(1 +

√
n∥J (k)−1∥(1 + ∥E(k)∥)2

√∑n
ℓ=1 ∥Aℓ∥2)

|λ∗
i − λ∗

j |

≤ 2∥Λ∗∥
mini ̸=j |λ∗

i − λ∗
j |

(
1 +

α(1 + ∥E(k)∥)2

1− α(2 + ∥E(k)∥)∥E(k)∥

)
∥E(k)∥2

≤ 2∥Λ∗∥(1 + α)

C
(k)
α mini ̸=j |λ∗

i − λ∗
j |
∥E(k)∥2,

where the second inequality is due to (32), the third inequality is due to

(33), and the last inequality is due to the definition of C
(k)
α in (30). Using

(31) and ∥Ẽ(k) − E(k)∥ ≤
∑

i,j

√
[Ẽ(k)]2ij − [E(k)]2ij , we have (28).

Regarding (29), from (35), we have

C(k)
α

−1
= (1− α(2 + ∥E(k)∥)∥E(k)∥)−1 ≤ 72

47
.

Therefore, from (26) and (28), we obtain (29).

On the basis of Lemma 2, we obtain a main theorem that states the
quadratic convergence of Algorithm 3.
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Theorem 1. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 <

· · · < λ∗
n be prescribed eigenvalues. Suppose that there exists some X∗ such

that J∗ in (25) is nonsingular, and Algorithm 3 is applied to X(0) ∈ Rn×n.
Moreover, for some k, suppose that (26). Then, we obtain

∥E(k+1)∥ ≤ 359

564
∥E(k)∥, (37)

lim sup
ℓ→∞

∥E(ℓ+1)∥
∥E(ℓ)∥2

≤ 2n∥Λ∗∥(1 + α)

mini ̸=j |λ∗
i − λ∗

j |
+ 1. (38)

Proof. Using

X(k+1) = X(I + E(k+1)) = X(k)(I − Ẽ(k)) = X(I + E(k))(I − Ẽ(k)),

we have

E(k+1) = (E(k) − Ẽ(k))− E(k)Ẽ(k) = (E(k) − Ẽ(k))− E(k)(Ẽ(k) − E(k) + E(k)).

It then follows that

∥E(k+1)∥ ≤ ∥E(k) − Ẽ(k)∥+ ∥E(k)∥∥Ẽ(k) − E(k)∥+ ∥E(k)∥2

≤ 24

47
∥E(k)∥+ 24

47
· 1

12
∥E(k)∥+ 1

12
∥E(k)∥

=
359

564
∥E(k)∥

due to (29) and (34). The first inequality above and (28) indicate (38). This
completes the proof.

5 Toward inverse generalized eigenvalue problems

In this section, we extend Algorithm 3 and its convergence analysis to inverse
generalized eigenvalue problems in [8, 9, 10].

5.1 Problem setting

Let A0, A1, . . . , An, B0, B1, . . . , Bn ∈ Rn×n be symmetric matrices. In addi-
tion, let

A(c) = A0 + c1A1 + · · ·+ cnAn, (39)

B(c) = B0 + c1B1 + · · ·+ cnBn. (40)

The purpose is to obtain c∗ such that A(c∗)x∗
i = λ∗

iB(c∗)x∗
i for the pre-

scribed eigenvalues λ1 < · · · < λn. Now we assume c∗ is locally unique
and B(c∗) is positive definite. In addition, an approximate matrix X(0) of
X∗ := [x∗

1, . . . ,x
∗
n] is given, where X∗ is normalized as X∗TB(c∗)X∗ = I.

13



For this problem, Newton method is constructed in [10], which is an
extension of Algorithm 1.

Algorithm 4 The Newton method [10]

Require: λ1 < · · · < λn, A0, . . . , An, B0, . . . , Bn ∈ Rn×n, c(0) ∈ Rn.

1: Solve the generalized eigenvalue problem A(c(0))x
(0)
i = λ

(0)
i B(c(0))x

(0)
i ,

i.e., find the eigenpairs (λ
(0)
i ,x

(0)
i ) for all 1 ≤ i ≤ n

2: Let Λ(0) := diag(λ
(0)
1 , . . . , λ

(0)
n ), X(0) := [x

(0)
1 , . . . ,x

(0)
n ]

3: for k := 0, 1, . . . do

4: [J (k)]ij = [x
(k)
i

T(Aj − λ
(k)
i Bj)x

(k)
i ]ij

5: [d(k)]i = λ∗
i − λ

(k)
i − [x

(k)
i

T(A0 − λ
(k)
i B0)x

(k)
i ]i

6: c(k+1) = J (k)−1
d(k)

7: Solve A(c(k+1))x
(k+1)
i = λ

(k+1)
i B(c(k+1))x

(k+1)
i for all 1 ≤ i ≤ n

8: Let Λ(k+1) := diag(λ
(k+1)
1 , . . . , λ

(k+1)
n ), X(k+1) := [x

(k+1)
1 , . . . ,x

(k+1)
n ]

9: end for

Remark 1. The Cayley transform method (Algorithm 2) cannot be extended
to the inverse generalized eigenvalue problems unless Bi = O for all 1 ≤ i ≤
n. If Bi = O for all 1 ≤ i ≤ n and X(0) satisfies X(0)TB0X

(0) = I,
Algorithm 2 can be applied to the inverse generalized eigenvalue problems.

5.2 Proposed algorithm

Similarly to Section 3, we focus on the matrix equation{
XTB(c)X = I
XTA(c)X = Λ∗

Letting

X(k) = X∗(I + E(k)), (41)

we have the following relations{
I + E(k) + E(k)T +∆

(k)
1 = X(k)TB(c∗)X(k),

Λ∗ + Λ∗E(k) + E(k)TΛ∗ +∆
(k)
2 = X(k)TA(c∗)X(k),

(42)

∥∆(k)
1 ∥ ≤ ∥E(k)∥2, ∥∆(k)

2 ∥ ≤ ∥Λ∗∥∥E(k)∥2.

Omitting the quadratic terms, we obtain the key matrix equation{
I + Ẽ(k) + Ẽ(k)T = X(k)TB(c(k+1))X(k)

Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗ = X(k)TA(c(k+1))X(k) (43)

to derive a new algorithm.

14



Because of the unknown matrix X(k)TB(c(k+1))X(k) in the right-hand
side, the diagonal elements [Ẽ(k)]ii cannot directly obtained different from (16).
However, we can obtain c(k+1) as follows. From the diagonal elements of
(43), we have {

1 + 2[Ẽ(k)]ii = xi
(k)TB(c(k+1))xi

(k)

λ∗
i + 2λ∗

i [Ẽ
(k)]ii = xi

(k)TA(c(k+1))xi
(k)

which imply

λ∗
i + 2λ∗

i [Ẽ
(k)]ii − λ∗

j (1 + 2[Ẽ(k)]ii)

= xi
(k)T(A0 − λ∗

iB0)xi
(k) +

n∑
j=1

xi
(k)T(Aj − λ∗

iBj)xi
(k)c

(k+1)
i

= 0.

Hence, for i, j = 1, . . . , n, letting

[J (k)]ij = [x
(k)
i

T(Aj − λ∗
iBj)x

(k)
i ]ij , (44)

[d(k)]i = −[x
(k)
i

T(A0 − λ∗
iB0)x

(k)
i ]i, (45)

we obtain

c(k+1) = J (k)−1
d(k). (46)

Therefore, we obtain Ẽ(k) in the same manner as Section 3. In Algo-
rithm 5, we present the proposed algorithm.

Algorithm 5 The Proposed algorithm

Require: λ1 < · · · < λn, A0, . . . , An, B0, . . . , Bn ∈ Rn×n, X(0) ∈ Rn×n.
1: for k := 0, 1, . . . do

2: [J (k)]ij = [x
(k)
i

T(Aj − λ∗
iBj)x

(k)
i ]ij

3: [d(k)]i = −[x
(k)
i

T(A0 − λ∗
iB0)x

(k)
i ]i

4: c(k+1) = J (k)−1
d(k)

5: R(k) = X(k)TB(c(k+1))X(k)

6: [Ẽ(k)]ii = ([R(k)]ii − 1)/2 (1 ≤ i ≤ n)
7: S(k+1) = X(k)TA(c(k+1))X(k)

8: [Ẽ(k)]ij = (λ∗
j [R

(k)]ij − [S(k+1)]ij)/(λ
∗
j − λ∗

i ) (1 ≤ i, j ≤ n, i ̸= j)

9: X(k+1) = X(k)(I − Ẽ(k))
10: end for
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5.3 Convergence analysis

As in Section 4, we use (42) and (43). In other words, we focus on{
(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T) + ∆

(k)
1 = X(k)TB

(k)
∆ X(k)

Λ∗(E(k) − Ẽ(k)) + (E(k)T − Ẽ(k)T)Λ∗ +∆
(k)
2 = X(k)TA

(k)
∆ X(k)

(47)

B
(k)
∆ := B(c∗)−B(c(k+1)), A

(k)
∆ := A(c∗)−A(c(k+1))

Note that

∥∆(k)
1 ∥ ≤ ∥E(k)∥2, ∥∆(k)

2 ∥ ≤ ∥Λ∗∥∥E(k)∥2. (48)

Similarly to (25), let

[J∗]ij := x∗
i
T(Aj − λ∗

iBj)x
∗
i , (49)

corresponding to the definition of J (k). Then, we can obtain the following
convergence theorem.

Theorem 2. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 <

· · · < λ∗
n be prescribed eigenvalues. Suppose that there exists some X∗ such

that J∗ in (49) is nonsingular, and Algorithm 3 is applied to X(0) ∈ Rn×n.
Moreover, for some k, suppose that

∥E(k)∥ ≤
mini ̸=j |λi − λj |
6n∥Λ∗∥(1 + α)

, (50)

where X(k) = X∗(I + E(k)) and

α := ∥J∗−1∥β
√
n

√√√√ max
1≤m≤n

n∑
ℓ=1

∥Aℓ − λ∗
mBℓ∥2 ≥ 1, β := ∥B(c∗)−1∥. (51)

Then, we obtain

∥E(k+1)∥ ≤ 359

564
∥E(k)∥, (52)

lim sup
k→∞

∥E(k+1)∥
∥E(k)∥2

≤ 2n∥Λ∗∥(1 + α)

mini̸=j |λ∗
i − λ∗

j |
+ 1. (53)

Proof. First, we estimate ∥c(k+1) − c∗∥. Similarly to (32), we have

∥c(k+1) − c∗∥ ≤ ∥J (k)−1∥
√
n(∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥)

≤ 2∥J (k)−1∥
√
n∥Λ∗∥∥E(k)∥2. (54)
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Concerning ∥J (k)−1∥, noting x
(k)
i = x∗

i +
∑n

ℓ=1[E
(k)]ℓix

∗
ℓ from the definition,

we see

|[J∗]ij − [J (k)]ij |

= |x∗
i
T(Aj − λ∗

iBj)x
∗
i − x

(k)
i

T(Aj − λ∗
iBj)x

(k)
i |

= |2x∗
i
T(Aj − λ∗

iBj)

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ +

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ
T(Aj − λ∗

iBj)

n∑
ℓ=1

[E(k)]ℓix
∗
ℓ |

≤ (2 + ∥E(k)∥)∥E(k)∥∥Aj − λ∗
iBj∥β

from ∥x∗
i ∥ ≤

√
β and ∥

∑n
ℓ=1[E

(k)]ℓix
∗
ℓ∥ ≤ ∥E(k)∥

√
β. Noting the Weyl’s

inequality for singular values, we have

∥J (k)−1∥−1 ≥ ∥J∗−1∥−1 − (2 + ∥E(k)∥)∥E(k)∥
√
n

√√√√ max
1≤m≤n

n∑
ℓ=1

∥Aℓ − λ∗
mBℓ∥2β.

Hence, we obtain

∥J (k)−1∥ ≤ ∥J∗−1∥
(
1− α(2 + ∥E(k)∥)∥E(k)∥

)−1
(55)

in the same manner as (33). Thus, for i ̸= j, we have

|[Ẽ(k)]ij − [E(k)]ij |

≤
|λ∗

j ||[∆
(k)
1 ]ij |+ |[∆(k)

2 ]ij |+ |
∑n

ℓ=1(c
(k+1)
ℓ − c∗ℓ)x

(k)
i

T(Aℓ − λ∗
jBℓ)x

(k)
j |

|λ∗
i − λ∗

j |
.

Noting that

|
n∑

ℓ=1

(c
(k+1)
ℓ − c∗ℓ )x

(k)
i

T(Aℓ − λ∗
jBℓ)x

(k)
j |

≤
n∑

ℓ=1

|c(k+1)
ℓ − c∗ℓ |∥Aℓ − λ∗

jBℓ∥(1 + ∥E(k)∥)2β

≤ (1 + ∥E(k)∥)2∥c(k+1) − c∗∥

√√√√ n∑
ℓ=1

∥Aℓ − λ∗
jBℓ∥2β,
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we obtain

|[Ẽ(k)]ij − [E(k)]ij |

≤
2∥Λ∗∥∥E(k)∥2 + (1 + ∥E(k)∥)2∥c(k+1) − c∗∥

√∑n
ℓ=1 ∥Aℓ − λ∗

jBℓ∥2β

|λ∗
i − λ∗

j |

≤
2∥Λ∗∥∥E(k)∥2(1 +

√
n∥J (k)−1∥(1 + ∥E(k)∥)2

√∑n
ℓ=1 ∥Aℓ − λ∗

jBℓ∥2β

|λ∗
i − λ∗

j |

≤ 2∥Λ∗∥
mini̸=j |λ∗

i − λ∗
j |

(
1 +

α(1 + ∥E(k)∥)2

1− α(2 + ∥E(k)∥)∥E(k)∥

)
∥E(k)∥2

≤ 2∥Λ∗∥(1 + α)

C
(k)
α mini ̸=j |λ∗

i − λ∗
j |
∥E(k)∥2,

where

C(k)
α := 1− α(2 + ∥E(k)∥)∥E(k)∥.

Regarding the diagonal elements of Ẽ(k) − E(k), for any λ∗
j ̸= λ∗

i , note

|[Ẽ(k)]ii − [E(k)]ii|

≤
|λ∗

j ||[∆
(k)
1 ]ii|+ |[∆(k)

2 ]ii|+ |
∑n

ℓ=1(c
(k+1)
ℓ − c∗ℓ)x

(k)
i

T(Aℓ − λ∗
jBℓ)x

(k)
i |

|λ∗
i − λ∗

j |

≤ 2∥Λ∗∥(1 + α)

C
(k)
α mini ̸=j |λ∗

i − λ∗
j |
∥E(k)∥2.

Therefore, we obtain

∥Ẽ(k) − E(k)∥ ≤ 2n∥Λ∗∥(1 + α)

C
(k)
α mini ̸=j |λ∗

i − λ∗
j |
∥E(k)∥2

in the same manner as Lemma 2. Moreover, since we see

∥E(k+1)∥ ≤ ∥E(k) − Ẽ(k)∥+ ∥E(k)∥∥Ẽ(k) − E(k)∥+ ∥E(k)∥2

in the same manner as the proof in Theorem 1, we obtain (52) and (53).

6 Numerical tests

In this section, we report some numerical results to illustrate the conver-
gence theory of the proposed algorithms and to compare their basic conver-
gence behavior with the existing algorithms. All our tests were performed
in MATLAB. For each numerical example, let the initial matrix X(0) be the
eigenvector matrix of A(c(0)). Recall that Algorithm 1 is the standard New-
ton method, Algorithm 2 is the Cayley transform method, and Algorithm 3
is the proposed algorithm.
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Example 1. This is an example in [13, Example 1]. Let n = 8, and

A0 =



0 4 −1 1 1 5 −1 1
4 0 −1 2 1 4 −1 2
−1 −1 0 3 1 3 −1 3
1 2 3 0 1 2 −1 4
1 1 1 1 0 1 −1 5
5 4 3 2 1 0 −1 6
−1 −1 −1 −1 −1 −1 0 7
1 2 3 4 5 6 7 0


.

For 1 ≤ i ≤ n, let [Ai]ii = 1, and [Ai]ℓm = 0 for all ℓ,m ̸= i. In addition,

let λ∗
i = c

(0)
i = 10i for 1 ≤ i ≤ n. Table 1 displays the values of the errors

∥E(k)∥ and ∥c(k) − c∗∥, for each algorithm.

Table 1: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 1

Algorithm 1 Algorithm 2 Algorithm 3

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 3.29E-01 1.02E+01 3.29E-01 1.02E+01 3.29E-01 1.02E+01
1 1.11E-01 2.06E-00 1.49E-01 2.06E-00 1.67E-01 2.06E-00
2 1.97E-02 3.06E-01 2.24E-02 3.56E-01 1.99E-02 3.56E-01
3 5.17E-04 8.19E-03 4.33E-04 8.33E-03 4.67E-04 7.09E-03
4 4.64E-07 7.16E-06 4.55E-07 6.48E-06 5.52E-07 5.68E-06
5 3.39E-13 5.28E-12 2.09E-13 3.90E-12 2.96E-13 4.55E-12

Example 2. In this example, we use a random matrix. For each Ai, we
generate a gaussian matrix Ω, and let Ai := Ω + ΩT. Then, we generate c∗

with entries randomly chosen. Then we compute the eigenvalues of A(c∗).
The initial guess c(0) is formed by c(0) = c∗ + ξ, where ξ is also chosen
randomly. Table 2 displays the values of the errors ∥E(k)∥ and ∥c(k) − c∗∥
for n = 50, for each algorithm.

Example 3. In this example, we use Toeplitz matrices as our Ai in (1):

A0 = O, A1 = I, A2 =



0 1 0 · · · 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 · · · 0 1 0


, . . . , An =



0 0 · · · 0 1

0
. . .

. . . · · · 0
...

. . .
. . .

. . .
...

0 · · · . . .
. . . 0

1 0 · · · 0 0


.(56)

In this example, we consider n = 50. We first generate c∗ with entries
randomly chosen. Then we compute the eigenvalues of A(c∗). The initial
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Table 2: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 2

Algorithm 1 Algorithm 2 Algorithm 3

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 1.18E-02 3.64E-03 1.18E-02 3.64E-03 1.18E-02 3.64E-03
1 1.85E-03 6.84E-04 1.84E-03 6.84E-04 1.84E-03 6.84E-04
2 2.77E-05 1.10E-05 2.58E-05 1.05E-05 2.66E-05 1.07E-05
3 1.13E-08 4.41E-09 1.39E-08 5.43E-09 1.62E-08 6.35E-09
4 2.04E-13 7.66E-13 5.31E-13 2.02E-13 6.13E-14 2.47E-14

guess c(0) is formed by c(0) = c∗ + ξ, where ξ is also chosen randomly.
Table 3 displays the values of the errors ∥E(k)∥ and ∥c(k) − c∗∥ for n = 50,
for each algorithm.

Table 3: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 3

Algorithm 1 Algorithm 2 Algorithm 3

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 1.58E-01 3.64E-02 1.58E-01 3.64E-02 1.58E-01 3.64E-02
1 1.18E-02 8.67E-03 1.11E-02 8.67E-03 1.75E-02 8.67E-03
2 3.80E-04 3.15E-04 2.98E-04 3.23E-04 4.08E-04 2.43E-04
3 5.44E-07 5.33E-07 4.78E-07 5.91E-07 2.89E-07 3.24E-07
4 2.56E-12 2.62E-12 2.43E-12 3.01E-12 4.82E-13 5.34E-13

Example 4. For n = 100, we consider the inverse Toeplitz eigenvalue
problem in the same manner as Example 3. In this example, ∥E(k)∥ and
∥c(k) − c∗∥ are shown in Table 4.

Next, we consider the inverse generalized eigenvalue problems. Recall
that Algorithm 4 is the standard Newton method, and Algorithm 5 is the
proposed algorithm.

Example 5. This is an example in [10, Example 1]. Let n = 5, A0 =
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Table 4: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 4

Algorithm 1 Algorithm 2 Algorithm 3

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 1.59E-01 5.31E-03 1.59E-01 5.31E-03 1.59E-01 5.31E-03
1 9.18E-03 9.18E-04 9.15E-03 9.18E-04 1.29E-02 9.18E-04
2 2.64E-04 8.63E-06 2.44E-04 1.16E-05 2.91E-04 1.43E-05
3 2.75E-08 1.08E-09 2.04E-08 2.21E-09 1.50E-07 5.76E-09
4 7.32E-14 5.94E-14 3.55E-13 2.12E-13 2.16E-13 7.62E-14

diag(9, 11, 10, 8, 14), B0 = diag(11, 13, 15, 11, 10), A1 = B1 = I,

A2 =


0 2 0 0 0
2 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , B2 =


0 1 0 0 0
1 0 1 0 0
0 1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0

 ,

A3 =


0 0 −1 0 0
0 0 0 −1 0
−1 0 0 0 1
0 −1 0 0 0
0 0 1 0 0

 = B3, A4 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 ,

B4 =


0 0 0 2 0
0 0 0 0 1
0 0 0 0 0
2 0 0 0 0
0 1 0 0 0

 , A5 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 = B5.

In addition, let c∗ = [1, 1, 1, 1, 1]T and c(0) = [1.1, 1.2, 1.3, 1.4, 1.5]T. Table 5
displays the values of the errors ∥E(k)∥ and ∥c(k)−c∗∥, for each algorithm.

Example 6. In this example, we use (56) as our Ai to construct a Toeplitz
matrix A(c). In addition, let B0 = I, and Bi for 1 ≤ i ≤ n are defined
as follows: [Bi]ii = 1, and [Bi]ℓm = 0 for all ℓ,m ̸= i. In this example,
we consider n = 50. We first generate c∗ with entries randomly chosen.
Then we solve the generalized eigenvalue problem A(c∗)x = λ∗B(c∗). The
initial guess c(0) is formed by c(0) = c∗+ξ, where ξ is also chosen randomly.
Table 6 displays the values of the errors ∥E(k)∥ and ∥c(k) − c∗∥ for n = 50,
for each algorithm.

In these examples, the quadratic convergence can be observed in some
neighborhood of the exact solution, and the proposed algorithms have very
similar local behavior to the existing methods.
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Table 5: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 5
Algorithm 4 Algorithm 5

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 1.51E-01 7.41E-01 1.51E-01 7.41E-01
1 1.02E-01 1.26E-00 7.23E-02 9.53E-01
2 1.32E-02 1.95E-01 1.23E-02 6.07E-02
3 2.84E-04 4.15E-03 2.82E-04 1.26E-03
4 3.31E-07 5.47E-06 9.47E-08 2.26E-07
5 3.53E-13 5.39E-12 2.63E-14 1.78E-13

Table 6: Numerical results for ∥E(k)∥ and ∥c(k) − c∗∥ in Example 6
Algorithm 4 Algorithm 5

k ∥E(k)∥ ∥c(k) − c∗∥ ∥E(k)∥ ∥c(k) − c∗∥
0 1.58E-01 3.64E-02 1.58E-01 3.64E-02
1 1.18E-02 8.67E-03 1.75E-02 8.67E-03
2 3.80E-04 3.15E-04 4.08E-04 2.43E-04
3 5.44E-07 5.33E-07 2.89E-07 3.24E-07
4 2.56E-12 2.62E-12 6.51E-13 6.79E-13
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