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Abstract

Hamiltonian Monte Carlo is a Markov chain Monte Carlo method
that uses Hamiltonian dynamics to efficiently produce distant sam-
ples. It employs geometric numerical integration to simulate Hamilto-
nian dynamics, which is a key of its high performance. We present a
Hamiltonian Monte Carlo method with adaptive step size control to
further enhance the efficiency. We propose a new explicit, reversible,
and volume-preserving integration method to adaptively set the step
sizes, which does not violate the detailed balance condition or require
a large increase in computational time.

1 Introduction

Generating random samples from a prescribed distribution is an important
task in physics, statistics, and machine learning. For example, sampling
from a posterior distribution is often necessary in Bayesian modeling.

Given a probability density function

P (x) ∝ exp(−V (x)), x ∈ Rd

up to a multiplicative constant, the task is to generate unbiased random sam-
ples from P (x). Markov chain Monte Carlo (MCMC) of the random-walk
Metropolis type is generally employed in such situations. The Metropolis
algorithm [1] generates unbiased samples through its acceptance process,
but unfortunately the samples are highly correlated owing to the random

1



walk proposals. Hence it requires a large number of samples to generate
effectively independent samples.

Hamiltonian Monte Carlo (HMC) [2] uses Hamiltonian dynamics to avoid
the random walk behavior of the Metropolis algorithm, and is able to gen-
erate distant samples with a high acceptance rate. The success of HMC
is largely due to geometric numerical integration of Hamiltonian dynam-
ics. It preserves the good structure of Hamiltonian dynamics that is critical
for constructing MCMC, and also achieves high accuracy and stability with
relatively short computational time.

Here, we present an HMC method with adaptive step size control to
further enhance the efficiency. In the existing methods, the Hamiltonian
dynamics has been solved only with constant time steps, whereas in gen-
eral numerical analysis it is often typical to employ some adaptive step size
control to increase computational efficiency, especially with some time trans-
formation. In fact, this research direction was suggested in an analysis of
geometric ergodicity of HMC [3]. Nevertheless, no complete answer has been
given so far, possibly due to the following reasons. First, the good natures
in geometric numerical integration are generally lost by the adaptive step
size control. Second, even if we succeed in the task with very careful imple-
mentation, that is still not enough in HMC context which requires severer
properties (see the discussions in Section 4.1). So far, only a partial answer
has been given in [4] to the best of the authors’ knowledge. In this paper,
we give a first complete answer to this problem, where the key is to modify
the dynamics by regarding the step size as a member of random variables.

2 Hamiltonian Monte Carlo

In this section, we briefly review Hamiltonian dynamics and HMC. The
details are explained in, e.g., [5].

2.1 Hamiltonian dynamics

Hamiltonian dynamics operates on a d-dimensional position variable q and
a d-dimensional momentum variable p. The dynamics for the Hamiltonian
H(q, p) is described by the following differential equations:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
.

Let ΦT be a mapping defined by ΦT (q(0), p(0)) = (q(T ), p(T )). The
following two properties of ΦT are important for the theoretical justification
of HMC:

Reversibility. Let ρ be the mapping ρ(q, p) = (q,−p). Then, ΦT is ρ-
reversible; i.e., ρ ◦ ΦT = Φ−1

T ◦ ρ.
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Volume preservation. The determinant of the Jacobian matrix of ΦT

has absolute value one.

Reversibility is necessary for HMC to satisfy the detailed balance (see,
e.g., [6]), which is a condition generally used in constructing MCMC to guar-
antee that the target distribution is invariant for the Markov chain. Volume
preservation can be relaxed by including a Jacobian in the acceptance proba-
bility of the Metropolis acceptance criterion. However, it is computationally
challenging, and often impossible, to compute the Jacobian at every sam-
ple proposal. Ideally we wish to use as ΦT the exact solution map of the
Hamiltonian dynamics, but this is intractable except for in highly trivial
cases. Thus, Hamiltonian dynamics is usually approximated by discretizing
time. For HMC, the numerical integration method of choice is generally
the leapfrog method. The leapfrog method preserves the reversibility and
volume preservation properties of the Hamiltonian dynamics, as far as the
step size is kept constant.

2.2 MCMC from Hamiltonian dynamics

Here, we briefly describe the algorithm of HMC. HMC can be viewed as a
variation of the Metropolis algorithm, which uses Hamiltonian dynamics to
create proposals. Let

P (q) ∝ exp(−V (q)), q ∈ Rd

be the target distribution, where q is regarded as the position variable. To
define Hamiltonian dynamics, we introduce a momentum variable

p ∈ Rd, p ∼ N (0, Id).

The Hamiltonian is defined as

H(q, p) = V (q) +K(p),

where K(p) = p⊤p/2. V (q) and K(p) can be viewed as the potential
and kinetic energy of the Hamiltonian system, respectively. The proba-
bility density function of the joint distribution of (q, p) is proportional to
exp(−V (q)) exp(−K(p)) = exp(−H(q, p)). HMC generates samples
(q1, p1), (q2, p2), . . . from this joint distribution, and the user can obtain the
samples from the target distribution by picking up only q1, q2, . . ..

HMC algorithm is summarized as follows:

1. Propose a new sample: (q∗n+1, p
∗
n+1) = ΦT (qn, pn).

2. Accept the proposal with the probability

min

(
1,

exp(−H(q∗n+1, p
∗
n+1))

exp(−H(qn, pn))

)
.
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If accepted, let (qn+1, pn+1) = (q∗n+1, p
∗
n+1). If rejected, let (qn+1, pn+1) =

(qn, pn).
3. Resample pn+1 ∼ N (0, Id).

Step 3 is necessary because without this, (q, p) will only move within a
limited area where H(q, p) is close to a constant. If the numerical error of
H(q, p) is small, the acceptance rate is close to 1. Under these steps, P (q, p)
remains invariant.

3 HMC with adaptive time step

In this section, we describe adaptive step size control, and consider how to
adapt it to HMC.

In the field of numerical analysis, adaptive step size control methods aim
to control numerical error by adaptively varying the step size. A considerable
amount of work has been dedicated to this and various adaptive integrators
have been studied for Hamiltonian dynamics. Here, we are interested in
adaptive step size control using time transformations, where the step size is
adaptively varied by performing time transformation t ↔ τ , and applying a
constant step size integration to the transformed system. The transformed
Hamiltonian system can be written using τ as

dq

dτ
= σ(q, p)

∂H

∂p
,

dp

dτ
= −σ(q, p)

∂H

∂q
,

where σ(q, p) = dt/dτ .
By discretizing the above equations with a constant step size, it is pos-

sible to obtain an approximation with adaptive step sizes. However, the
problem is that the scheme needs to be reversible for constructing HMC,
and it is also strongly desirable that it is volume-preserving and explicit.
For explicit schemes with adaptive step size control, reversibility is usually
defined not for (q, p), but for the triple of q, p, and another variable which
controls step sizes. This reversibility requires careful treatment when ap-
plied to HMC. We explain about this difficulty of reversibility in Section
4.1.

Before we explain our proposed algorithm, we mention an existing work.
Nishimura and Dunson [4] proposed an HMC method that employs adaptive
step size control using time transformations. This was the first one of its
kind to satisfy detailed balance to our knowledge. However, its numerical
integration scheme is linearly implicit and not volume-preserving, and it
can only deal with time transformations in the form of σ(q); that is, time
transformations that do not depend on p.
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4 Proposed algorithm

In this section, we explain our proposed method. Our proposed method
enables HMC to employ adaptive step size control in a reversible, volume-
preserving, and explicit manner, and hence it does not violate the detailed
balance or significantly increase the computational time. First, we explain
about the adaptive integration method that our proposed method is based
on, and then consider its adaptation for HMC.

4.1 Reversibility in HMC

An adaptive, reversible, and explicit (but not volume-preserving) scheme for
Hamiltonian systems is proposed in [7]. A variable is introduced that defines
the step sizes adaptively, given by z = 1/σ(q, p), and the solution of (q, p, z)
is numerically approximated. Let G(q, p) = dz/dτ . Then the integration
proceeds as follows:

z(τ + ϵ/2) = z(τ) + (ϵ/2)G(q(τ), p(τ)),

(q(τ + ϵ), p(τ + ϵ)) = Φϵ/z(τ+ϵ/2)(q(τ), p(τ)),

z(τ + ϵ) = z(τ + ϵ/2) + (ϵ/2)G(q(τ + ϵ), p(τ + ϵ)).

Here, z(0) = 1/σ(q(0), p(0)) and let Φϵ/z(τ+ϵ/2) be the mapping by the one
step of leapfrog integrator.

Let Φ̂L
ϵ be a mapping (q(0), p(0), z(0)) 7→ (q(T ′), p(T ′), z(T ′)) by the

above scheme, where L is the number of integration steps and T ′ is the
integration time, i.e. the sum of L adaptive time steps. Φ̂L

ϵ is reversible
regarding the mapping ρ′ : (q, p, z) 7→ (q,−p, z). This means that when
Φ̂L
ϵ (q1, p1, z1) = (q2, p2, z2), Φ̂

L
ϵ (q2,−p2, z2) = (q1,−p1, z1) holds. This def-

inition of reversibility, as dealt in [7], is sufficient in usual numerical com-
putation, but here we emphasize an important fact that it is not the case
for HMC. The difference comes from the fact that while the usual compu-
tation considers one orbit, HMC considers a (infinitely many) collection of
orbits. Recall the step 3 of the HMC algorithm; there, we randomly resam-
ple the moment pn+1, by which we randomly hop to a different orbit. In
the usual computation, we move back and forth on only one orbit without
hopping, so the ρ′-reversibility implies if we go from (q1, p1) to (q2, p2), we
come from (q2,−p2) to (q1,−p1) by preserving z2 in the reversing step. But
what happens if we hopped to (q2,−p2) from another orbit with time step-
ping variable z′2 ̸= z2 by resampling the moment? We can no longer come to
(q1,−p1) because the point we arrive depends on z. This results in violating
the detailed balance of HMC. Here, note that we do not have any clue to
reaching (q1,−p1) from (q2,−p2), as we do not know the value of z2 and in
general z2 does not coincide with 1/σ(q2,−p2).

Thus the “reversibility” in HMC demands that the overall dynamics
including the random hopping is “reversible” in some sense. Without the
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reversibility regarding (q, p), the detailed balance regarding (q, p) cannot be
ensured. Note that such a problem does not occur in HMC with constant
step sizes because z is fixed to one.

4.2 Satisfying reversibility and volume preservation

Here, we present a natural way to incorporate adaptive step size control in
HMC without violating the detailed balance condition. The key is to treat
the variable z in the integration scheme [7], which controls the step sizes, as a
random variable, and construct the Markov chain (q1, p1, z1), (q2, p2, z2), . . ..
Actually, the ρ′-reversibility can work in our proposed method.

We modify the dynamics in HMC by regarding z as a member of random
variables, and consider satisfying the detailed balance regarding (q, p, z).
Thus, we can make use of the ρ′-reversibility to ensure the detailed balance.
Moreover, the scheme is volume-preserving regarding (q, p, z), although it
is not volume-preserving for (q, p). Therefore, we can avoid computing the
Jacobian of the mapping in computing the acceptance ratio. Thus, we have
obtained a reversible, volume-preserving, and explicit scheme for HMC.

We treat z as a random variable to be sampled, so we have to set the
target distribution of z, which can be set arbitrarily. In the following nu-
merical experiments, we use the uniform distribution U(C1, C2), where C1

and C2 are constants.
Our proposed algorithm is summarized as follows:

1. Propose a new sample; (q∗n+1, p
∗
n+1, z

∗
n+1) = Φ̂L

ϵ (qn, pn, zn).
2. Accept the proposal with the probability

min

(
1,

exp(−H(q∗n+1, p
∗
n+1))P (z∗n+1)

exp(−H(qn, pn))P (zn)

)
.

If accepted, let (qn+1, pn+1, zn+1) = (q∗n+1, p
∗
n+1, z

∗
n+1). If rejected, let

(qn+1, pn+1, zn+1) = (qn, pn, zn).
3. Resample pn+1 ∼ N (0, Id).

P (z) is the probability density function of the target distribution of z. In
Step 1, we cannot set z(0) = 1/σ(q(0), p(0)), because this violates the de-
tailed balance. z(0) is set as the value of the previous sample. That is, Φ̂L

ϵ

computes the approximate path of z for a different initial value.
Note that our proposed algorithm can deal with time transformations

σ(q, p) which depend on both q and p, which were out of the scope of [4].

4.3 Proof of stationarity

Now, we show that our proposed algorithm satisfies stationarity. This proof
is based on the proof of stationarity given in [8]. Let x = (q, p, z), and let

6



P (x) be the probability density function of the target distribution. Since
P clearly remains invariant under Step 3 in the proposed algorithm, it is
sufficient to show that it remains invariant under Step 1 and 2.

First, we show that our proposed method satisfies the modified detailed
balance

P (x)P (x → x′) = P (ρ′(x′))P (ρ′(x′) → ρ′(x))

for each x and x′. Here, P (x → x′) denotes the conditional distribution of
the next sample x′, conditional on the present sample x. The left and right
hand sides can be rewritten as:

P (x)P (x → x′)

= P (x)δ(x′ − Φ̂L
ϵ (x))min(1, P (x′)/P (x)),

P (ρ′(x′))P (ρ′(x′) → ρ′(x))

= P (ρ′(x′))δ(ρ′(x)− Φ̂L
ϵ (ρ

′(x′)))min(1, P (ρ′(x))/P (ρ′(x′)))

= P (x′)δ(ρ′(x)− Φ̂L
ϵ (ρ

′(x′)))min(1, P (x)/P (x′)).

Here, we have

δ(ρ′(x)− Φ̂L
ϵ (ρ

′(x′))) = δ(x− ρ′(Φ̂L
ϵ (ρ

′(x′))))

= δ(Φ̂L
ϵ (x)− Φ̂L

ϵ (ρ
′(Φ̂L

ϵ (ρ
′(x′)))))

= δ(Φ̂L
ϵ (x)− x′),

because ρ′ and Φ̂L
ϵ are volume preserving and Φ̂L

ϵ is ρ′-reversible. Therefore,
we obtain the modified detailed balance. Stationarity can be proven as
follows: ∫

P (x)P (x → x′)dx =

∫
P (ρ′(x′))P (ρ′(x′) → ρ′(x))dx

=

∫
P (x′)P (ρ′(x′) → ρ′(x))dx

= P (x′).

5 Numerical experiments

In this section, we present numerical experiment to demonstrate our pro-
posed algorithm does in fact work and adaptive step size control is effective
in HMC.

Our method is tested on a high-dimensional mixture of two Gaussians.
The settings are based on the experiments described in Section IV.A.1 in
[9]. The difference is that here the distribution is set to be 200-dimensional,
and the two Gaussians of the first dimension are located at ±3.5 to make
the sampling more difficult. The step size ϵ was set for the acceptance
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rate to be about 95% and the number of integration steps L = 5. In
our method, step sizes are adaptively varied by time transformation with
σ(q, p) = exp(−p21/2)

α, where p1 is the first component of p, and α is 1/14.
It is expected that the step sizes will increase only when K(p1)(= −p21/2)
is large, that is V (q1)(= − log(P (q1))) is small, and that the samples will
effectively travel between the two modes, while the algorithm uses small step
sizes in other areas and keeps high acceptance rate. The constants for the
uniform distribution of z are C1 = 0.7 and C2 = 6.

We confirmed empirically that our proposed algorithm preserves the tar-
get distribution invariant by checking the histogram of the samples. We
checked the change of step sizes during integrations to verify our proposed
method does in fact change the step size adaptively according to the time
transformation. Figure 1 illustrates the step sizes and exp(−p21/2)

α during
one integration. Here, the number of steps L was altered from 5 to 20 in
order to illustrate the change in step sizes over a longer period. The step
sizes are varied adaptively so that they are large when exp(−p21/2)

α is large.
This shows that our proposed method does in fact work and varies the step
size adaptively according to the step size function σ(q, p). In addition, we
compared our proposed method with standard HMC in terms of the effec-
tive sample size (ESS) of the observables A(q1) = 1/(1 + exp(−q1)). ESS
describes the number of samples that can be regarded as being sampled
independently from the target distribution. We computed 104 samples 100
times, and took the average of ESS. The average ESS values of our proposed
method and standard HMC were 15.0 and 9.2, respectively. Thus, the ESS
of our proposed method was about 1.6 times greater. This means that sam-
ples of our proposed method have smaller correlation. Figure 2 illustrates
the history of q1. In the results of our proposed method, the samples are not
caught in one mode for a long time, so q1 travels between the two modes of
the Gaussian mixture more frequently than in the results of standard HMC.
The average computational time of our method and standard HMC for 104

samples were 14.0 seconds and 13.0 seconds, respectively. This shows that
our proposed method did not largely increase computational time in this
setting.

6 Concluding remarks

In this paper, we have proposed a framework to incorporate adaptive step
size control into HMC using a reversible, volume-preserving, and explicit
integration scheme. We demonstrated that this method works effectively
through numerical experiments.

It should be noted that the key aim of this paper was to propose the
framework itself, and more careful consideration regarding its practical em-
ployment is required, along with further numerical experiments. For exam-
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Figure 1: Step sizes and exp(−p21/2)
α during one integration. The horizontal

axis shows the integration step.
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Figure 2: History of q1. The horizontal axis is the sample index and the
vertical axis is q1. The upper panel represents our proposed method, and
the lower is for standard HMC.

ple, these could involve exploring other time transformations and performing
experiments on other distributions.
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