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Abstract

The matroid parity (or matroid matching) problem, introduced as a common

generalization of matching and matroid intersection problems, is so general that

it requires an exponential number of oracle calls. Lovász (1980) has shown that

this problem admits a min-max formula and a polynomial algorithm for linearly

represented matroids. Since then efficient algorithms have been developed for the

linear matroid parity problem.

In this paper, we present a combinatorial, deterministic, polynomial-time algo-

rithm for the weighted linear matroid parity problem. The algorithm builds on a

polynomial matrix formulation using Pfaffian and adopts a primal-dual approach

with the aid of the augmenting path algorithm of Gabow and Stallmann (1986) for

the unweighted problem.
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1 Introduction

The matroid parity problem [16] (also known as the matchoid problem [15] or the matroid

matching problem [17]) was introduced as a common generalization of matching and

matroid intersection problems. In the worst case, it requires an exponential number

of independence oracle calls [14, 19]. Nevertheless, Lovász [17, 19, 20] has shown that

the problem admits a min-max theorem for linear matroids and presented a polynomial

algorithm that is applicable if the matroid in question is represented by a matrix.

Since then, efficient combinatorial algorithms have been developed for this linear

matroid parity problem [8, 26, 27]. Gabow and Stallmann [8] developed an augmenting

path algorithm with the aid of a linear algebraic trick, which was later extended to

the linear delta-matroid parity problem [10]. Orlin and Vande Vate [27] provided an

algorithm that solves this problem by repeatedly solving matroid intersection problems

coming from the min-max theorem. Later, Orlin [26] improved the running time bound

of this algorithm. The current best deterministic running time bound due to [8, 26] is

O(nmω), where n is the cardinality of the ground set, m is the rank of the linear matroid,

and ω is the matrix multiplication exponent, which is at most 2.38. These combinatorial

algorithms, however, tend to be complicated.

An alternative approach that leads to simpler randomized algorithms is based on an

algebraic method. This is originated by Lovász [18], who formulated the linear matroid

parity problem as rank computation of a skew-symmetric matrix that contains indepen-

dent parameters. Substituting randomly generated numbers to these parameters enables

us to compute the optimal value with high probability. A straightforward adaptation of

this approach requires iterations to find an optimal solution. Cheung, Lau, and Leung

[3] have improved this algorithm to run in O(nmω−1) time, extending the techniques of

Harvey [12] developed for matching and matroid intersection.

While matching and matroid intersection algorithms have been successfully extended

to their weighted version, no polynomial algorithms have been known for the weighted

linear matroid parity problem for more than three decades. Camerini, Galbiati, and

Maffioli [2] developed a random pseudopolynomial algorithm for the weighted linear

matroid parity problem by introducing a polynomial matrix formulation that extends

the matrix formulation of Lovász [18]. This algorithm was later improved by Cheung,

Lau, and Leung [3]. The resulting complexity, however, remained pseudopolynomial.

Tong, Lawler, and Vazirani [32] observed that the weighted matroid parity problem

on gammoids can be solved in polynomial time by reduction to the weighted matching

problem. As a relaxation of the matroid matching polytope, Vande Vate [33] introduced

the fractional matroid matching polytope. Gijswijt and Pap [11] devised a polynomial

algorithm for optimizing linear functions over this polytope. The polytope was shown to

be half-integral, and the algorithm does not necessarily yield an integral solution.
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This paper presents a combinatorial, deterministic, polynomial-time algorithm for

the weighted linear matroid parity problem. To do so, we combine algebraic approach

and augmenting path technique together with the use of node potentials. The algorithm

builds on a polynomial matrix formulation, which naturally extends the one discussed in

[9] for the unweighted problem. The algorithm employs a modification of the augmenting

path search procedure for the unweighted problem by Gabow and Stallmann [8]. It adopts

a primal-dual approach without writing an explicit LP description. The correctness proof

for the optimality is based on the idea of combinatorial relaxation for polynomial matrices

due to Murota [24]. The algorithm is shown to require O(n3m) arithmetic operations.

This leads to a strongly polynomial algorithm for linear matroids represented over a

finite field. For linear matroids represented over the rational field, one can exploit our

algorithm to solve the problem in polynomial time.

Independently of the present work, Gyula Pap has obtained another combinatorial,

deterministic, polynomial-time algorithm for the weighted linear matroid parity problem

based on a different approach.

The matroid matching theory of Lovász [20] in fact deals with more general class

of matroids that enjoy the double circuit property. Dress and Lovász [6] showed that

algebraic matroids satisfy this property. Subsequently, Hochstättler and Kern [13] showed

the same phenomenon for pseudomodular matroids. The min-max theorem follows for

this class of matroids. To design a polynomial algorithm, however, one has to establish

how to represent those matroids in a compact manner. Extending this approach to the

weighted problem is left for possible future investigation.

The linear matroid parity problem finds various applications: structural solvability

analysis of passive electric networks [23], pinning down planar skeleton structures [21],

and maximum genus cellular embedding of graphs [7]. We describe below two interesting

applications of the weighted matroid parity problem in combinatorial optimization.

A T -path in a graph is a path between two distinct vertices in the terminal set

T . Mader [22] showed a min-max characterization of the maximum number of openly

disjoint T -paths. The problem can be equivalently formulated in terms of S-paths, where
S is a partition of T and an S-path is a T -path between two different components of S.
Lovász [20] formulated the problem as a matroid matching problem and showed that one

can find a maximum number of disjoint S-paths in polynomial time. Schrijver [30] has

described a more direct reduction to the linear matroid parity problem.

The disjoint S-paths problem has been extended to path packing problems in group-

labeled graphs [4, 5, 28]. Tanigawa and Yamaguchi [31] have shown that these problems

also reduce to a matroid matching problem with double circuit property. Yamaguchi [34]

clarifies a characterization of the groups for which those problems reduce to the linear

matroid parity problem.

As a weighted version of the disjoint S-paths problem, it is quite natural to think
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of finding disjoint S-paths of minimum total length. It is not immediately clear that

this problem reduces to the weighted linear matroid parity problem. A recent paper of

Yamaguchi [35] clarifies that this is indeed the case. He also shows that the reduction

results on the path packing problems on group-labeled graphs also extend to the weighted

version.

The weighted linear matroid parity is also useful in the design of approximation

algorithms. Prömel and Steger [29] provided an approximation algorithm for the Steiner

tree problem. Given an instance of the Steiner tree problem, construct a hypergraph on

the terminal set such that each hyperedge corresponds to a terminal subset of cardinality

at most three and regard the shortest length of a Steiner tree for the terminal subset as

the cost of the hyperedge. The problem of finding a minimum cost spanning hypertree in

the resulting hypergraph can be converted to the problem of finding minimum spanning

tree in a 3-uniform hypergraph, which is a special case of the weighted parity problem

for graphic matroids. The minimum spanning hypertree thus obtained costs at most

5/3 of the optimal value of the original Steiner tree problem, and one can construct a

Steiner tree from the spanning hypertree without increasing the cost. Thus they gave

a 5/3-approximation algorithm for the Steiner tree problem via weighted linear matroid

parity. This is a very interesting approach that suggests further use of weighted linear

matroid parity in the design of approximation algorithms, even though the performance

ratio is larger than the current best one for the Steiner tree problem [1].

2 The Minimum-Weight Parity Base Problem

Let A be a matrix of row-full rank over an arbitrary field K with row set U and column

set V . Assume that both m = |U | and n = |V | are even. The column set V is partitioned

into pairs, called lines. Each v ∈ V has its mate v̄ such that {v, v̄} is a line. We denote

by L the set of lines, and suppose that each line ℓ ∈ L has a weight wℓ ∈ R.
The linear dependence of the column vectors naturally defines a matroid M(A) on V .

Let B denote its base family. A base B ∈ B is called a parity base if it consists of lines.

As a weighted version of the linear matroid parity problem, we will consider the problem

of finding a parity base of minimum weight, where the weight of a parity base is the sum

of the weights of lines in it. We denote the optimal value by ζ(A,L,w). This problem

generalizes finding a minimum-weight perfect matching in graphs and a minimum-weight

common base of a pair of linear matroids on the same ground set.

As another weighted version of the matroid parity problem, one can think of finding

a matching (independent parity set) of maximum weight. This problem can be easily

reduced to the minimum-weight parity base problem.

Associated with the minimum-weight parity base problem, we consider a skew-symmetric
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polynomial matrix ΦA(θ) in variable θ defined by

ΦA(θ) =

(
O A

−A⊤ D(θ)

)
,

where D(θ) is a block-diagonal matrix in which each block is a 2 × 2 skew-symmetric

polynomial matrix Dℓ(θ) =

(
0 −τℓθwℓ

τℓθ
wℓ 0

)
corresponding to a line ℓ ∈ L. Assume

that the coefficients τℓ are independent parameters (or indeterminates). For a skew-

symmetric matrix Φ whose rows and columns are indexed by W , the support graph of Φ

is the graph Γ = (W,E) with edge set E = {(u, v) | Φuv ̸= 0}. We denote by Pf Φ the

Pfaffian of Φ, which is defined as follows:

Pf Φ =
∑
M

σM
∏

(u,v)∈M

Φuv,

where the sum is taken over all perfect matchings M in Γ and σM takes ±1 in a suitable

manner, see [21]. It is well-known that detΦ = (Pf Φ)2 and Pf (SΦS⊤) = Pf Φ ·detS for

any square matrix S.

We have the following lemma that characterizes the optimal value of the minimum-

weight parity base problem.

Lemma 2.1. The optimal value of the minimum-weight parity base problem is given by

ζ(A,L,w) =
∑
ℓ∈L

wℓ − degθ Pf ΦA(θ).

In particular, if Pf ΦA(θ) = 0, then there is no parity base.

Proof. We split ΦA(θ) into ΨA and ∆(θ) such that

ΦA(θ) = ΨA +∆(θ), ΨA =

(
O A

−A⊤ O

)
, ∆(θ) =

(
O O

O D(θ)

)
.

The row and column sets of these skew-symmetric matrices are indexed by W := U ∪V .

By [25, Lemma 7.3.20], we have

Pf ΦA(θ) =
∑
X⊆W

±Pf ΨA[W \X] · Pf ∆(θ)[X],

where each sign is determined by the choice of X, ∆(θ)[X] is the principal submatrix

of ∆(θ) whose rows and columns are both indexed by X, and ΨA[W \X] is defined in

a similar way. One can see that Pf ∆(θ)[X] ̸= 0 if and only if X ⊆ V (or, equivalently

B := V \X) is a union of lines. One can also see for X ⊆ V that Pf ΨA[W \X] ̸= 0 if
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and only if A[U, V \X] is nonsingular, which means that B is a base of M(A). Thus, we

have

Pf ΦA(θ) =
∑
B

±Pf ΨA[U ∪B] · Pf ∆(θ)[V \B],

where the sum is taken over all parity bases B. Note that no term is canceled out in the

summation, because each term contains a distinct set of independent parameters. For a

parity base B, we have

degθ(Pf ΨA[U ∪B] · Pf ∆(θ)[V \B]) =
∑

ℓ∈V \B

wℓ =
∑
ℓ∈L

wℓ −
∑
ℓ∈B

wℓ,

which implies that the minimum weight of a parity base is
∑
ℓ∈L

wℓ − degθ Pf ΦA(θ).

3 Algorithm Outline

In this section, we describe the outline of our algorithm for solving the minimum-weight

parity base problem.

The algorithm works on a vertex set V ∗ ⊇ V that includes some new vertices

generated during the execution. The algorithm keeps a nested (laminar) collection

Λ = {H1, . . . ,H|Λ|} of vertex subsets of V ∗ such that Hi ∩ V is a set of lines for each i.

The indices satisfy that, for any two members Hi,Hj ∈ Λ with i < j, either Hi ∩Hj = ∅
or Hi ⊊ Hj holds. Each member of Λ is called a blossom. The algorithm maintains a

potential p : V ∗ → R and a nonnegative variable q : Λ → R+, which are collectively

called dual variables. It also keeps a subset B∗ ⊆ V ∗ such that B := B∗ ∩ V ∈ B.
The algorithm starts with splitting the weight wℓ into p(v) and p(v̄) for each line

ℓ = {v, v̄} ∈ L, i.e., p(v) + p(v̄) = wℓ. Then it executes the greedy algorithm for finding

a base B ∈ B with minimum value of p(B) =
∑

u∈B p(u). If B is a parity base, then B

is obviously a minimum-weight parity base. Otherwise, there exists a line ℓ = {v, v̄} in
which exactly one of its two vertices belongs to B. Such a line is called a source line and

each vertex in a source line is called a source vertex. A line that is not a source line is

called a normal line.

The algorithm initializes Λ := ∅ and proceeds iterations of primal and dual updates,

keeping dual feasibility. In each iteration, the algorithm applies the breadth-first search

to find an augmenting path. In the meantime, the algorithm sometimes detects a new

blossom and adds it to Λ. If an augmenting path P is found, the algorithm updates B

along P . This will reduce the number of source lines by two. If the search procedure

terminates without finding an augmenting path, the algorithm updates the dual variables

to create new tight edges. The algorithm repeats this process until B becomes a parity

base. Then B is a minimum-weight parity base.
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The rest of this paper is organized as follows. In Section 4, we introduce new notions

attached to blossoms. The feasibility of the dual variables is defined in Section 5. In

Section 6, we show that a parity base that admits feasible dual variables attains the

minimum weight. In Section 7, we describe a search procedure for an augmenting path.

The validity of the procedure is shown in Section 8. In Section 9, we describe how

to update the dual variables when the search procedure terminates without finding an

augmenting path. If the search procedure succeeds in finding an augmenting path P ,

the algorithm updates the base B along P . The details of this process is presented

in Section 10. Finally, in Section 11, we describe the entire algorithm and analyze its

running time.

4 Blossoms

In this section, we introduce buds and tips attached to blossoms and construct auxiliary

matrices that will be used in the definition of dual feasibility.

Each blossom contains at most one source line, and a blossom that contains a source

line is called a source blossom. A blossom with no source line is called a normal blossom.

Let Λs and Λn denote the sets of source blossoms and normal blossoms, respectively.

Each normal blossom Hi ∈ Λn contains mutually disjoint vertices bi, ti, and t̄i outside V ,

where bi, ti, and t̄i are called the bud of Hi, the tip of Hi, and the mate of ti, respectively.

The vertex set V ∗ is defined to be V ∗ := V ∪ {bi, ti, t̄i | Hi ∈ Λn}, For every i, j with

Hj ∈ Λn, they satisfy bj , tj , t̄j ∈ Hi if and only if Hj ⊆ Hi (see Fig. 1). Although t̄i
is called the mate of ti, we call {ti, t̄i} a dummy line instead of a line. If Hi ∈ Λs,

we regard {bi}, {ti}, and {t̄i} as ∅. The algorithm keeps a subset B∗ ⊆ V ∗ such that

B := B∗ ∩ V ∈ B, |B∗ ∩ {bi, ti}| = 1, and |B∗ ∩ {ti, t̄i}| = 1 for each i with Hi ∈ Λn. It

also keeps Hi ∩V ̸= Hj ∩V for distinct Hi,Hj ∈ Λ. This implies that |Λ| = O(n), where

n = |V |, and hence |V ∗| = O(n).

b1 t1 t1

H1 H2

H3

b3 t3 t3

H4

Figure 1: Illustration of blossoms. Black nodes are in B∗ and white nodes are in V ∗ \B∗.

The fundamental circuit matrix C with respect to a base B is a matrix with row set

B and column set V \ B obtained by C = A[U,B]−1A[U, V \ B]. In other words, [I C]

is obtained from A by identifying B and U , applying row transformations, and changing
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the ordering of columns. We keep a matrix C∗ whose row and column sets are B∗ and

V ∗ \ B∗, respectively, such that the restriction of C∗ to V is the fundamental circuit

matrix C with respect to B, that is, C = C∗[V ∩B∗, V \B∗]. If the row and column sets

of C∗ are clear, for a vertex set X ⊆ V ∗, we denote C∗[X ∩ B∗, X \ B∗] by C∗[X]. For

each i with Hi ∈ Λn, the matrix C∗ satisfies the following properties.

(BT) • If bi, t̄i ∈ B∗ and ti ∈ V ∗ \ B∗, then C∗
biti
̸= 0, C∗

t̄iti
̸= 0, C∗

biv
= 0 for any

v ∈ (V ∗ \B∗) \Hi, and C∗
t̄iv

= 0 for any v ∈ (V ∗ \B∗) \ {ti}.
• If bi, t̄i ∈ V ∗ \ B∗ and ti ∈ B∗, then C∗

tibi
̸= 0, C∗

ti t̄i
̸= 0, C∗

ubi
= 0 for any

u ∈ B∗ \Hi, and C∗
ut̄i

= 0 for any u ∈ B∗ \ {ti}.

We henceforth denote by λ the current number of blossoms, i.e., λ := |Λ|. For

i = 0, 1, . . . , λ, we recursively define a matrix Ci with row set B∗ and column set V ∗ \B∗

as follows. Set C0 := C∗. For i ≥ 1, if Hi ∈ Λs, then define Ci := Ci−1. Otherwise,

define Ci as follows.

• If bi ∈ B∗ and ti ∈ V ∗ \B∗, then Ci is defined to be the matrix obtained from Ci−1

by a column transformation eliminating Ci−1
biv

with Ci−1
biti

for every v ∈ (V ∗ \ B∗) \
{ti}. That is,

Ci
uv :=

{
Ci−1
uv − (Ci−1

uti
· Ci−1

biv
/Ci−1

biti
) if v ∈ (V ∗ \B∗) \ {ti},

Ci−1
uv if v = ti.

(1)

• If bi ∈ V ∗ \B∗ and ti ∈ B∗, then Ci is defined to be the matrix obtained from Ci−1

by a row transformation eliminating Ci−1
ubi

with Ci−1
tibi

for every u ∈ B∗ \ {ti}. That
is,

Ci
uv :=

{
Ci−1
uv − (Ci−1

tiv
· Ci−1

ubi
/Ci−1

tibi
) if u ∈ B∗ \ {ti},

Ci−1
uv if u = ti.

(2)

In the definition of Ci, we use the fact that Ci−1
biti
̸= 0 or Ci−1

tibi
̸= 0, which is guaranteed

by the following lemma.

Lemma 4.1. For any j ∈ {0, 1, . . . , λ} and i ∈ {1, . . . , λ} with Hi ∈ Λn, the following

statements hold.

(1) If bi, t̄i ∈ B∗ and ti ∈ V ∗ \B∗, then we have the following.

(1-1) Cj
biv

= 0 for any v ∈ (V ∗ \B∗) \Hi and Cj
biti

= C∗
biti
̸= 0.

(1-2) Cj
t̄iv

= 0 for any v ∈ (V ∗ \B∗) \Hi.

(1-3) Suppose that a vertex u ∈ B∗ satisfies that Ci
uv = 0 for any v ∈ (V ∗ \B∗)\Hi.

If j ≥ i, then Cj
uv = Ci

uv for any v ∈ V ∗ \ B∗ and Cj
biv

= 0 for any v ∈
(V ∗ \B∗) \ {ti}.
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(2) If bi, t̄i ∈ V ∗ \B∗ and ti ∈ B∗, then we have the following.

(2-1) Cj
ubi

= 0 for any u ∈ B∗ \Hi and Cj
tibi

= C∗
tibi

≠ 0.

(2-2) Cj
ut̄i

= 0 for any u ∈ B∗ \Hi.

(2-3) Suppose that a vertex v ∈ V ∗ \B∗ satisfies that Ci
uv = 0 for any u ∈ B∗ \Hi.

If j ≥ i, then Cj
uv = Ci

uv for any u ∈ B∗ and Cj
ubi

= 0 for any u ∈ B∗ \ {ti}.

Proof. We show the claims by induction on j. Suppose that bi, t̄i ∈ B∗ and ti ∈ V ∗ \B∗.

We first show (1-1). When j = 0, the claim is obvious by (BT). For j ≥ 1 and for

v ∈ (V ∗ \B∗) \Hi, we have the following by induction hypothesis.

• Suppose that bj , t̄j ∈ B∗ and tj ∈ V ∗ \B∗.

– If Hi ∩Hj = ∅ or Hi ⊊ Hj , then Cj−1
bitj

= 0 by induction hypothesis (1-1).

– If Hj ⊆ Hi, then Cj−1
bjv

= 0 by induction hypothesis (1-1).

• Suppose that bj , t̄j ∈ V ∗\B∗ and tj ∈ B∗. Then, Cj−1
bibj

= 0 by induction hypothesis

(1-1) or (2-1).

In each case, by the definition of Cj , we have Cj
biv

= Cj−1
biv

= 0. Similarly, we also obtain

that Cj
biti

= Cj−1
biti

, which is not zero by induction hypothesis.

When j = 0, (1-2) is obvious by (BT). In the same way as (1-1), since Cj−1
t̄itj

= 0,

Cj−1
bjv

= 0, or Cj−1
t̄ibj

= 0 by induction hypothesis, we have Cj
t̄iv

= Cj−1
t̄iv

= 0, which shows

(1-2).

When j = i, it is obvious that Cj
uv = Ci

uv for any v ∈ V ∗ \ B∗. For j ≥ i + 1,

since Cj−1
utj

= 0 or Cj−1
ubj

= 0 by induction hypothesis, we have that Cj
uv = Cj−1

uv for any

v ∈ V ∗\B∗, which shows the first half of (1-3). Since Ci
biv

= 0 for any v ∈ (V ∗\B∗)\{ti}
by (1-1) and by the definition of Ci, we have the second half of (1-3).

The case when bi, t̄i ∈ V ∗ \B∗ and ti ∈ B∗ can be dealt with in the same way.

5 Dual Feasibility

In this section, we define feasibility of the dual variables and show their properties. Our

algorithm for the minimum-weight parity base problem is designed so that it keeps the

dual feasibility.

Recall that a potential p : V ∗ → R, and a nonnegative variable q : Λ→ R+ are called

dual variables. A blossom Hi is said to be positive if q(Hi) > 0. For distinct vertices

u, v ∈ V ∗ and for Hi ∈ Λ, we say that a pair (u, v) crosses Hi if |{u, v} ∩Hi| = 1. For

distinct u, v ∈ V ∗, we denote by Iuv the set of indices i ∈ {1, . . . , λ} such that (u, v)

crosses Hi. The maximum element of Iuv is denoted by iuv. We also denote by Juv the
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set of indices i ∈ {1, . . . , λ} such that ti ∈ {u, v}. We introduce the set FΛ of ordered

vertex pairs defined by

FΛ := {(u, v) | u ∈ B∗, v ∈ V ∗ \B∗, Ciuv
uv ̸= 0}.

Note that FΛ is closely related to the nonzero entries in Cλ as we will see later in

Observation 7.1. For u, v ∈ V ∗, we define

Quv :=
∑

i∈Iuv\Juv

q(Hi)−
∑

i∈Iuv∩Juv

q(Hi).

The dual variables are called feasible with respect to C∗ and Λ if they satisfy the following.

(DF1) p(v) + p(v̄) = wℓ for every line ℓ = {v, v̄} ∈ L.

(DF2) p(v)− p(u) ≥ Quv for every (u, v) ∈ FΛ.

(DF3) p(bj) = p(t̄j) = p(tj) for every Hj ∈ Λn.

If no confusion may arise, we omit C∗ and Λ when we discuss dual feasibility.

Note that if p satisfies (DF1), Λ = ∅, and B ∈ B minimizes p(B) =
∑

u∈B p(u) in B,
then p and q are feasible. This ensures that the initial setting of the algorithm satisfies

the dual feasibility.

We now show some properties of feasible dual variables.

Lemma 5.1. For distinct vertices u ∈ B∗ and v ∈ V ∗ \ B∗, we have (u, v) ∈ FΛ if and

only if C∗[X] is nonsingular, where X := {u, v} ∪
∪
{{bi, ti} | i ∈ Iuv \ Juv, Hi ∈ Λn}.

Proof. By (1-3) and (2-3) of Lemma 4.1, if bi ∈ B∗ for i ∈ Iuv \ Juv, then Ciuv
biv′

= 0 for

any v′ ∈ (V ∗ \B∗)\{ti} and Ciuv
biti
̸= 0, and if bi ∈ V ∗ \B∗ for i ∈ Iuv \Juv, then Ciuv

u′bi
= 0

for any u′ ∈ B∗ \ {ti} and Ciuv
tibi
̸= 0. This implies that Ciuv

uv ̸= 0 is equivalent to that

Ciuv [X] is nonsingular.

For any j ∈ {1, . . . , iuv}, either X ∩ Hj = ∅ or {bj , tj} ⊆ X holds. By (1-1) and

(2-1) of Lemma 4.1, this shows that either Cj [X] = Cj−1[X] or Cj [X] is obtained from

Cj−1[X] by applying elementary operations. Therefore, Ciuv [X] is obtained from C∗[X]

by applying elementary operations, and hence the nonsingularity of Ciuv [X] is equivalent

to that of C∗[X].

When we are given a set of blossoms Λ, there may be more than one way of indexing

the blossoms so that for any two members Hi,Hj ∈ Λ with i < j, either Hi ∩Hj = ∅ or
Hi ⊊ Hj holds. Lemma 5.1 guarantees that this flexibility does not affect the definition

of the dual feasibility. Thus, we can renumber the indices of the blossoms if necessary.

The following lemma guarantees that we can remove (or add) a blossom H with

q(H) = 0 from (or to) Λ. The proof is given in Appendix A.
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Lemma 5.2. Suppose that p : V ∗ → R and q : Λ → R+ are dual variables, and let

i ∈ {1, 2, . . . , λ} be an index such that q(Hi) = 0. Suppose that p(bi) = p(ti) = p(t̄i) if

Hi ∈ Λn. Let q′ be the restriction of q to Λ′ := Λ \ {Hi}. Then, p and q are feasible

with respect to Λ if and only if p and q′ are feasible with respect to Λ′. Here, we do not

remove {bi, ti, t̄i} from V ∗ even when we consider dual feasibility with respect to Λ′.

The next lemma shows that p(v) − p(u) ≥ Quv holds if u and v satisfy a certain

condition. The proof is given in Appendix A.

Lemma 5.3. Let p and q be feasible dual variables and let k ∈ {0, 1, . . . , λ}. For any

u ∈ B∗ and v ∈ V ∗ \B∗ with iuv ≤ k and Ck
uv ̸= 0, it holds that

p(v)− p(u) ≥ Quv =
∑

i∈Iuv\Juv

q(Hi)−
∑

i∈Iuv∩Juv

q(Hi). (3)

By using Lemma 5.3, we have the following lemma.

Lemma 5.4. Suppose that p and q are feasible dual variables. Let k be an integer and let

X ⊆ V ∗ be a vertex subset such that X ∩Hi = ∅ for any i > k and Ck[X] is nonsingular.

Then, we have

p(X \B∗)− p(X ∩B∗) ≥ −
∑
{q(Hi) | Hi ∈ Λn, |X ∩Hi| is odd, ti ∈ X}

+
∑
{q(Hi) | Hi ∈ Λn, |X ∩Hi| is odd, ti ̸∈ X}

+
∑
{q(Hi) | Hi ∈ Λs, |X ∩Hi| is odd}.

Proof. Since Ck[X] is nonsingular, there exists a perfect matching M = {(uj , vj) | j =

1, . . . , µ} between X ∩B∗ and X \B∗ such that uj ∈ X ∩B∗, vj ∈ X \B∗, and Ck
ujvj ̸= 0

for j = 1, . . . , µ. Since X ∩Hi = ∅ for any i > k implies that iujvj ≤ k, by Lemma 5.3,

we have

p(vj)− p(uj) ≥ Qujvj

for j = 1, . . . , µ. By combining these inequalities, we obtain

p(X \B∗)−p(X∩B∗) ≥
µ∑

j=1

Qujvj =

µ∑
j=1

 ∑
i∈Iujvj \Jujvj

q(Hi)−
∑

i∈Iujvj∩Jujvj

q(Hi)

 . (4)

It suffices to show that, for each i, the coefficient of q(Hi) in the right hand side of (4) is

• at least −1 if Hi ∈ Λn, |X ∩Hi| is odd, and ti ∈ X,

• at least 1 if Hi ∈ Λn, |X ∩Hi| is odd, and ti ̸∈ X,

• at least 1 if Hi ∈ Λs and |X ∩Hi| is odd, and
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• at least 0 if |X ∩Hi| is even.

For each i, since i ∈ Iujvj ∩ Jujvj implies ti ∈ {uj , vj}, there exists at most one index

j such that i ∈ Iujvj ∩ Jujvj . This shows that the coefficient of q(Hi) in (4) is at least

−1.
Suppose that either (i) Hi ∈ Λn, |X ∩ Hi| is odd, and ti ̸∈ X, or (ii) Hi ∈ Λs and

|X ∩Hi| is odd. In both cases, there is no index j with i ∈ Iujvj ∩ Jujvj . Furthermore,

since |X ∩Hi| is odd, there exists an index j′ such that i ∈ Iuj′vj′ , which shows that the

coefficient of q(Hi) in (4) is at least 1.

If |X ∩ Hi| is even, then there exist an even number of indices j such that (uj , vj)

crosses Hi. Therefore, if there exists an index j such that i ∈ Iujvj ∩ Jujvj , then there

exists another index j′ such that i ∈ Iuj′vj′ \ Juj′vj′ . Thus, the coefficient of q(Hi) in (4)

is at least 0 if |X ∩Hi| is even.

We now consider the tightness of the inequality in Lemma 5.4. For k = 0, 1, . . . , λ, let

Gk = (V ∗, F k) be the graph such that (u, v) ∈ F k if and only if Ck
uv ̸= 0 (or Ck

vu ̸= 0). An

edge (u, v) ∈ F k with u ∈ B∗ and v ∈ V ∗ \B∗ is said to be tight if p(v)−p(u) = Quv. We

say that a matching M ⊆ F k is consistent with a blossom Hi ∈ Λ if one of the following

three conditions holds:

• Hi ∈ Λs and |{(u, v) ∈M | i ∈ Iuv}| ≤ 1,

• Hi ∈ Λn, ti ̸∈ ∂M , and |{(u, v) ∈M | i ∈ Iuv}| ≤ 1,

• Hi ∈ Λn, ti ∈ ∂M , and |{(u, v) ∈M | i ∈ Iuv\Juv}| ≤ |{(u, v) ∈M | i ∈ Iuv∩Juv}|.

Here, ∂M denotes the set of the end vertices of M . For k ∈ {1, . . . , λ}, we say that a

matching M ⊆ F k is tight if every edge of M is tight and M is consistent with every

positive blossom Hi. As the proof of Lemma 5.4 clarifies, if there exists a tight perfect

matchingM in the subgraphGk[X] ofGk induced byX, then the inequality of Lemma 5.4

is tight. Furthermore, in such a case, every perfect matching in Gk[X] must be tight,

which is stated as follows.

Lemma 5.5. For k ∈ {0, 1, . . . , λ} and a vertex set X ⊆ V ∗, if Gk[X] has a tight perfect

matching, then any perfect matching in Gk[X] is tight.

We can also see the following lemma by using Lemma 5.4.

Lemma 5.6. Suppose that p and q are feasible dual variables and X ⊆ V ∗ is a vertex

set such that C∗[X] is nonsingular. Then we have

p(X \B∗)− p(X ∩B∗) ≥ −
∑
{q(Hi) | Hi ∈ Λn, |X ∩Hi| is odd}

+
∑
{q(Hi) | Hi ∈ Λs, |X ∩Hi| is odd}.
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Proof. If none of ti and t̄i are contained in X, then X ′ := X ∪ {ti, t̄i} satisfies that

• C∗[X] is nonsingular if and only if C∗[X ′] is nonsingular,

• p(X \B∗)− p(X ∩B∗) = p(X ′ \B∗)− p(X ′ ∩B∗) by (DF3),

• |X ∩Hi| is odd if and only if |X ′ ∩Hi| is odd for each i.

Thus it suffices to prove the inequality for X ′ instead of X. Furthermore, by (BT) and

the nonsingularity of C∗[X], ti ̸∈ X implies that t̄i ̸∈ X. With these observations, it

suffices to consider the case when X contains all the tips ti. Since X contains all the tips

ti, C
λ[X] is obtained from C∗[X] by applying elementary operations, and hence Cλ[X]

is nonsingular. This implies the inequality by Lemma 5.4.

6 Optimality

In this section, we show that if we obtain a parity base B and feasible dual variables p

and q, then B is a minimum-weight parity base.

Theorem 6.1. If B := B∗ ∩ V is a parity base and there exist feasible dual variables p

and q, then B is a minimum-weight parity base.

Proof. Since the optimal value of the minimum-weight parity base problem is represented

with degθ Pf ΦA(θ) as shown in Lemma 2.1, we evaluate the value of degθ Pf ΦA(θ),

assuming that we have a parity base B and feasible dual variables p and q.

Recall that A is transformed to [I C] by applying row transformations and column

permutations, where C is the fundamental circuit matrix with respect to the base B

obtained by C = A[U,B]−1A[U, V \B]. Note that the identity submatrix gives a one to

one correspondence between U and B, and the row set of C can be regarded as U . We

now apply the same row transformations and column permutations to ΦA(θ), and then

apply also the corresponding column transformations and row permutations to obtain a

skew-symmetric polynomial matrix Φ′
A(θ), that is,

Φ′
A(θ) =

 O I C

−I
−C⊤ D′(θ)

 ← U

← B

← V \B
,

where D′(θ) is in a block-diagonal form obtained from D(θ) by applying row and column

permutations simultaneously. Note that Pf Φ′
A(θ) = ±Pf ΦA(θ)/detA[U,B], where the

sign is determined by the ordering of V .
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We now define

Φ∗
A(θ) =


O O O

O O I
C∗[V ∪ T ]

O −I
D′(θ) O

−(C∗[V ∪ T ])⊤ O O


← T ∩B∗

← U (identified with B)

← B

← V \B
← T \B∗

obtained from Φ′
A(θ) by attaching rows and columns corresponding to T := {ti, t̄i | i ∈

{1, . . . , λ}}. Note that ti and t̄i do exist for each i, as there is no source line and hence

Λ = Λn. The row and column sets of Φ∗
A(θ) are both indexed by W ∗ := V ∪ U ∪ T . By

the definition of t̄i, we have (Φ∗
A(θ))t̄iv = 0 for v ∈W ∗ \ {ti} and (Φ∗

A(θ))t̄iti is a nonzero

constant, which shows that degθ Pf Φ
∗
A(θ) = degθ Pf Φ

′
A(θ).

Recall that Cλ is obtained from C∗ by adding a row (resp. column) corresponding

to ti to another row (resp. column) repeatedly. By applying the same transformation to

Φ∗
A(θ), we obtain the following matrix:

Φλ
A(θ) =


O O O

O O I
Cλ[V ∪ T ]

O −I
D′(θ) O

−(Cλ[V ∪ T ])⊤ O O

 .

Note that Pf Φλ
A(θ) = Pf Φ∗

A(θ). Thus we have degθPf Φ
λ
A(θ) = degθPf ΦA(θ).

Construct a graph Γ∗ = (W ∗, E∗) with edge set E∗ defined by E∗ = {(u, v) |
(Φλ

A(θ))uv ̸= 0}. Each edge e = (u, v) ∈ E∗ has a weight w(e) := degθ (Φ
λ
A(θ))uv.

Then it can be easily seen that the maximum weight of a perfect matching in Γ∗ is at

least degθPf Φ
λ
A(θ) = degθPf ΦA(θ). Let us recall that the dual linear program of the

maximum weight perfect matching problem on Γ∗ is formulated as follows.

Minimize
∑
v∈W ∗

π(v)−
∑
Z∈Ω

ξ(Z)

subject to π(u) + π(v)−
∑

Z∈Ωuv

ξ(Z) ≥ w(e) (e = (u, v) ∈ E∗), (5)

ξ(Z) ≥ 0 (Z ∈ Ω),

where Ω = {Z | Z ⊆W ∗, |Z|: odd, |Z| ≥ 3} and Ωuv = {Z | Z ∈ Ω, |Z∩{u, v}| = 1} (see
e.g. [30, Theorem 25.1]). In what follows, we construct a feasible solution (π, ξ) of this

linear program. The objective value provides an upper bound on the maximum weight of

a perfect matching in Γ∗, and consequently serves as an upper bound on degθPf ΦA(θ).

Since Φλ
A(θ)[U,B] is the identity matrix, we can naturally define a bijection β : B → U

between B and U . For v ∈ U ∪ (T ∩B∗), let v′ be the vertex in V ∗ that corresponds to
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v, that is, v′ = β−1(v) if v ∈ U and v′ = v if v ∈ T ∩B∗. We define π′ : W ∗ → R by

π′(v) =

{
p(v) if v ∈ V ∪ (T \B∗),

−p(v′) if v ∈ U ∪ (T ∩B∗),

and define π : W ∗ → R by

π(v) =

{
π′(v) + q(Hi) if v = ti or v

′ = ti for some i,

π′(v) otherwise.

For i ∈ {1, . . . , λ}, let Zi = (Hi ∩ V ) ∪ β(Hi ∩ B) ∪ {t̄i} and define ξ(Zi) = q(Hi). See

Fig. 2 for an example. For any i ∈ {1, . . . , λ}, since Hi ∩ V consists of lines and there

is no source line in G, we see that both |Hi ∩ V | and |β(Hi ∩B)| are even, which shows

that |Zi| is odd and |Zi| ≥ 3. Define ξ(Z) = 0 for any Z ∈ Ω \ {Z1, . . . , Zλ}. We now

show the following claim.

U B V \ B

ti tiu

u

�(u)

T

Hi
Zi

�(u)

bi

Figure 2: Definition of Zi. Lines and dummy lines are represented by double bonds.

Claim 6.2. The dual variables π and ξ defined as above form a feasible solution of the

linear program.

Proof. Suppose that e = (u, v) ∈ E∗. If u, v ∈ V and u = v̄, then (DF1) shows that

π(u) + π(v) = p(v̄) + p(v) = wℓ = w(e), where ℓ = {v, v̄}. Since |Zi ∩ {v, v̄}| is even for

any i ∈ {1, . . . , λ}, this shows (5). If u ∈ U and v ∈ B, then (u, v) ∈ E∗ implies that

u = β(v), and hence π(u) + π(v) = 0, which shows (5) as |Zi ∩ {u, v}| is even for any

i ∈ {1, . . . , λ}.
The remaining case of (u, v) ∈ E∗ is when u ∈ U ∪(T ∩B∗) and v ∈ (V \B)∪(T \B∗).

That is, it suffices to show that (u, v) satisfies (5) if Cλ
uv ̸= 0. Recall that u′ is the vertex

in V ∗ that corresponds to u. By the definition of π, we have

π(u) + π(v) = p(v)− p(u′) +
∑

i∈Ju′v

q(Hi). (6)

By the definition of Zi, we have |Zi∩{u, v}| = 1 if and only if i ∈ Iu′v△Ju′v, which shows

that ∑
i: |Zi∩{u,v}|=1

ξ(Zi) =
∑

i∈Iu′v\Ju′v

q(Hi) +
∑

i∈Ju′v\Iu′v

q(Hi). (7)
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Since Cλ
uv ̸= 0, by Lemma 5.3, we have

p(v)− p(u′) ≥ Quv =
∑

i∈Iu′v\Ju′v

q(Hi)−
∑

i∈Iu′v∩Ju′v

q(Hi). (8)

By combining (6), (7), and (8), we obtain

π(u) + π(v)−
∑

i: |Zi∩{u,v}|=1

ξ(Zi) ≥ 0,

which shows that (u, v) satisfies (5).

The objective value of this feasible solution is∑
v∈W ∗

π(v)−
∑

i∈{1,...,λ}

ξ(Zi) =
∑
v∈W ∗

π′(v) =
∑

v∈V \B

p(v) =
∑

ℓ⊆V \B

wℓ, (9)

where the first equality follows from the definition of π and ξ, the second one follows

from the definition of π′ and the fact that p(t̄i) = p(ti) for each i, and the third one

follows from (DF1). By the weak duality of the maximum weight matching problem, we

have ∑
v∈W ∗

π(v)−
∑

i∈{1,...,λ}

ξ(Zi) ≥ (maximum weight of a perfect matching in Γ∗)

≥ degθPf Φ
λ
A(θ) = degθPf ΦA(θ). (10)

On the other hand, Lemma 2.1 shows that any parity base B′ satisfies that∑
ℓ⊆B′

wℓ ≥
∑
ℓ∈L

wℓ − degθPf ΦA(θ), (11)

Combining (9)–(11), we have
∑

ℓ⊆V \B wℓ = degθPf ΦA(θ), which means B is a minimum-

weight parity base.

7 Finding an Augmenting Path

In this section, we define an augmenting path and present a procedure for finding one.

The validity of our procedure is shown in Section 8.

Suppose we are given V ∗, B∗, C∗, Λ, and feasible dual variables p and q. Recall

that, for i = 0, 1, . . . , λ, we denote by Gi = (V ∗, F i) the graph with edge set F i :=

{(u, v) | Ci
uv ̸= 0}. Since C0 = C∗, we use F ∗ instead of F 0. By Lemma 5.3, we have

p(v) − p(u) ≥ Quv if (u, v) ∈ F λ, u ∈ B∗, and v ∈ V ∗ \ B∗. Let F ◦ ⊆ F λ be the set of

tight edges in F λ, that is, F ◦ = {(u, v) ∈ F λ | u ∈ B∗, v ∈ V ∗ \B∗, p(v)− p(u) = Quv}.
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Our procedure works primarily on the graph G◦ = (V ∗, F ◦). For a vertex set X ⊆ V ∗,

G◦[X] (resp. Gi[X]) denotes the subgraph of G◦ (resp. Gi) induced by X.

Each normal blossomHi ∈ Λn has a specified vertex gi ∈ Hi, which we call a generator

of ti. When we search for an augmenting path, we keep the following properties of gi
and ti.

(GT1) For each Hi ∈ Λn, there is no edge of F i between gi and V ∗ \Hi.

(GT2) For each Hi ∈ Λn, there is no edge of F ∗ between ti and Hi \ {bi, t̄i}.

By (1-3) and (2-3) of Lemma 4.1, if i ≤ j ≤ λ, (GT1) implies that there is no edge

of F j between gi and V ∗ \ Hi. By (GT2), we can see that for each Hi ∈ Λn and

for j = 0, 1, . . . , λ, there is no edge in F j between ti and Hi \ {bi, t̄i}. Furthermore,

since (GT2) implies that Ci−1
uv = Ci

uv for each i and u, v ∈ Hi, we have the following

observation.

Observation 7.1. If (GT2) holds, then FΛ coincides with F λ regardless of the ordering.

With this observation, it is natural to ask whether one can define the dual feasibility

by using F λ instead of FΛ. However, (GT2) will be tentatively violated just after the

augmentation, which is the reason why we use FΛ in the definition of the dual feasibility.

Roughly, our procedure finds a part of the augmenting path outside the blossoms.

The routing in each blossom Hi is determined by a prescribed vertex set RHi(x). For

i = 1, . . . , λ, define H◦
i := (Hi \{ti})\{bj | Hj ∈ Λn}, where {ti} = ∅ if Hi ∈ Λs. For any

i ∈ {1, . . . , λ} and for any x ∈ H◦
i , the prescribed vertex set RHi(x) ⊆ Hi is assumed to

satisfy the following.

(BR1) x ∈ RHi(x) ⊆ Hi \ {bj | Hj ∈ Λn}.

(BR2) If Hi ∈ Λn, then RHi(x) consists of lines and dummy lines. If Hi ∈ Λs, then

RHi(x) consists of lines, dummy lines, and a source vertex.

(BR3) For any j ∈ {1, 2, . . . , i} with RHi(x) ∩Hj ̸= ∅, it holds that {tj , t̄j} ⊆ RHi(x).

We sometimes regard RHi(x) as a sequence of vertices, and in such a case, the last two

vertices are x̄x. We also suppose that the first two vertices are tit̄i if Hi ∈ Λn and the

first vertex is the unique source vertex in RHi(x) if Hi ∈ Λs. Each blossom Hi ∈ Λ is

assigned a total order <Hi among all the vertices in H◦
i . In the procedure, RHi(x) keeps

additional properties which will be described in Section 8.1.

We say that a vertex set P ⊆ V ∗ is an augmenting path if it satisfies the following

properties.

(AP1) P consists of normal lines, dummy lines, and two vertices from distinct source

lines.
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(AP2) For each Hi ∈ Λ, either P ∩Hi = ∅ or P ∩Hi = RHi(xi) for some xi ∈ H◦
i .

(AP3) G◦[P ] has a unique tight perfect matching.

In the rest of this section, we describe how to find an augmenting path. Section 7.1

is devoted to the search procedure, which calls two procedures: RBlossom and DBlossom.

Here, R and D stand for “regular” and “degenerate,” respectively. The details of these

procedures are described in Section 7.2.

7.1 Search Procedure

In this subsection, we describe a procedure for searching for an augmenting path. The

procedure performs the breadth-first search using a queue to grow paths from source

vertices. A vertex v ∈ V ∗ is labeled and put into the queue when it is reached by the

search. The procedure picks the first labeled element from the queue, and examines its

neighbors. A linear order ≺ is defined on the labeled vertex set so that u ≺ v means u

is labeled prior to v.

For each x ∈ V ∗, we denote by K(x) the maximal blossom that contains x. If

a vertex x ∈ V is not contained in any blossom, then it is called single and we denote

K(x) = {x, x̄}. The procedure also labels some blossoms with ⊕ or ⊖, which will be used

later for modifying dual variables. With each labeled vertex v, the procedure associates

a path P (v) and its subpath J(v), where a path is a sequence of vertices. The first vertex

of P (v) is a labeled vertex in a source line and the last one is v. The reverse path of

P (v) is denoted by P (v). For a path P (v) and a vertex r in P (v), we denote by P (v|r)
the subsequence of P (v) after r (not including r). We sometimes identify a path with

its vertex set. When an unlabeled vertex u is examined in the procedure, we assign a

vertex ρ(u) and a path I(u). The procedure is described as follows.

Procedure Search

Step 0: Initialize the objects so that the queue is empty, every vertex is unlabeled, and

every blossom is unlabeled.

Step 1: While there exists an unlabeled single vertex x in a source line, label x with

P (x) := J(x) := x and put x into the queue. While there exists an unlabeled

maximal source blossom Hi ∈ Λs, label Hi with ⊕ and do the following: for each

vertex x ∈ H◦
i in the order of <Hi , label x with P (x) := J(x) := RHi(x) and put

x into the queue.

Step 2: If the queue is empty, then return ∅ and terminate the procedure (see Section 9).

Otherwise, remove the first element v from the queue.
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Step 3: While there exists a labeled vertex u adjacent to v in G◦ with K(u) ̸= K(v),

choose such u that is minimum with respect to ≺ and do the following steps (3-1)

and (3-2).

(3-1) If the first elements in P (v) and in P (u) belong to different source lines,

then return P := P (v)P (u) as an augmenting path.

(3-2) Otherwise, apply RBlossom(v, u) to add a new blossom to Λ.

Step 4: While there exists an unlabeled vertex u adjacent to v in G◦ such that ρ(u) is

not assigned, do the following steps (4-1)–(4-5).

(4-1) If u is a single vertex and (v, ū) ̸∈ F ◦, then label ū with P (ū) := P (v)uū

and J(ū) := {ū}, set ρ(u) := v and I(u) := {u}, and put ū into the queue.

(4-2) If u is a single vertex and (v, ū) ∈ F ◦, then apply DBlossom(v, u).

(4-3) If K(u) = Hi ∈ Λn, (v, ti) ∈ F ◦, and F λ contains an edge between v and

Hi \ {ti}, then apply DBlossom(v, ti).

(4-4) If K(u) = Hi ∈ Λn, (v, ti) ∈ F ◦, and F λ contains no edge between v and

Hi \ {ti}, then label Hi with ⊕, set ρ(ti) := v and I(ti) := {ti}, and do the

following. For each unlabeled vertex x ∈ H◦
i in the order of <Hi , label x with

P (x) := P (v)RHi(x) and J(x) := RHi(x) \ {ti}, and put x into the queue.

(4-5) IfK(u) = Hi ∈ Λn and (v, ti) ̸∈ F ◦, then choose y ∈ Hi\{ti} with (v, y) ∈ F ◦

that is minimum with respect to <Hi , and do the following. Label Hi with ⊖,
label ti with P (ti) := P (v)RHi(y) and J(ti) := {ti}, and put ti into the queue.

For each unlabeled vertex x ∈ H◦
i , set ρ(x) = v and I(x) := RHi(x) \ {ti}.

Step 5: Go back to Step 2.

7.2 Creating a Blossom

In this subsection, we describe two procedures that create a new blossom. The first one

is RBlossom called in Step (3-2) of Search.

Procedure RBlossom(v, u)

Step 1: Let c be the last vertex in P (v) such that K(c) contains a vertex in P (u). Let

d be the last vertex in P (u) contained in K(c). Note that K(c) = K(d). If c = d,

then define Y :=
∪
{K(x) | x ∈ P (v|c) ∪ P (u|d)} and r := c, Otherwise, define

Y :=
∪
{K(x) | x ∈ P (v|c)∪ P (u|d)∪ {c}} and let r be the last vertex in P (v) not

contained in Y if exists. See Fig. 3 for an example.

Step 2: If Y contains no source line, then define g to be the vertex subsequent to r in

P (v) and introduce new vertices b, t, and t̄ (see below for the details).
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ti Hi
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Figure 3: Definition of Y .

Step 3: Define H := Y ∪ {b, t, t̄} if Y contains no source line, and H := Y otherwise.

Step 4: If H contains no source line, then for each labeled vertex x with P (x)∩H ̸= ∅,
replace P (x) by P (x) := P (r)tt̄P (x|r). Label t̄ with P (t̄) := P (r)tt̄ and J(t̄) := {t̄},
and extend the ordering ≺ of the labeled vertices so that t̄ is just after r, i.e., r ≺ t̄

and no element is between r and t̄. For each vertex x ∈ H with ρ(x) = r, update

ρ(x) as ρ(x) := t̄. Set ρ(t) := r and I(t) := {t}.

Step 5: For each unlabeled vertex x ∈ H◦, label x with

P (x) :=


P (v)P (u|x)x if x ∈ P (u|d),
P (u)P (v|x)x if x ∈ P (v|c),
P (v)P (u|ti)RHi(x) if K(x) = Hi, Hi is labeled with ⊖, and ti ∈ P (u|d),
P (u)P (v|ti)RHi(x) if K(x) = Hi, Hi is labeled with ⊖, and ti ∈ P (v|c),

and J(x) := P (x|t), and put x into the queue. Here, we choose the vertices so that

the following conditions hold.

• For two unlabeled vertices x, y ∈ H◦, if ρ(x) ≻ ρ(y), then we choose x earlier

than y.

• For two unlabeled vertices x, y ∈ H◦, if ρ(x) = ρ(y), K(x) = K(y) = Hi, and

x <Hi y, then we choose x earlier than y.

• If r = c = d, then no element is chosen between g and h, where h is the vertex

subsequent to t̄ in P (u).
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Step 6: Label H with ⊕. Define RH(x) := P (x|r) for each x ∈ H◦, where P (x|r)
denotes P (x) if r does not exist. Define <H by the ordering ≺ of the labeled

vertices in H◦
i . Add H to Λ with q(H) = 0 regarding b, t, t̄, and g, if exist, as

the bud of H, the tip of H, the mate of t, and the generator of t, respectively, and

update Λn, Λs, λ, C
λ, G◦, and K(v) for v ∈ V ∗, accordingly.

We note that, for any x ∈ V ∗, if J(x) (resp. I(x)) is defined, then it is equal to either

{x} or RHi(x) \ {ti} (resp. either {x} or RHi(x) \ {ti}) for some Hi ∈ Λ. In particular,

the last element of J(x) and the first element of I(x) are x. We also note that J(x) and

I(x) are not used in the procedure explicitly, but we introduce them to show the validity

of the procedure. We now describe details in Step 2.

Definition of b, t, and t̄ (Step 2). Let V̂ ∗, B̂∗, Ĉ∗, and p̂ denote the objects obtained

from V ∗, B∗, C∗, and p by adding b, t, and t̄. We consider the following two cases

separately.

If r ∈ B∗ and g ∈ V ∗ \B∗, then define V̂ ∗, B̂∗, Ĉ∗, and p̂ as follows.

• V̂ ∗ := V ∗∪{b, t, t̄}, B̂∗ := B∗∪{b, t̄}, and let p̂ : V̂ ∗ → R be an extension of p such

that p̂(b) = p̂(t) = p̂(t̄) = p(r) +Qrb.

• Ĉλ
by = Cλ

ry for any y ∈ Y \B∗ and Ĉλ
by = 0 for any y ∈ (V ∗ \B∗) \ Y .

• Ĉλ
xt = Cλ

xg for any x ∈ (B∗ \ Y ) ∪ {b} and Ĉλ
xt = 0 for any x ∈ B∗ ∩ Y .

• Ĉλ
t̄t = 1 and Ĉλ

t̄y = 0 for any y ∈ (V̂ ∗ \ B̂∗) \ {t}.

• Ĉλ naturally defines Ĉ∗.

If r ∈ V ∗ \B∗ and g ∈ B∗, then define V̂ ∗, B̂∗, Ĉ∗, and p̂ as follows.

• V̂ ∗ := V ∗ ∪ {b, t, t̄}, B̂∗ := B∗ ∪ {t}, and let p̂ : V̂ ∗ → R be an extension of p such

that p̂(b) = p̂(t) = p̂(t̄) = p(r)−Qrb.

• Ĉλ
xb = Cλ

xr for any x ∈ B∗ ∩ Y and Ĉλ
xb = 0 for any x ∈ B∗ \ Y .

• Ĉλ
ty = Cλ

gy for any y ∈ ((V ∗ \B∗) \ Y ) ∪ {b} and Ĉλ
ty = 0 for any y ∈ Y \B∗.

• Ĉλ
tt̄ = 1 and Ĉλ

xt̄ = 0 for any x ∈ B̂∗ \ {t}.

• Ĉλ naturally defines Ĉ∗.

Then, we rename V̂ ∗, B̂∗, Ĉ∗ and p̂ to V ∗, B∗, C∗, and p, respectively.

The next one is DBlossom, called in Steps (4-2) and (4-3) of Search.
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Procedure DBlossom(v, u)

Step 1: Set Y := K(u), r := v, and g := u. Introduce new vertices b, t, and t̄ in the

same say as Step 2 of RBlossom(v, u), and define H := Y ∪ {b, t, t̄}. Label t̄ with

P (t̄) := P (v)tt̄ and J(t̄) := {t̄}, and extend the ordering ≺ of the labeled vertices

so that t̄ is just after v, i.e., v ≺ t̄ and no element is between v and t̄. Set ρ(t) := v

and I(t) := {t}.

Step 2: If Y is a line, then for each vertex x ∈ Y , label x with P (x) := P (v)tt̄x̄x and

J(x) := t̄x̄x, and put x into the queue.

If Y = Hi for some positive blossom Hi ∈ Λn, then do the following. For each

vertex x ∈ H◦
i in the order of <Hi , label x with P (x) := P (v)tt̄RHi(x) and J(x) :=

t̄RHi(x), and put x into the queue.

Step 3: Label H with ⊕. Define RH(x) := P (x|v) for each x ∈ H◦. Define <H by the

ordering ≺ of the labeled vertices in H◦. Add H to Λ with q(H) = 0 regarding b,

t, t̄, and g as the bud of H, the tip of H, the mate of t, and the generator of t,

respectively, and update Λn, λ, C
λ, G◦, and K(v) for v ∈ V ∗, accordingly.

Step 4: If Y = Hi for some positive blossom Hi ∈ Λn, then set ϵ := q(Hi) and modify

the dual variables as follows: q(Hi) := q(Hi)− ϵ, q(H) := q(H) + ϵ,

p(t) :=

{
p(t)− ϵ if t ∈ V ∗ \B∗,

p(t) + ϵ if t ∈ B∗,

p(t̄) :=

{
p(t̄)− ϵ if t̄ ∈ B∗,

p(t̄) + ϵ if t̄ ∈ V ∗ \B∗.

Since q(Hi) becomes zero, we delete Hi from Λ (see Lemma 5.2). We also remove

bi, ti, and t̄i from V ∗ and update Λn, λ, C
λ, G◦, and K(v) for v ∈ V ∗, accordingly.

We note that Step 4 of DBlossom(v, u) is executed to keep the condition Hi ∩ V ̸=
Hj ∩ V for distinct Hi,Hj ∈ Λ.

8 Validity

This section is devoted to the validity proof of the procedures described in Section 7. In

Section 8.1, we introduce properties (BR4) and (BR5) of the routing in blossoms. The

procedures are designed so that they keep the conditions (GT1), (GT2), (BT), (DF1)–

(DF3), and (BR1)–(BR5). Assuming these conditions, we show in Section 8.2 that a

nonempty output of Search is indeed an augmenting path. In Sections 8.3 and 8.4, we

show that these conditions hold when a new blossom is created.
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8.1 Properties of Routings in Blossoms

In this subsection, we introduce properties (BR4) and (BR5) of RHi(x) kept in the

procedure. For Hi ∈ Λ, we denote H−
i := H◦

i \ {t̄j , gj | Hj ∈ Λn, Hj ⊆ Hi}. We note

that there is no edge of F λ connecting Hi \H−
i and V ∗ \Hi by Lemma 4.1 and (GT1).

This shows that we can ignore Hi \H−
i when we consider edges in F λ (or F ◦) connecting

Hi and V ∗ \Hi.

Recall that if Hi ∈ Λs, then {bi}, {ti}, and {t̄i} denote ∅. In particular, for Hi ∈ Λs,

Hi \ {ti} and RHi(x) \ {ti} denote Hi and RHi(x), respectively. In addition to (BR1)–

(BR3), we assume that RHi(x) satisfies the following (BR4) and (BR5) for any Hi ∈ Λ

and x ∈ H◦
i .

(BR4) G◦[RHi(x) \ {x, ti}] has a unique tight perfect matching.

(BR5) If x ∈ H−
i , then we have the following. Suppose that Z ⊆ (RHi(x) \ {ti}) ∩H−

i

satisfies that z ≥Hi x for any z ∈ Z, Z ̸= {x}, and |(Hj \ {tj}) ∩ Z| ≤ 1 for

any positive blossom Hj ∈ Λ. Then, G◦[(RHi(x) \ {ti}) \ Z] has no tight perfect

matching.

Here, we suppose that G◦[∅] has a unique tight perfect matching M = ∅ to simplify the

description. Lemma 5.5 implies the following lemma, which guarantees that it suffices to

focus on tight perfect matchings in G◦[X] when we consider the nonsingularity of Cλ[X].

Lemma 8.1. If G◦[X] has a unique tight perfect matching, then Cλ[X] is nonsingular.

Suppose that P is an augmenting path. Then Lemma 8.1 together with (AP3) implies

that Cλ[P ] is nonsingular. It follows from (AP2) and (BR3) that ti ∈ P holds for any

Hi ∈ Λn with P ∩Hi ̸= ∅. Therefore, C∗[P ] is nonsingular. By the same argument, one

can derive from (BR4) that Cλ[RHi(x)\{x, ti}] and C∗[RHi(x)\{x, ti}] are nonsingular.

8.2 Finding an Augmenting Path

This subsection is devoted to the validity of Step (3-1) of Search. We first show the

following lemma.

Lemma 8.2. In each step of Search, for any labeled vertex x, P (x) is decomposed as

P (x) = J(xk)I(yk) · · · J(x1)I(y1)J(x0)

with xk ≺ · · · ≺ x1 ≺ x0 = x such that, for i = 1, . . . , k,

(PD1) xi is adjacent to yi in G◦,

(PD2) the first element of J(xi−1) is the mate of the last element of I(yi),
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(PD3) any labeled vertex z with z ≺ xi is not adjacent to I(yi) ∪ J(xi−1) in G◦, and

(PD4) xi is not adjacent to J(xi−1) in G◦. Furthermore, if I(yi) = RHj (yi)\{tj}, then
xi is not adjacent to {z ∈ I(yi) | z ̸∈ H◦

j or z <Hj yi} in G◦.

Proof. The procedure Search naturally defines the decomposition

P (x) = J(xk)I(yk) · · · J(x1)I(y1)J(x0).

Since we can easily see that Steps (4-1), (4-4), and (4-5) of Search do not violate the

conditions (PD1)–(PD4), it suffices to show that RBlossom(v, u) and DBlossom(v, u) do

not violate these conditions.

We first consider the case when RBlossom(v, u) is applied to obtain a new blossom H.

In RBlossom(v, u), P (x) is updated or defined as P (x) := P (x), P (x) := P (r)tt̄P (x|r), or
P (x) := P (r)RH(x). Let F ◦ (resp. F̂ ◦) be the tight edge sets before (resp. after) adding

H to Λ in Step 6 of RBlossom(v, u). We show the following claim.

Claim 8.3. If (x, y) ∈ F ◦△F̂ ◦, then either (i) {x, y} ∩ {b, t̄} ̸= ∅, or (ii) exactly one of

{x, y}, say x, is contained in H, and (x, b), (t, y) ∈ F ◦.

Proof. Suppose that {x, y}∩{b, t̄} = ∅. By the definition of Cλ, we have (x, y) ∈ F ◦△F̂ ◦

only when (x, b), (t, y) ∈ F λ or (y, b), (t, x) ∈ F λ holds before H is added to Λ. By (BT)

and (GT2), this shows that exactly one of {x, y}, say x, is contained in H. Suppose

that x ∈ B∗. In this case, if (x, b), (t, y) ∈ F λ holds before H is added to Λ and

(x, y) ∈ F ◦△F̂ ◦, then we have

p(y)− p(x) = Qxy,

p(b)− p(t) = Qtb,

p(b)− p(x) ≥ Qxb,

p(y)− p(t) ≥ Qty.

Since the last two inequalities above must be tight, we have (x, b), (t, y) ∈ F ◦. The same

argument can be applied to the case when x ∈ V ∗ \B∗.

Suppose that P (x) is defined by P (x) := P (r)I(t)J(x), where I(t) = {t} and J(x) =

RH(x) \ {t}. In this case, (PD1) and (PD2) are trivial. We now consider (PD3). Since

P (r) satisfies (PD3), in order to show that any labeled vertex z with z ≺ xi is not

adjacent to I(yi)∪J(xi−1) in Ĝ◦, it suffices to consider the case when xi = r, yi = t, and

xi−1 = x. Assume to the contrary that z ≺ r is adjacent to I(t) ∪ J(x) in Ĝ◦. Since z

is not adjacent to I(t) ∪ J(x) in G◦ by the procedure, Claim 8.3 shows that (z, t) ∈ F ◦,

which implies that (z, g) ∈ F ◦. This contradicts that z ≺ xi and the definition of H.
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To show (PD4), it suffices to consider the case when xi = r. In this case, since r is not

adjacent to H \ {t} in Ĝ◦, P (x) satisfies (PD4).

Suppose that P (x) is updated as P (x) := P (x) or P (x) := P (r)I(t)J(t̄)P (x|r), where
I(t) = {t} and J(t̄) = {t̄}. In this case, (PD1) and (PD2) are trivial. We now consider

(PD3). Since (PD3) holds before creating H, in order to show that any labeled vertex

z with z ≺ xi is not adjacent to w ∈ I(yi) ∪ J(xi−1) in Ĝ◦, it suffices to consider the

case when (i) z = t̄, or (ii) w ∈ I(t) ∪ J(t̄), or (iii) (z, t) ∈ F ◦ and (w, b) ∈ F ◦, or

(iv) (w, t) ∈ F ◦ and (z, b) ∈ F ◦ by Claim 8.3. In the first case, if (t̄, w) ∈ F̂ ◦, then

(r, w) ∈ F ◦, which contradicts that (PD3) holds before creating H. In the second case, if

w = t, then (z, w) ∈ F̂ ◦ implies that (z, g) ∈ F ◦, which contradicts that z ≺ xi = r and

the definition of H. If w = t̄, then (w, z) ∈ F̂ ◦ implies that (r, z) ∈ F ◦, which contradicts

that r and z are labeled. In the third case, (w, b) ∈ F ◦ implies (w, r) ∈ F ◦, and hence

xi ⪯ r as (PD3) holds before creating H. Furthermore, (z, t) ∈ F ◦ implies (z, g) ∈ F ◦,

which contradicts that z ≺ xi ⪯ r and the definition of H. In the fourth case, (z, b) ∈ F ◦

implies (z, r) ∈ F ◦, which contradicts that r and z are labeled. By these four cases, we

obtain (PD3).

We next consider (PD4). Since (PD4) holds before creating H, in order to show that

xi is not adjacent to w ∈ J(xi−1) or w ∈ {z ∈ I(yi) | z ̸∈ H◦
j or z <Hj yi} in F̂ ◦ it suffices

to consider the case when (i) xi = r, or (ii) xi = t̄, or (iii) (xi, w) crosses H. In the first

case, the claim is obvious. In the second case, if (t̄, w) ∈ F̂ ◦, then (r, w) ∈ F ◦, which

contradicts that (PD4) holds before creating H. In the third case, since xi ∈ H and

w ̸∈ H, it suffices to consider the case when (w, t) ∈ F ◦ and (xi, b) ∈ F ◦ by Claim 8.3.

This shows that (xi, r) ∈ F ◦, which contradicts that xi and r are labeled. By these three

cases, we obtain (PD4).

We can show that DBlossom(v, u) does not violate (PD1)–(PD4) in a similar manner

by observing that P (x) is updated or defined as P (x) := P (x) or P (x) := P (v)RH(x) in

DBlossom(v, u).

We are now ready to show the validity of Step (3-1) of Search.

Lemma 8.4. If Search returns P := P (v)P (u) in Step (3-1), then P is an augmenting

path.

Proof. It suffices to show that G◦[P ] has a unique tight perfect matching. By Lemma 8.2,

P (v) and P (u) are decomposed as P (v) = J(vk)I(sk) · · · J(v1)I(s1)J(v0) and P (u) =

J(ul)I(rl) · · · J(u1)I(r1)J(u0). For each pair of i ≤ k and j ≤ l, let Xij denote the set of

vertices in the subsequence

J(vi)I(si) · · · J(v1)I(s1)J(v0)J(u0) I(r1) J(u1) · · · I(rj) J(uj)

of P . We intend to show inductively that G◦[Xij ] has a unique tight perfect matching.
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We first show that G◦[X00] = G◦[J(u) ∪ J(v)] has a unique tight perfect matching.

Let M be an arbitrary tight perfect matching in G◦[J(u)∪ J(v)], and let Z be the set of

vertices in J(v) adjacent to J(u) in M . If J(v) = {v}, then it is obvious that Z = {v}.
Otherwise, J(v) = RHi(v) \ {ti} for some Hi ∈ Λ. For any positive blossom Hj ∈ Λ,

since M is consistent with Hj , we have that |(Hj \ {tj}) ∩ Z| ≤ 1. Since there are no

edges of G◦ between J(u) and {y ∈ J(v) | y ≺ v}, we have that z ≥Hi v for any z ∈ Z.

Furthermore, since there is an edge in M connecting each z ∈ Z and J(u), we have

Z ⊆ J(v) ∩ H−
i . Then it follows from (BR5) that G◦[J(v) \ Z] has no tight perfect

matching unless Z = {v}. This means v is the only vertex in J(v) adjacent to J(u)

in M . Note that G◦[J(v) \ {v}] has a unique tight perfect matching by (BR4), which

must form a part of M . Let z be the vertex adjacent to v in M . Since the vertices in

{y ∈ J(u) | y ≺ u} are not adjacent to v in G◦, we have z ≥Hj u if J(u) = RHj (u) \ {tj}
for some Hj ∈ Λ. By (BR5) again, G◦[J(u) \ {z}] has no tight perfect matching unless

z = u. This means M must contain the edge (u, v). Note that G◦[J(u) \ {u}] has a

unique tight perfect matching by (BR4), which must form a part of M . Thus M must

be the unique tight perfect matching in G◦[J(u) ∪ J(v)].

We now show the statement for general i and j assuming that the same statement

holds if either i or j is smaller. Suppose that vi ≺ uj . Then there are no edges of G◦

between Xij \ J(vi) and {y ∈ J(vi) | y ≺ vi} by (PD3) of Lemma 8.2. Let M be an

arbitrary tight perfect matching in G◦[Xij ], and let Z be the set of vertices in J(vi)

adjacent to Xij \ J(vi) in M . Then, by the same argument as above, G◦[J(vi) \ Z] has

no tight perfect matching unless Z = {vi}. Thus vi is the only vertex in J(vi) matched

to Xij \ J(vi) in M . Since vi is not adjacent to Xi−1,j in G◦ by (PD3) and (PD4) of

Lemma 8.2, an edge connecting vi and I(si) must belong to M . We note that it is the

only edge in M between I(si) and Xij \ I(si) since M is tight. Let z be the vertex

adjacent to vi in M . By (BR5), G◦[I(si) \ {z}] has no tight perfect matching unless

z = si. This means that M contains the edge (vi, si). Note that each of G◦[J(vi) \ {vi}]
and G◦[I(si)\{si}] has a unique tight perfect matching by (BR4), and so does G◦[Xi−1,j ]

by induction hypothesis. Therefore, M is the unique tight perfect matching in G◦[Xij ].

The case of vi ≻ uj can be dealt with similarly. Thus, we have seen that G◦[Xkl] = G◦[P ]

has a unique tight perfect matching.

This proof implies the following as a corollary.

Corollary 8.5. For any labeled vertex v ∈ V ∗, G◦[P (v) \ {v}] has a unique tight perfect

matching.

8.3 Routing in Blossoms

When we create a new blossom H in DBlossom(v, u), for each x ∈ H◦, RH(x) clearly

satisfies (BR1)–(BR5). Suppose that a new blossom H is created in RBlossom(v, u). For
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each x ∈ H◦, RH(x) defined in RBlossom(v, u) also satisfies (BR1), (BR2), and (BR3).

We will show (BR4) and (BR5) in this subsection.

Lemma 8.6. Suppose that RBlossom(v, u) creates a new blossom H. Then, for each

x ∈ H◦, RH(x) satisfies (BR4) and (BR5).

Proof. We only consider the case when H◦ contains no source line, since the case with a

source line can be dealt with in a similar way. We note that a vertex v ∈ H◦ is adjacent

to r in G◦ before creating H◦ if and only if v is adjacent to t̄ in G◦ after adding H◦ to

Λ. If x = t̄, the claim is obvious. We consider the other cases separately.

Case (i): Suppose that x ∈ H was not labeled before H is created.

We consider the case, in which either x ∈ P (u|d) or K(x) = Hi, Hi is labeled with

⊖, and ti ∈ P (u|d). The case, in which either x ∈ P (v|c) or K(x) = Hi, Hi is labeled

with ⊖, and ti ∈ P (v|c), can be dealt with in a similar manner.

By Lemma 8.2, P (v) can be decomposed as

P (v) = P (r)tt̄I(sk)J(vk−1)I(sk−1) · · · J(v1)I(s1)J(v0)

with v = v0. In addition, if x ∈ P (v|c), then P (u|x) can be decomposed as P (u|x) =

J(ul)I(rl) · · · J(u1)I(r1)J(u0) with u0 = u, where the first element of J(ul) is the mate

of x. Thus, if x ∈ P (v|c), then we have

RH(x) = tJ(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl) J(ul)x

with vk = t̄. Similarly, if K(x) = Hi, Hi is labeled with ⊖, and ti ∈ P (v|c), then

RH(x) = tJ(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl)RHi(x).

In both cases, we have

RH(x) = tJ(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl) J(ul) I(rl+1)

with rl+1 = x (see Fig. 4 for an example).

We now intend to show that RH(x) satisfies (BR5), that is, G◦[(RH(x) \ {t}) \ Z]

has no tight perfect matching if Z ⊆ (RH(x) \ {t}) ∩ H− satisfies that z ≥H x for

any z ∈ Z, Z ̸= {x}, and |(Hj \ {tj}) ∩ Z| ≤ 1 for any positive blossom Hj ∈ Λ.

Suppose to the contrary that G◦[(RH(x) \ {t}) \ Z] has a tight perfect matching M .

Note that Z ⊆ I(rl+1) ∪
∪

i I(si), because z ≥H x for any z ∈ Z. For each i, since

either I(si) = {si} or I(si) = RHj (si) \ {tj} for some positive blossom Hj ∈ Λ, we have

|I(si) ∩ Z| ≤ 1. Similarly, |I(rl+1) ∩ Z| ≤ 1. Furthermore, since M is a tight perfect

matching, |I(si) ∩ Z| = 1 (resp. |I(rl+1) ∩ Z| = 1) implies that there is no edge in M

between I(si) (resp. I(rl+1)) and its outside. If Z ⊆ I(rl+1), then |I(rl+1) ∩ Z| = 1
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Figure 4: A decomposition of RH(x). In this example, J(v1) = {tj}, I(s2) = RHj (s2),

J(v2) = RHi(v2), I(s3) = {ti}, and J(v4) = t̄.

and M contains no edge between I(rl+1) and the outside of I(rl+1), which contradicts

that G◦[I(rl+1) \Z] has no tight perfect matching by (BR5). Thus, we may assume that

Z ∩
∪

i I(si) ̸= ∅. In this case, we can take the largest number j such that (vj , sj) /∈M .

We consider the following two cases separately.

Case (i)-a: Suppose that j = k. In this case, since J(vk) = {t̄}, there exists an edge

in M between t̄ and I(rl+1) ∪ (I(sk) \ {sk}). If this edge is incident to z ∈ I(sk) \ {sk},
then z ≺ sk by the procedure, and hence G◦[I(sk)\{z}] has no tight perfect matching by

(BR5), which is a contradiction. Otherwise, since vk = t̄ is incident to some y ∈ I(rl+1),

we have Z ⊆ I(rl+1) ∪ I(sk) by z ≥H x for any z ∈ Z. Then, since M is a tight perfect

matching, we have I(rl+1)∩Z = ∅, Z = {z} for some z ∈ I(sk), each of G◦[I(rl+1) \ {y}]
and G◦[I(sk) \ {z}] has a tight perfect matching, and sk ∈ {g, h}. By (BR5), we have

that z ≤H sk and y ≤H rl+1, which shows that y ≤H rl+1 = x ≤H z ≤H sk. By Step

5 of RBlossom(v, u), this means that y = rl+1 = x, z = sk, and {x, z} = {g, h}, which
contradicts that x, z ∈ H− and g ̸∈ H−.

Case (i)-b: Suppose that j ≤ k−1. In this case, since M is a tight perfect matching,

for i = j + 1, . . . , k, we have I(si) ∩ Z = ∅ and (vi, si) is the only edge in M between

I(si) and the outside of I(si). We can also see that Z ∩ J(vj) = ∅, since z ≥H x for

any z ∈ Z. We denote by Zj the set of vertices in J(vj) matched by M to the outside

of J(vj). Since z ≥H x for any z ∈ Z and Z ∩ I(si) ̸= ∅ for some i ≤ j − 1, we have

vj ≺ ul+1, where ul+1 is the vertex naturally defined by the decomposition of P (u). Note

that the assumption j ≤ k − 1 is used here. Hence, if a vertex z ∈ (RH(x) \ {t}) \ J(vj)
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is adjacent to {y ∈ J(vj) | y <H vj} in G◦, then z ∈ I(si) with i > j by (PD3) of

Lemma 8.2. Since (vi, si) is the only edge in M between I(si) and its outside for i > j,

this shows that Zj = (Z ∩ J(vj)) ∪ Zj ⊆ {y ∈ J(vj) | y ≥H vj}. Therefore, by (BR5), if

G◦[J(vj) \ (Z ∪ Zj)] has a tight perfect matching, then Zj = {vj}. The vertex vj is not

adjacent to the vertices in RH(x)\ (J(vj)∪ I(sj)∪ · · ·∪ I(sk)∪{t}) by (PD3) and (PD4)

of Lemma 8.2. Since |J(vj)| is odd and (vi, si) is the only edge in M between I(si) and

its outside for i > j, vj has to be adjacent to I(sj). Furthermore, by (vj , sj) ̸∈ M and

by (PD4) of Lemma 8.2, we have that vj is incident to a vertex z ∈ I(sj) with z >Hi sj ,

where I(sj) = RHi(sj) \ {ti} for some positive blossom Hi ∈ Λ. Since G◦[I(sj) \ {z}] has
no tight perfect matching by (BR5), we obtain a contradiction.

We next show that RH(x) satisfies (BR4), that is, G◦[RH(x)\{x, t}] has a unique tight
perfect matching. Let M be an arbitrary tight perfect matching in G◦[RH(x) \ {x, t}].
Recall that rl+1 = x and either I(rl+1) = {rl+1} or I(rl+1) = RHj (rl+1) \ {tj} for some

positive blossom Hj ∈ Λ. Since M is a tight perfect matching and |I(rl+1) \{x}| is even,
there is no edge in M between I(rl+1) and its outside. By (BR4), G◦[I(rl+1) \ {x}] has
a unique tight perfect matching, which must form a part of M . On the other hand,

G◦[J(vk)I(sk)J(vk−1)I(sk−1) · · · J(v1)I(s1)J(v0)J(u0) I(r1) J(u1) · · · I(rl) J(ul)]

has a unique tight perfect matching by the same argument as Lemma 8.4. By combining

them, we have that G◦[RH(x) \ {x, t}] has a unique tight perfect matching.

Case (ii): Suppose that x ∈ H was labeled before H is created.

We consider the case of x ∈ K(y) with y ∈ P (v|c). The case of x ∈ K(y) with

y ∈ P (u|d) can be dealt with in a similar manner. By Lemma 8.2, RH(x) can be

decomposed as

RH(x) = tJ(vk)I(sk)J(vk−1)I(sk−1) · · · J(vl+1)I(sl+1)J(vl)

with x = vl.

We first show that RH(x) satisfies (BR5), that is, G◦[(RH(x) \ {t}) \Z] has no tight

perfect matching if Z ⊆ (RH(x)\{t})∩H− satisfies that z ≥H x for any z ∈ Z, Z ̸= {x},
and |(Hj \ {tj}) ∩ Z| ≤ 1 for any positive blossom Hj ∈ Λ. Since z ≥H x for any z ∈ Z,

we have that Z ⊆ J(vl) ∪
∪

i I(si), which shows that we can apply the same argument

as Case (i) to obtain (BR5).

We next show that RH(x) satisfies (BR4), that is, G◦[RH(x)\{x, t}] has a unique tight
perfect matching. Let M be an arbitrary tight perfect matching in G◦[RH(x) \ {x, t}].
By the same argument as Lemma 8.4,

G◦[J(vk)I(sk)J(vk−1)I(sk−1) · · · J(v1)I(s1)J(v0)J(u0)]
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has a unique tight perfect matching M , and a part of M forms a tight perfect matching in

G◦[RH(x)\{x, t}]. Thus, this matching is a unique tight perfect matching in G◦[RH(x)\
{x, t}].

8.4 Creating a Blossom

When we create a new blossom H in RBlossom(v, u) or DBlossom(v, u), (GT2) holds by

the definition. In this subsection, we show that (GT1), (BT), (DF1), (DF2), and (DF3)

hold when a new blossom is created.

Lemma 8.7. Suppose that RBlossom(v, u) creates a new blossom H containing no source

line. Then, there is no edge in F λ between g and V ∗ \H, that is, g satisfies (GT1), after

H is added to Λ.

Proof. If g ∈ B∗, then we have that Ĉλ
xt = Cλ

xg for any x ∈ (B∗ \H) ∪ {b} before H is

added to Λ, by the definition of Ĉλ. This shows that, after H is added to Λ, Cλ
xg = 0 for

any x ∈ B∗ \H, that is, there is no edge of F λ between x = g and V ∗ \H. We can deal

with the case of g ∈ V ∗ \B∗ in the same way.

Lemma 8.8. Suppose that RBlossom(v, u) creates a new blossom H containing no source

line. Then, b, t, and t̄ satisfy the conditions in (BT).

Proof. As in Step 2 of RBlossom(v, u), we use the notation V̂ ∗, B̂∗, and Ĉ∗ to represent

the objects after adding b, t, and t̄. We only consider the case when b, t̄ ∈ B̂∗ and

t ∈ V̂ ∗ \ B̂∗, since the case when b, t̄ ∈ V̂ ∗ \ B̂∗ and t ∈ B̂∗ can be dealt with in a similar

way.

In Step 2 of RBlossom(v, u), we have Ĉ∗
bt = Ĉλ

bt = Ĉλ
rg ̸= 0 and Ĉ∗

t̄t = Ĉλ
t̄t = 1 ̸= 0.

Since Ĉλ
by = 0 for any y ∈ (V ∗ \ B∗) \ Y , Ĉ∗

by = 0 for any y ∈ (V̂ ∗ \ B̂∗) \H. Similarly,

since Ĉλ
t̄y = 0 for any y ∈ (V̂ ∗ \ B̂∗) \ {t}, Ĉ∗

t̄y = 0 for any y ∈ (V̂ ∗ \ B̂∗) \ {t}. These

conditions show that b, t, and t̄ satisfy the conditions in (BT).

Lemma 8.9. Suppose that RBlossom(v, u) creates a new blossom H and the dual vari-

ables are feasible before executing RBlossom(v, u). Then, the dual variables are feasible

after executing RBlossom(v, u).

Proof. We use the notation V̂ ∗, B̂∗, Ĉ∗, p̂, and Λ̂ to represent the objects after H is added

to Λ, and use the notation V ∗, B∗, C∗, p, and Λ to represent the objects before H is added

to Λ. We only consider the case when b, t̄ ∈ B̂∗ and t ∈ V̂ ∗ \ B̂∗, since the case when

b, t̄ ∈ V̂ ∗ \ B̂∗ and t ∈ B̂∗ can be dealt with in a similar way.

Since there is an edge in F ◦ between r and g, we have p(g)− p(r) = Qrg, and hence

p̂(t) = p(r) +Qrb = p(g) +Qrb −Qrg = p(g)−Qgt. (12)

By the definition of Ĉ∗, we have the following.
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• If (x, t) ∈ FΛ for x ∈ B∗, then x ∈ V ∗ \H and (x, g) ∈ FΛ. Thus,

p̂(t)− p̂(x) = p(g)− p(x)−Qgt ≥ Qxg −Qgt = Qxt

by (12), q(H) = 0, and the dual feasibility before executing RBlossom(v, u).

• If (b, y) ∈ FΛ for y ∈ V ∗ \B∗, then y ∈ H and (r, y) ∈ FΛ. Thus,

p̂(y)− p̂(b) = p̂(y)− p(r)−Qrb ≥ Qry −Qrb = Qby

by the dual feasibility before executing RBlossom(v, u).

• p̂(b) = p̂(t) = p̂(t̄), and t̄ is incident only to t in FΛ.

These facts show that p̂ and q̂ are feasible with respect to Λ. By Lemma 5.2, they are

also feasible with respect to Λ̂.

By the same argument as Lemmas 8.7, 8.8, and 8.9, (GT1), (BT), (DF1), (DF2), and

(DF3) hold when we create a new blossom in Step 3 of DBlossom(v, u). Furthermore, we

can see that Step 4 of DBlossom(v, u) keeps the dual feasibility, since there is no edge in

F λ between g = ti and V ∗ \Hi by (GT1). Therefore, RBlossom(v, u) and DBlossom(v, u)

keep the conditions (GT1), (GT2), (BT), (DF1), (DF2), and (DF3).

9 Dual Update

In this section, we describe how to modify the dual variables when Search returns ∅ in
Step 2. In Section 9.1, we show that the procedure keeps the dual variables finite as long

as the instance has a parity base. In Section 9.2, we bound the number of dual updates

per augmentation.

LetR ⊆ V ∗ be the set of vertices that are reached or examined by the search procedure

and not contained in any blossoms, i.e., R = R+ ∪ R−, where R+ is the set of labeled

vertices that are not contained in any blossom, and R− is the set of unlabeled vertices

whose mates are in R+. Let Z denote the set of vertices in V ∗ contained in labeled

blossoms. The set Z is partitioned into Z+ and Z−, where

Z+ = {ti | Hi is a maximal blossom labeled with ⊖}

∪
∪
{Hi \ {ti} | Hi is a maximal blossom labeled with ⊕},

Z− = {ti | Hi is a maximal blossom labeled with ⊕}

∪
∪
{Hi \ {ti} | Hi is a maximal blossom labeled with ⊖}.

We denote by Y the set of vertices that do not belong to these subsets, i.e., Y = V ∗ \
(R ∪ Z).
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For each vertex v ∈ R, we update p(v) as

p(v) :=


p(v) + ϵ (v ∈ R+ ∩B∗)

p(v)− ϵ (v ∈ R+ \B∗)

p(v)− ϵ (v ∈ R− ∩B∗)

p(v) + ϵ (v ∈ R− \B∗).

We also modify q(H) for each maximal blossom H by

q(H) :=


q(H) + ϵ (H : labeled with ⊕)
q(H)− ϵ (H : labeled with ⊖)
q(H) (otherwise).

To keep the feasibility of the dual variables, ϵ is determined by ϵ = min{ϵ1, ϵ2, ϵ3, ϵ4},
where

ϵ1 =
1

2
min{p(v)− p(u)−Quv | (u, v) ∈ FΛ, u, v ∈ R+ ∪ Z+, K(u) ̸= K(v)},

ϵ2 = min{p(v)− p(u)−Quv | (u, v) ∈ FΛ, u ∈ R+ ∪ Z+, v ∈ Y },
ϵ3 = min{p(v)− p(u)−Quv | (u, v) ∈ FΛ, u ∈ Y, v ∈ R+ ∪ Z+},
ϵ4 = min{q(H) | H: a maximal blossom labeled with ⊖}.

We note that FΛ coincides with F λ as seen in Observation 7.1. If ϵ = +∞, then we

terminate Search and conclude that there exists no parity base. If there are any blossoms

whose values of q become zero, then the algorithm deletes those blossoms from Λ, which

is possible by Lemma 5.2. Then, apply the procedure Search again.

9.1 Detecting Infeasibility

By the definition of ϵ, we can easily see that the updated dual variables are feasible if

ϵ is a finite value. We now show that we can conclude that the instance has no parity

base if ϵ = +∞.

A skew-symmetric matrix is called an alternating matrix if all the diagonal entries

are zero. Note that any skew-symmetric matrix is alternating unless the underlying field

is of characteristic two. By a congruence transformation, an alternating matrix can be

brought into a block-diagonal form in which each nonzero block is a 2 × 2 alternating

matrix. This shows that the rank of an alternating matrix is even, which plays an

important role in the proof of the following lemma.

Lemma 9.1. Suppose that there is a source line, and suppose also that ϵ = +∞ when

we update the dual variables. Then, the instance has no parity base.
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Proof. Recall that Y is the set of vertices v such that K(v) contains no labeled vertices.

In the proof, we use the following properties of F λ:

(A) there exists no edge in F λ between two labeled vertices u, v ∈ V ∗ with K(u) ̸=
K(v), and

(B) there exists no edge in F λ between a labeled vertex in V ∗ \ Y and a vertex in Y ,

but do not use the dual feasibility. Therefore, we may assume that Y contains no blossom,

because removing such blossoms from Λ does not create a new edge in F λ between a

labeled vertex in V ∗ \ Y and a vertex in Y . Note that this operation might violate

the dual feasibility. Let Λmax ⊆ Λ be the set of maximal blossoms. Since ϵ4 = +∞,

any blossom Hi ∈ Λmax is labeled with ⊕. Let Ls be the set of source lines that are not

contained in any blossom. Let Ln be the set of normal lines ℓ such that ℓ is not contained

in any blossom and ℓ contains a labeled vertex. We can see that for each line ℓ ∈ Ln,

exactly one vertex vℓ in ℓ is unlabeled and the other vertex v̄ℓ is labeled.

In order to show that there is no parity base, by Lemma 2.1, it suffices to show that

Pf ΦA(θ) = 0. We construct the matrix

Φλ
A(θ) =


O O O

O O I
Cλ[V ∪ T ]

O −I
D′(θ) O

−(Cλ[V ∪ T ])⊤ O O


← T ∩B∗

← U (identified with B)

← B

← V \B
← T \B∗

in the same way as Section 6, where T := {ti, t̄i | Hi ∈ Λn}. Since Pf ΦA(θ) = 0 is

equivalent to Pf Φλ
A(θ) = 0, it suffices to show that Φλ

A(θ) is singular, i.e., rankΦ
λ
A(θ) <

|U |+ |V |+ |T |.
In order to evaluate rankΦλ

A(θ), we consider a skew-symmetric matrix Φ̃A(θ) obtained

from Φλ
A(θ) by attaching rows and column and by applying row and column transforma-

tions as follows.

• For each line ℓ ∈ Ln, regard vℓ as a vertex in U if ℓ ⊆ B and regard vℓ as a vertex

in V \B if ℓ ⊆ V \B. Add a row and a column indexed by a new element zℓ such

that Φ̃A(θ)vzℓ = −Φ̃A(θ)zℓv = 0 if v ≠ vℓ and Φ̃A(θ)vℓzℓ = −Φ̃A(θ)zℓvℓ = 1. Then,

sweep out nonzero entries Φ̃A(θ)vℓx and Φ̃A(θ)xvℓ with x ̸= zℓ using the row and

the column indexed by zℓ.

• For each blossomHi ∈ Λmax∩Λn, add a row and a column indexed by a new element

zi such that Φ̃A(θ)vzi = −Φ̃A(θ)ziv = 0 if v ̸= ti and Φ̃A(θ)tizi = −Φ̃A(θ)ziti = 1.

Then, sweep out nonzero entries Φ̃A(θ)tix and Φ̃A(θ)xti with x ̸= zi using the row

and the column indexed by zi.
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Note that we apply the above operations for each ℓ ∈ Ln and for each Hi ∈ Λmax ∩ Λn

in an arbitrary order. Since attaching rows and columns does not decrease the rank of a

matrix, we have rank Φ̃A(θ) ≥ rankΦλ
A(θ). The above operations sweep out all nonzero

entries Cλ
xy if either x or y is unlabeled. This together with (A) and (B) shows that

Φ̃A(θ) is a block-diagonal skew-symmetric matrix, where the index set of each block

corresponds to one of the following vertex sets: (i) ℓ ∪ {zℓ} for ℓ ∈ Ln, (ii) ℓ ∈ Ls, (iii)

(Hi ∩ (V ∪T ))∪{zi} for Hi ∈ Λmax ∩Λn, (iv) Hi ∩ (V ∪T ) for Hi ∈ Λmax ∩Λs, or (v) Y .

Note that a vertex in B corresponds to two indices (i.e., two rows and two columns) of

Φ̃A(θ), where one is in B and the other is in U , and a vertex in (V \B)∪ T corresponds

to one index of Φ̃A(θ). We denote this partition of the index set by V1, . . . , Vk. Then, we

have

rank Φ̃A(θ) =

k∑
j=1

rank Φ̃A(θ)[Vj ],

where Φ̃A(θ)[Vj ] is the principal submatrix of Φ̃A(θ) whose rows and columns are both

indexed by Vj . In what follows, we evaluate rank Φ̃A(θ)[Vj ] for each j.

If Vj corresponds to (i) ℓ ∪ {zℓ} for ℓ ∈ Ln, (ii) ℓ ∈ Ls, (iii) (Hi ∩ (V ∪ T )) ∪ {zi} for
Hi ∈ Λmax ∩ Λn, or (iv) Hi ∩ (V ∪ T ) for Hi ∈ Λmax ∩ Λs, then we have that |Vj | is odd.
Since Φ̃A(θ)[Vj ] is an alternating matrix, this implies that rank Φ̃A(θ)[Vj ] ≤ |Vj | − 1. If

Vj corresponds to Y , then rank Φ̃A(θ)[Vj ] ≤ |Vj |. Hence, we have that

rankΦλ
A(θ) ≤ rank Φ̃A(θ) =

k∑
j=1

rank Φ̃A(θ)[Vj ] ≤
k∑

j=1

|Vj | − (k − 1)

≤ 2|B|+ |V \B|+ |T |+ |Ln|+ |Λmax ∩ Λn| − (k − 1)

= |U |+ |V |+ |T | − |Ls| − |Λmax ∩ Λs|.

We note that |Ls|+ |Λmax ∩ Λs| is equal to the number of source lines. Therefore, since

there exists at least one source line, we have that rankΦλ
A(θ) < |U | + |V | + |T |. Thus,

Pf ΦA(θ) = Pf Φλ
A(θ) = 0 and there is no parity base by Lemma 2.1.

9.2 Bounding Iterations

We next show that the dual variables are updated O(n) times per augmentation. To

see this, roughly, we show that this operation increases the number of labeled vertices.

Although Search contains flexibility on the ordering of vertices, it does not affect the set

of the labeled vertices. This is guaranteed by the following lemma.

Lemma 9.2. A vertex x ∈ V ∗ \ {bi | Hi ∈ Λn} is labeled in Search if and only if there

exists a vertex set X ⊆ V ∗ such that

• X ∪ {x} consists of normal lines, dummy lines, and a source vertex s,
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• C∗[X] is nonsingular, and

• the following equality holds:

p(X \B∗)− p(X ∩B∗) = −
∑
{q(Hi) | Hi ∈ Λn, |X ∩Hi| is odd, ti ∈ X}

+
∑
{q(Hi) | Hi ∈ Λn, |X ∩Hi| is odd, ti ̸∈ X}

+
∑
{q(Hi) | Hi ∈ Λs, |X ∩Hi| is odd}. (13)

Proof. If x is labeled in Search, then we obtain P (x) and X := P (x) \ {x} satisfies the

conditions by Corollary 8.5.

Suppose that X satisfies the above conditions, and assume to the contrary that x is

not labeled. If x is not labeled, then we can update the dual variables keeping the dual

feasibility. We now see how the dual update affects (13).

• If s is not contained in any blossom, then the left hand side of (13) decreases by ϵ

by updating p(s). Otherwise, the right hand side of (13) increases by ϵ by updating

q(K(s)).

• If x is not contained in any blossom, then the left hand side of (13) decreases by

ϵ or does not change by updating p(x̄). Otherwise, the right hand side of (13)

increases by ϵ or does not change by updating q(K(x)).

• Updating the other dual variables does not affect the equality (13), since s, x ̸∈ Hi

implies that |X ∩Hi| is even.

By combining these facts, after updating the dual variables, we have that the left hand

side of (13) is strictly less than its right hand side, which contradicts Lemma 5.4.

By using this lemma, we bound the number of dual updates as follows.

Lemma 9.3. If there exists a parity base, then the dual variables are updated at most

O(n) times before Search finds an augmenting path.

Proof. Suppose that we update the dual variables more than once, and we consider how

the value of

κ(V ∗,Λ) := |{v ∈ V ∗ | v is labeled}|+|Λs|−2|{Hi ∈ Λn | H◦
i contains no labeled vertex}|

will change between two consecutive dual updates. By Lemma 9.2, if v ∈ V ∗ is labeled

at the time of the first dual update, then it is labeled again at the time of the second

dual update unless v is removed in the procedure. Note that if a labeled vertex v ∈ V ∗

is removed, then v = ti, Hi ∈ Λn is a maximal blossom labeled with ⊖, and q(Hi) = ϵ,

which shows that |{Hi ∈ Λn | H◦
i contains no labeled vertex}| will decrease by one. We
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also observe that if a new blossom Hi is created in the procedure, then either it is in Λs

or t̄i is a new labeled vertex, which shows that κ(V ∗,Λ) will increase. Thus, the value of

κ(V ∗,Λ) increases by at least one between two consecutive dual updates. Since the range

of κ(V ∗,Λ) is at most O(n), the dual variables are updated at most O(n) times.

10 Augmentation

The objective of this section is to describe how to update the primal solution using an

augmenting path P . In Sections 10.1 and 10.2, we present an augmentation procedure

that primarily replaces B∗ with B∗△P . In addition, it updates the bud, the tip, and

its mate carefully. In Section 10.3, we show that the augmentation procedure keeps the

dual feasibility. After the augmentation, the algorithm applies Search in each blossom H

to obtain a new routing and ordering in H, which will be described in Section 10.4.

10.1 Definition of the augmentation

Suppose we are given V ∗, B∗, C∗, Λ, and feasible dual variables p and q. Let P be an

augmenting path. In the augmentation along P , we update V ∗, B∗, C∗, Λ, bi, ti, t̄i,

p, and q. The new objects are denoted by V̂ ∗, B̂∗, Ĉ∗, Λ̂, b̂i, t̂i, ̂̄ti, p̂ : V̂ ∗ → R, and
q̂ : Λ̂ → R+, respectively. The procedure for augmentation is described as follows (see

Fig. 5).

V*, B*, C*, �, 

bi, ti, ti, p, q

V', B', C', �', 

bi, ti, ti, p', q'

Add vertices

   (Step 1)

V', B', C', �',  

Update the base

     (Step 2)

bi, ti, ti, p', q'

V*, B*, C*, �,  

bi, ti, ti, p, q Remove vertices

     (Step 3)

Figure 5: Each step of the augmentation

Procedure Augment

Step 0: Remove each blossom Hi ∈ Λ with q(Hi) = 0 from Λ. Note that we also remove

bi, ti, and t̄i if Hi ∈ Λn, and update V ∗, B∗, C∗, Λ, p, and q, accordingly.

Step 1: Let IP := {i ∈ {1, . . . , λ} | P ∩ Hi ̸= ∅}, and introduce three new vertices b̂i,

t̂i, and ̂̄ti for each i ∈ IP , which will be a bud, a tip, and the mate of t̂i after the
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augmentation. By the definition of augmenting paths, for each i ∈ IP , there exists

a vertex xi ∈ H◦
i such that P ∩Hi = RHi(xi).

Define

V ′ := V ∗ ∪ {b̂i, t̂i, ̂̄ti | i ∈ IP },

B′ := B∗ ∪ {b̂i, ̂̄ti | i ∈ IP , xi ∈ B∗} ∪ {t̂i | i ∈ IP , xi ∈ V ∗ \B∗},

H ′
i := Hi ∪ {t̂j , ̂̄tj | j ∈ IP , Hj ⊆ Hi} ∪ {b̂j | j ∈ IP , Hj ⊊ Hi} (i = 1, . . . , λ),

Λ′ := {H ′
1, . . . , H

′
λ},

and define q′ : Λ′ → R+ as q′(H ′
i) = q(Hi) for i = 1, . . . , λ. Let Λ′

n (resp. Λ′
s) be

the set of blossoms in Λ′ without (resp. with) a source line. For H ′
i ∈ Λ′

n, the bud

of H ′
i, the tip of H ′

i, and the mate of ti are bi, ti, and t̄i, respectively. For u, v ∈ V ′,

define Q′
uv by using q′ in the same way as Quv. Let p′ : V ′ → R be the extension

of p defined as follows.

• If xi ∈ B∗, then p′(t̂i) = p′(̂̄ti) := p(xi) +Q′
xi t̂i

and p′(̂bi) := p′(t̂i) + q′(H ′
i).

• If xi ∈ V ∗\B∗, then p′(t̂i) = p′(̂̄ti) := p(xi)−Q′
xi t̂i

and p′(̂bi) := p′(t̂i)−q′(H ′
i).

We also define a matrix C ′ with row set B′ and column set V ′ \ B′ such that

C ′[V ∗] = C∗ and

p′ and q′ are feasible with respect to C ′ and Λ′. (14)

The construction of C ′ satisfying this condition is given in Section 10.2.

Step 2: We consider a matrix A′ := [I C ′], where I is the identity matrix. In order

to distinguish rows and columns, the row set of A′ is denoted by U ′. Let B̂′ :=

B′△P . By applying row transformations to A′ and by changing the ordering of

columns, we obtain a matrix Â′ such that Â′[U ′, B̂′] is the identity matrix. Note

that this transformation is possible, because C ′[P ] = C∗[P ] is nonsingular. Let

Ĉ ′ := Â′[U ′, V ′ \ B̂′] and identify the row set of Ĉ ′ with B̂′. Let

Ĥ ′
i :=

{
H ′

i ∪ {b̂i} if i ∈ IP ,

H ′
i if i ∈ {1, . . . , λ} \ IP ,

Λ̂′ := {Ĥ ′
1, . . . , Ĥ

′
λ},

and define q̂′ : Λ̂′ → R+ as q̂′(Ĥ ′
i) = q′(H ′

i) for i = 1, . . . , λ. We also define

p̂′ : V ′ → R+ as

p̂′(v) =


p′(v)− q̂′(Ĥ ′

i) if v = b̂i for some i ∈ IP and v ∈ B̂′,

p′(v) + q̂′(Ĥ ′
i) if v = b̂i for some i ∈ IP and v ∈ V ′ \ B̂′,

p′(v) otherwise.

37



Let Λ̂′
n (resp. Λ̂′

s) be the set of blossoms in Λ̂′ without (resp. with) a source line.

Define b̂i := bi, t̂i := ti, and ̂̄ti := t̄i for i ∈ {1, . . . , λ} \ IP with Ĥ ′
i ∈ Λ̂′

n. For

Ĥ ′
i ∈ Λ̂′

n, regard b̂i, t̂i, and ̂̄ti as the bud of Ĥ ′
i, the tip of Ĥ ′

i, and the mate of t̂i,

respectively.

Step 3: Let I ′P := {i ∈ {1, . . . , λ} | P ∩ Hi ̸= ∅, Hi ∈ Λn} and remove {bi, ti, t̄i |
i ∈ I ′P } from each object. More precisely, let V̂ ∗ := V ′ \ {bi, ti, t̄i | i ∈ I ′P } and

B̂∗ := B̂′ \ {bi, ti, t̄i | i ∈ I ′P }. Let Ĥj := Ĥ ′
j \ {bi, ti, t̄i | i ∈ I ′P } for each j and

let Λ̂ := {Ĥ1, . . . , Ĥλ}. Let Λ̂n (resp. Λ̂s) be the set of blossoms in Λ̂ without

(resp. with) a source line. Define Ĉ∗ := Ĉ ′[V̂ ∗]. Let p̂ be the restriction of p̂′ to V̂ ∗

and define q̂ : Λ̂ → R+ by q̂(Ĥi) = q̂′(Ĥ ′
i) for each i. For Ĥi ∈ Λ̂n, the bud of Ĥi,

the tip of Ĥi, and the mate of t̂i are b̂i, t̂i, and ̂̄ti, respectively.
10.2 Construction of C ′

In this subsection, we give the definition of C ′ over K with row set B′ and column set

V ′ \B′ such that (14) and the following property hold:

Ĉ ′, b̂i, t̂i, and ̂̄ti satisfy (BT). (15)

Recall that Ci is the matrix obtained from C by elementary column and row transfor-

mations (1) and (2) using nonzero entries at {(bj , tj) | Hj ∈ Λn, j ∈ {1, . . . , i}} for i =

1, . . . , λ. Since Ci is a submatrix of the matrix obtained from C ′ by elementary column

and row transformations using nonzero entries at {(bj , tj) | H ′
j ∈ Λ′

n, j ∈ {1, . . . , i}}, this
larger matrix is also denoted by Ci if no confusion may arise. Since C ′ has to satisfy that

C ′[V ∗] = C∗, it suffices to define rows and columns corresponding to {b̂i, t̂i, ̂̄ti | i ∈ IP }.
We add the rows and the columns in two steps.

In the first step, we add rows and columns corresponding to {t̂i, ̂̄ti | i ∈ IP }. By

abuse of notation, let C ′, V ′, and B′ be the objects obtained from C, V , and B by

adding {t̂i, ̂̄ti | i ∈ IP }. Recall that, for i ∈ IP , P ∩ Hi = RHi(xi) for some xi ∈ H◦
i .

If t̂i ∈ B′ and ̂̄ti ∈ V ′ \ B′, then we add a row corresponding to t̂i and a column

corresponding to ̂̄ti so that Ci−1
t̂iv

= 0 for v ∈ (V ′ \B′)\{xi, ̂̄ti}, Ci−1

u ̂̄ti = 0 for u ∈ B′ \{t̂i},

and Ci−1

t̂i ̂̄ti = Ci−1
t̂ixi

= 1. If t̂i ∈ V ′ \ B′ and ̂̄ti ∈ B′, then we add a column corresponding

to t̂i and a row corresponding to ̂̄ti so that Ci−1
ut̂i

= 0 for u ∈ B′ \ {xi, ̂̄ti}, Ci−1̂̄tiv = 0 for

v ∈ (V ′ \ B′) \ {t̂i}, and Ci−1̂̄ti t̂i = Ci−1
xi t̂i

= 1. The matrix Ci−1 naturally defines C ′. This

definition means that (̂̄ti, t̂i) ∈ FΛ′ , (t̂i, xi) ∈ FΛ′ (or (t̂i, ̂̄ti) ∈ FΛ′ , (xi, t̂i) ∈ FΛ′), and the

other edges in FΛ′ are incident to neither ̂̄ti nor t̂i.
By the definition, we can easily see that the dual feasibility holds after adding {t̂i, ̂̄ti |

i ∈ IP }. Furthermore, by the construction of Ĉ ′, we have that Ĉ ′
u ̂̄ti = 0 for any u ∈
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B̂′ \ {t̂i} and Ĉ ′
t̂i ̂̄ti ̸= 0 if t̂i ∈ B′ and ̂̄ti ∈ V ′ \B′, and Ĉ ′̂̄tiv = 0 for v ∈ (V ′ \B′) \ {t̂i} and

Ĉ ′̂̄ti t̂i ̸= 0 if t̂i ∈ V ′ \B′ and ̂̄ti ∈ B′. This shows that Ĉ ′ satisfies a part of the condition

(BT) concerning t̂i and ̂̄ti.
In the second step, for i = λ, λ − 1, . . . , 1 in this order, we add a row or a column

corresponding to b̂i if i ∈ IP one by one. Suppose that we have already added rows and

columns corresponding to {t̂i, ̂̄ti | i ∈ IP }∪{b̂i | i ∈ {λ, λ−1, . . . , k+1}∩IP }, and consider

b̂k. In what follows in this subsection, we define a row or a column corresponding to b̂k
and show the validity of the definition, i.e., (14) and (15). By abuse of notation, let C∗

be the matrix after adding rows and columns corresponding to {t̂i, ̂̄ti | i ∈ IP } ∪ {b̂i |
i ∈ {λ, λ − 1, . . . , k + 1} ∩ IP }, and let C ′ be the matrix obtained from this matrix by

adding a row or a column corresponding to b̂k if k ∈ IP . Note that b̂k = bk and C ′ = C∗

if k ̸∈ IP . We abuse V ∗, B∗,Hi, p, q,Q, V ′, B′,H ′
i, p

′, q′, and Q′ in a similar way.

We first consider the case when k ̸∈ IP . Since (14) is obvious, it suffices to show (15).

For any u, v ∈ V ′, it holds that

Ĉ ′
uv ̸= 0 ⇐⇒ Â′[U ′, {u, v}△B̂′] is nonsingular

⇐⇒ A′[U ′, {u, v}△B′△P ] is nonsingular

⇐⇒ C ′[{u, v}△P ] is nonsingular. (16)

Since P ∩H ′
k = ∅, either C ′

bky
= 0 or C ′

ybk
= 0 holds for any y ∈ P . Thus, for x ∈ V̂ ∗,

C ′[{bk, x}△P ] is nonsingular if and only if either C ′
bkx
̸= 0 or C ′

xbk
̸= 0, because C ′[P ] is

nonsingular. By combining this with (16), we have

• either Ĉ ′
b̂k t̂k
̸= 0 or Ĉ ′

t̂k b̂k
̸= 0, and

• either Ĉ ′
b̂kx
̸= 0 or Ĉ ′

xb̂k
̸= 0 for any x ∈ V̂ ∗ \ Ĥk.

By applying the same argument to ̂̄tk = t̄k, we have

• either Ĉ ′̂̄tk t̂k ̸= 0 or Ĉ ′
t̂k

̂̄tk ̸= 0, and

• either Ĉ ′̂̄tkx ̸= 0 or Ĉ ′
x ̂̄tk ̸= 0 for any x ∈ V̂ ∗ \ t̂k.

This shows (15).

We next consider the case when k ∈ IP . Let X := RHk
(xk) \ {xk, tk}. By (BR4), we

have that G◦[X] has a unique tight perfect matching, and hence Cλ[X] is nonsingular

by Lemma 8.1. Note that one can easily see that adding t̂k, ̂̄tk, and b̂k does not violate

(GT2), which shows that Cλ[X] = Ck[X]. Let s be the unique source vertex in X if

Hk ∈ Λs, and let s = bk if Hk ∈ Λn. Since |X ∩Hi| is odd if and only if |Hi∩{xk, s}| = 1,
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the existence of a tight perfect matching shows that

p(X \B∗)− p(X ∩B∗) = −
∑
{q(Hi) | Hi ∈ Λn, xk ∈ Hi ⊆ Hk \ {s}, xk ̸= ti}

+
∑
{q(Hi) | Hi ∈ Λn, xk ∈ Hi ⊆ Hk \ {s}, xk = ti}

+
∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {xk}}. (17)

We consider the following two cases separately. We note that if a matrix contains exactly

one column (resp. row), it can be regarded as a column vector (resp. row vector).

10.2.1 Case (i): xk ∈ V ∗ \B∗

Suppose that xk ∈ V ∗\B∗. In this case, b̂k, d̂k ∈ V ′\B′, and t̂k ∈ B′. The nonsingularity

of Ck[X] = Cλ[X] shows that a column vector Ck[X ∩B∗, {xk}] can be represented as a

linear combination of Ck[X∩B∗, {v}], where v ∈ X \B∗. That is, there exists a constant

αv ∈ K for each v ∈ X \B∗ such that

Ck[X ∩B∗, {xk}] =
∑

v∈X\B∗

αv · Ck[X ∩B∗, {v}]. (18)

Since Gλ[X] has a unique perfect matching, Ck[X] = Cλ[X] is an upper triangular

matrix by changing the ordering of the rows and the columns, and hence αv’s can be

computed by O(n2) operations. Define a column vector η by

η := Ck[B∗, {xk}]−
∑

v∈X\B∗

αv · Ck[B∗, {v}],

and define the column vector of Ck corresponding to b̂k by

Ck
ub̂k

=

{
0 if u ∈ (Hk \ (X ∪ {tk})) ∩B∗,

ηu otherwise

for u ∈ B∗, where Ck is the matrix obtained from C ′ by elementary column and row

transformations using nonzero entries at {(bi, ti) | H ′
i ∈ Λ′

n, i ∈ {1, . . . , k}}. This

naturally defines the column vector of C ′ corresponding to b̂k. With this definition, we

will show that (14) and (15) hold.

Claim 10.1. For any u ∈ B′ = B∗, if (u, b̂k) ∈ FΛ′, then p′(̂bk)− p′(u) ≥ Q′
ub̂k

.

Proof. By the definition, Cλ
ub̂k

= Ck
ub̂k

= 0 for any u ∈ B′∩ (H ′
k \{tk}), which shows that

(u, b̂k) ̸∈ FΛ′ . Fix u ∈ B′ \ (H ′
k \ {tk}) with (u, b̂k) ∈ FΛ′ , which implies that Cλ

ub̂k
̸= 0 by

Observation 7.1. Since

Cλ
ub̂k

= Cλ
uxk
−

∑
v∈X\B∗

αv · Cλ
uv,
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we have either Cλ
uxk
̸= 0, or Cλ

uv ̸= 0 and αv ̸= 0 for some v ∈ X \B∗.

If Cλ
uxk
̸= 0, then p(xk)−p(u) ≥ Quxk

by Lemma 5.3, and hence p′(xk)−p′(u) ≥ Q′
uxk

.

Combining this with p′(̂bk) = p′(xk)−Q′
xk t̂k
− q′(H ′

k), we have

p′(̂bk)− p′(u) ≥ Q′
uxk
−Q′

xk t̂k
− q′(H ′

k) = Q′
ub̂k

,

which shows the claim.

Otherwise, since Cλ
uv ̸= 0 and αv ̸= 0 for some v ∈ X \ B∗, in a similar way as the

above argument, we obtain p′(v)− p′(u) ≥ Q′
uv and

p′(̂bk)− p′(u) + p′(v)− p′(xk) ≥ Q′
uv −Q′

xk t̂k
− q′(H ′

k). (19)

On the other hand, since Ck[X] is nonsingular, (18) and αv ̸= 0 show that Ck[(X \{v})∪
{xk}] is nonsingular. By Lemma 5.4, we obtain

p(((X \B∗) \ {v}) ∪ {xk})− p(X ∩B∗)

≥ −
∑
{q(Hi) | Hi ∈ Λn, v ∈ Hi ⊆ Hk \ {s}, v ̸= ti}

+
∑
{q(Hi) | Hi ∈ Λn, v ∈ Hi ⊆ Hk \ {s}, v = ti}

+
∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {v}}, (20)

because |((X \ {v}) ∪ {xk}) ∩Hi| is odd if and only if |Hi ∩ {v, s}| = 1. Recall that s is

the unique source vertex in X if Hk ∈ Λs and s = bk if Hk ∈ Λn. By (17) and (20), we

have that

p′(xk)− p′(v) = p(xk)− p(v)

= −Q′
vs + 2

∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {v}}

+Q′
sxk
− 2

∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {xi}}. (21)

By (19) and (21), we obtain

p′(̂bk)− p′(u) ≥ Q′
uv −Q′

vs + 2
∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {v}}

+Q′
sxk
− 2

∑
{q(Hi) | Hi ∈ Λs, s ∈ Hi ⊆ Hk \ {xi}} −Q′

xk t̂k
− q′(H ′

k)

= Q′
us −Q′

st̂k
− q′(H ′

k) = Q′
ub̂k

,

which shows the claim.

Claim 10.2. Ĉ ′
ub̂k

= 0 for any u ∈ B̂′ \ Ĥ ′
k and Ĉ ′

t̂k b̂k
̸= 0.
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Proof. Let Y := B∗\(Hk \(X∪{tk})). By the definition, Ck[Y, {b̂k}] is a linear combina-

tion of Ck[Y, {v}], where v ∈ (X\B∗)∪{xk}. However, since ηt̂k = Ck
t̂kxk
̸= 0 = Ck

t̂k b̂k
, this

relation does not hold if we add a row corresponding to t̂k, that is, Ck[Y ∪ {t̂k}, {b̂k}]
is not a linear combination of Ck[Y ∪ {t̂k}, {v}], where v ∈ (X \ B∗) ∪ {xk}. Since

ti ∈ X ∪ {xk} for any i < k with Hi ∈ Λn and Hi ∩ (X ∪ {xk}) ̸= ∅, we have that

C ′[Y, {b̂k}] is a linear combination of C ′[Y, {v}], where v ∈ ((X ∪ {tk}) \ B∗) ∪ {xk}.
Furthermore, this relation does not hold if we add a row corresponding to t̂k.

Recall that A′ = [I C ′], the row set of A′ is denoted by U ′, and B′ = B∗. Then,

A′[U ′, {b̂k}] can be represented as a linear combination of A′[U ′, {v}], where v ∈ ((X ∪
{tk})\B′)∪{xk}∪ ((Hk \ (X∪{tk}))∩B′). Furthermore, the coefficient of A′[U ′, {t̂k}] in
this linear combination is not zero, because C ′[Y ∪{t̂k}, {b̂k}] is not a linear combination

of C ′[Y ∪ {t̂k}, {v}], where v ∈ ((X ∪ {tk}) \B′) ∪ {xk}.
Since B̂′ = B′△P and P ∩Hk = X ∪{xk, tk}, we have that ((X ∪{tk}) \B′)∪{xk}∪

((Hk \ (X ∪ {tk})) ∩B′) = B̂′ ∩ Ĥ ′
k. Recall that Â

′ is obtained from A′ by applying row

transformations and by changing the ordering of columns. Thus, Â′[U ′, {b̂k}] is a linear

combination of Â′[U ′, {v}], where v ∈ B̂′ ∩ Ĥ ′
k, and the coefficient of Â′[U ′, {t̂k}] is not

zero. This shows that Ĉ ′
ub̂k

= 0 for u ∈ B̂′ \ Ĥ ′
k and Ĉ ′

t̂k b̂k
̸= 0, where we recall that

Ĉ ′ = Â′[U ′, V ′ \ B̂′] and the row set of Ĉ ′ is identified with B̂′.

Note that we add {b̂i | i ∈ {1, . . . , k − 1}, i ∈ IP } after this procedure, but adding

these vertices does not affect Ĉ ′
ub̂k

for any u. By Claims 10.1 and 10.2, we have (14) and

(15).

10.2.2 Case (ii): xk ∈ B∗

Suppose that xk ∈ B∗. In this case, b̂k, d̂k ∈ B′, and t̂k ∈ V ′ \B′. The nonsingularity of

Ck[X] = Cλ[X] shows that a row vector Ck[{xk}, X \B∗] can be represented as a linear

combination of Ck[{u}, X \ B∗], where u ∈ X ∩ B∗. That is, there exists a constant

αu ∈ K for each u ∈ X ∩B∗ such that

Ck[{xk}, X \B∗] =
∑

u∈X∩B∗

αu · Ck[{u}, X \B∗]. (22)

Note that αu’s can be computed by O(n2) operations. Define a row vector η by

η := Ck[{xk}, V ∗ \B∗]−
∑

u∈X∩B∗

αu · Ck[{u}, V ∗ \B∗],

and define the row vector of Ck corresponding to b̂k by

Ck
b̂kv

=

{
0 if v ∈ (Hk \ (X ∪ {tk})) \B∗,

ηv otherwise
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for v ∈ V ∗ \ B∗, where Ck is the matrix obtained from C ′ by elementary column and

row transformations using nonzero entries at {(bi, ti) | H ′
i ∈ Λ′

n, i ∈ {1, . . . , k}}. This

naturally defines the row vector of C ′ corresponding to b̂k. By a similar argument as

Claim 10.1, in which we change the role of rows and columns of C ′, we obtain the

following claim, which shows (14).

Claim 10.3. For any v ∈ V ′ \B′ = V ∗ \B∗, if (̂bk, v) ∈ FΛ′, then p′(v)− p′(̂bk) ≥ Q′
b̂kv

.

We next show that (15) holds.

Claim 10.4. Ĉ ′
b̂kv

= 0 for any v ∈ (V ′ \ B̂′) \ Ĥ ′
k and Ĉ ′

b̂k t̂k
̸= 0.

Proof. Let Y := (V ∗ \ B∗) \ (Hk \ (X ∪ {tk})). By the definition, Ck[{b̂k}, Y ] is a

linear combination of Ck[{u}, Y ], where u ∈ (X ∩ B∗) ∪ {xk}. However, since ηt̂k =

Ck
xk t̂k

̸= 0 = Ck
b̂k t̂k

, this relation does not hold if we add a column corresponding to

t̂k, that is, Ck[{b̂k}, Y ∪ {t̂k}] is not a linear combination of Ck[{u}, Y ∪ {t̂k}], where
u ∈ (X ∩B∗) ∪ {xk}.

Since ti ∈ X∪{xk} for any i < k with Hi ∈ Λn and Hi∩(X∪{xk}) ̸= ∅, we have that
C ′[{b̂k}, Y ] is a linear combination of C ′[{u}, Y ], where u ∈ ((X ∪ {tk}) ∩ B∗) ∪ {xk}.
That is, there exists a constant α′

u for each u ∈ ((X ∪ {tk}) ∩B∗) ∪ {xk} such that

C ′[{b̂k}, Y ] =
∑

u∈((X∪{tk})∩B∗)∪{xk}

α′
u · C ′[{u}, Y ].

Furthermore, this relation does not hold if we add a column corresponding to t̂k, that is,

C ′
b̂k t̂k
̸=

∑
u∈((X∪{tk})∩B∗)∪{xk}

α′
u · C ′

ut̂k
. (23)

Recall that A′ = [I C ′], the row set of A′ is denoted by U ′, and B′ = B∗ ∪ {b̂k}.
We first replace the row A′[{b̂k}, V ′] with

A′′[{b̂k}, V ′] := A′[{b̂k}, V ′]−
∑

u∈((X∪{tk})∩B∗)∪{xk}

α′
u ·A′[{u}, V ′] (24)

to obtain a new matrix A′′, which is obtained from A′ by a row transformation. By the

definition of A′′, we obtain A′′
b̂k b̂k

= 1, A′′
b̂ku

= −α′
u for u ∈ ((X ∪ {tk}) ∩ B∗) ∪ {xk},

and A′′
b̂ku

= 0 for u ∈ B∗ \ (X ∪ {tk, xk}). Furthermore, by the definitions of α′
u,

it holds that A′′
b̂kv

= 0 for v ∈ Y . Therefore, we have that A′′
b̂kv
̸= 0 only if v ∈

((X ∪{tk})∩B∗)∪{xk, b̂k}∪ ((Hk \ (X ∪{tk})) \B∗) = (Ĥ ′
k \ B̂′)∪{b̂k}, where we note

that B̂′ = B′△P and P ∩Hk = X ∪ {tk, xk}. Furthermore, by (23) and (24), we obtain

A′′
b̂k t̂k
̸= 0.
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Recall that Â′ is obtained from A′ by applying row transformation and by changing

the ordering of columns so that Â′[U ′, B̂′] is the identity matrix. Since A′′
b̂k b̂k

= 1 and

A′′
b̂kv

= 0 for v ∈ B̂′ \ {b̂k}, it holds that Â′[{b̂k}, V ′] = A′′[{b̂k}, V ′]. Therefore, Ĉ ′
b̂kv

=

Â′
b̂kv

= A′′
b̂kv

= 0 for any v ∈ (V ′ \ B̂′) \ Ĥ ′
k and Ĉ ′

b̂k t̂k
= Â′

b̂k t̂k
= A′′

b̂k t̂k
̸= 0, where we

recall that Ĉ ′ = Â′[U ′, V ′ \ B̂′] and the row set of Ĉ ′ is identified with B̂′.

Note that we add {b̂i | i ∈ {1, . . . , k − 1}, i ∈ IP } after this procedure, but adding

these vertices does not affect Ĉ ′
b̂kv

for any v. By Claims 10.3 and 10.4, we have (14) and

(15).

10.3 Feasibility

In this subsection, we show that the dual feasibility holds after the augmentation.

Lemma 10.5. Assume that V̂ ∗, B̂∗, Ĉ∗, Λ̂, p̂, and q̂ are defined as in Sections 10.1 and

10.2. Then, dual variables p̂ and q̂ are feasible with respect to Ĉ∗ and Λ̂.

Proof. It suffices to prove that dual variables p̂′ and q̂′ are feasible with respect to Ĉ ′

and Λ̂′, because removing {bi, ti, t̄i | i ∈ I ′P } does not affect the dual feasibility.

Since p and q are feasible, it is obvious that p̂′ and q̂′ satisfy (DF1). Since q̂′(Ĥ ′
i) =

q′(H ′
i) for each i, we can also see that (DF3) holds by the definition of p̂′. To show

(DF2), take a pair (u, v) ∈ F
Λ̂′ . Then, by Lemma 5.1, Ĉ ′[X] is nonsingular, where

X := {u, v}∪
∪
{{b̂i, t̂i} | i ∈ Î ′uv \ Ĵ ′

uv, Ĥ
′
i ∈ Λ̂′

n}. Note that Î ′uv and Ĵ ′
uv are defined with

respect to Λ̂′ in the same way as Iuv and Juv. Since Â′[U ′, B̂′] is the identity matrix and

Ĉ ′ = Â′[U ′, V ′ \ B̂′], the nonsingularity of Ĉ ′[X] shows that Â′[U ′, (X \ B̂′) ∪ (B̂′ \X)]

is nonsingular. Let Y := (X \ B̂′) ∪ (B̂′ \ X) = X△B̂′. Since Â′ is obtained from

A′ by row transformations, it holds that A′[U ′, Y ] is nonsingular, which shows that

C ′[B′ \ Y, Y \ B′] = C ′[Y△B′] is nonsingular. Since p′ and q′ are dual feasible with

respect to C ′ and Λ′, by Lemma 5.6, we have that

p′(Y \B′)− p′(B′ \ Y ) ≥ −
∑
{q′(H ′

i) | H ′
i ∈ Λ′

n, |(Y△B′) ∩H ′
i| is odd}

+
∑
{q′(H ′

i) | H ′
i ∈ Λ′

s, |(Y△B′) ∩H ′
i| is odd}.

On the other hand, by the definition of P , we have

p′(P \B′)− p′(P ∩B′) = Qrs =
∑
{q′(H ′

i) | i ∈ I ′rs},

where r and s are the source vertices in P , and I ′rs is defined with respect to Λ′. By
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these inequalities, we have

p′(Y \B′) + p′(P ∩B′)− p′(B′ \ Y )− p′(P \B′)

≥ −
∑
{q′(H ′

i) | H ′
i ∈ Λ′

n, |(Y△B′) ∩H ′
i| is odd}

+
∑
{q′(H ′

i) | H ′
i ∈ Λ′

s, |(Y△B′) ∩H ′
i| is odd} −

∑
{q′(H ′

i) | i ∈ I ′rs}. (25)

Recall that B̂′ = B′△P . This shows that

Y \B′ = (B̂′△X) \ (B̂′△P ) = (X \ (B̂′ ∪ P )) ∪ ((B̂′ ∩ P ) \X), (26)

B′ \ Y = (B̂′△P ) \ (B̂′△X) = (P \ (B̂′ ∪X)) ∪ ((B̂′ ∩X) \ P ), (27)

Y△B′ = X△P, (28)

P \B′ = P \ (B̂′△P ) = P ∩ B̂′, (29)

P ∩B′ = P ∩ (B̂′△P ) = P \ B̂′. (30)

By combining (25)–(30), we obtain

p′(X \ B̂′)− p′(X ∩ B̂′)

= p′(Y \B′) + p′(P ∩B′)− p′(B′ \ Y )− p′(P \B′)

≥ −
∑
{q′(H ′

i) | H ′
i ∈ Λ′

n, |(X△P ) ∩H ′
i| is odd}

+
∑
{q′(H ′

i) | H ′
i ∈ Λ′

s, |(X△P ) ∩H ′
i| is odd} −

∑
{q′(H ′

i) | i ∈ I ′rs}

= −
∑
{q′(H ′

i) | H ′
i ∈ Λ′

n, |X ∩H ′
i| is odd}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, |X ∩H ′
i| is odd}

+
∑
{q′(H ′

i) | i ∈ I ′rs, |X ∩H ′
i| is even} −

∑
{q′(H ′

i) | i ∈ I ′rs}

= −
∑
{q′(H ′

i) | H ′
i ∈ Λ′

n, |X ∩H ′
i| is odd}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, |X ∩H ′
i| is odd}

−
∑
{q′(H ′

i) | i ∈ I ′rs, |X ∩H ′
i| is odd}

= −
∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

n, |X ∩H ′
i| is odd}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, |X ∩H ′
i| is odd}

= −
∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

n, i ∈ I ′uv \ (Î ′uv \ Ĵ ′
uv)}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, i ∈ I ′uv}.
(31)

Note that, in the second equality above, we use the facts that

• Ĥ ′
i ∈ Λ̂′

s if and only if both H ′
i ∈ Λ′

s and i ̸∈ I ′rs hold, and

• |P ∩H ′
i| is odd if and only if i ∈ I ′rs.

On the other hand, we have

p′({b̂i, t̂i} \ B̂′)− p′({b̂i, t̂i} ∩ B̂′) = p′({b̂i, t̂i} \B′)− p′({b̂i, t̂i} ∩B′)

= −q′(H ′
i) = −q̂′(Ĥ ′

i) (32)
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for i ∈ Î ′uv \ Ĵ ′
uv with Ĥ ′

i ∈ Λ̂′
n.

Since (u, v) ∈ F
Λ̂′ , by (15) and Lemma 4.1, we have either

(i) b̂i ̸∈ {u, v} for any i ∈ {1, . . . ,Λ}, or

(ii) b̂k ∈ {u, v} for some k ∈ {1, . . . ,Λ}, b̂i ̸∈ {u, v} for any i ∈ {1, . . . ,Λ} \ {k}, and
{u, v} ⊆ Ĥk.

In the case (i), we have I ′uv = Î ′uv, and hence the right hand side of (31) is equal to

−
∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

n, i ∈ Î ′uv ∩ Ĵ ′
uv}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, i ∈ Î ′uv}.

By combining this with (32), we obtain

p̂′(v)− p̂′(u) = p′(v)− p′(u) ≥
∑

i∈Î′uv\Ĵ ′
uv

q̂′(Ĥ ′
i)−

∑
i∈Î′uv∩Ĵ ′

uv

q̂′(Ĥ ′
i),

which shows that (DF2) holds.

In the case (ii), we have I ′uv = Î ′uv ∪ {k}, and hence the right hand side of (31) is

equal to

−
∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

n, i ∈ (Î ′uv ∩ Ĵ ′
uv) ∪ {k}}+

∑
{q̂′(Ĥ ′

i) | Ĥ ′
i ∈ Λ̂′

s, i ∈ Î ′uv}.

By combining this with (32), we obtain

p̂′(v)− p̂′(u) = p′(v)− p′(u) + q̂′(Ĥ ′
k) ≥

∑
i∈Î′uv\Ĵ ′

uv

q̂′(Ĥ ′
i)−

∑
i∈Î′uv∩Ĵ ′

uv

q̂′(Ĥ ′
i),

which shows that (DF2) holds.

10.4 Search in Each Blossom

We have already given in Section 10.1 the definition of V̂ ∗, B̂∗, Ĉ∗, Λ̂, p̂, and q̂, which

are the objects after the augmentation. However, we do not have a new generator ĝi
of t̂i, a new routing R

Ĥi
(x) for each x ∈ Ĥ◦

i , and a new ordering <
Ĥi

in Ĥ◦
i after the

augmentation. To overcome these problems, we apply Search in each blossom.

Let λ̂ := |Λ̂|. For i = 1, 2, . . . , λ̂ in this order, we apply Search in Ĥi \ {t̂i, ̂̄ti}, where
• the blossom set is {Ĥj ∈ Λ̂ | Ĥj ⊊ Ĥi},

• Ĉ∗, p̂, and q̂ are restricted to Ĥi \ {t̂i, ̂̄ti}, and
• b̂i is regarded as the unique source vertex if Ĥi has no source line.
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Note that if Ĥi is a source blossom, then it contains a unique source line, and {b̂i, t̂i, ̂̄ti}
does not exist. Note also that we have already computed ĝj (if exists), RĤj

(x), and <
Ĥj

for each Ĥj ∈ Λ̂ with Ĥj ⊊ Ĥi. Since there may be vertices outside Ĥi \ {t̂i, ̂̄ti}, we
slightly modify the procedure Search as follows.

Although Search is basically working on Ĥi \ {t̂i, ̂̄ti}, we consider all the ver-

tices in V̂ ∗ when we introduce new vertices in Step 2 of RBlossom(v, u) or

Step 1 of DBlossom(v, u). That is, in these steps, we suppose that V ∗ := V̂ ∗

and B∗ := B̂∗.

If Search returns ∅, then we update the dual variables (see below) and repeat the proce-

dure as long as q̂(Ĥi) is positive. Since there exists no augmenting path in Ĥi \ {t̂i, ̂̄ti},
this procedure terminates only when q̂(Ĥi) becomes zero. We note that this procedure

may create new blossoms in Ĥi, and such a blossom Ĥj is accompanied by ĝj (if exists),

R
Ĥj

(x), and <
Ĥj

satisfying (GT1), (GT2), and (BR1)–(BR5) by the argument in Sec-

tions 7 and 8. We can also see that p̂ and q̂ are feasible after creating a new blossom by

the same argument as Lemma 8.9. Then, since q̂(Ĥi) = 0 after the procedure, we remove

Ĥi from Λ̂.

Updating Dual Variables. In what follows in this subsection, we describe how we

update the dual variables. We first show the following lemma.

Lemma 10.6. When we apply Search in Ĥi \ {t̂i, ̂̄ti} as above, every vertex in Ĥi ∩ V is

labeled without updating the dual variables.

Proof. By Lemma 9.2, it suffices to show that for every vertex x ∈ Ĥi ∩ V , there exists

a vertex set X ⊆ Ĥi \ {t̂i, ̂̄ti} with the conditions in Lemma 9.2. We fix x ∈ Ĥi ∩ V and

consider the following two cases separately.

Case (i): Suppose that P ∩Hi = ∅. In this case, b̂i = bi. Since bi is incident only

to ti in G◦, for any x ∈ H◦
i , we have that G◦[(RHi(x) \ {x}) ∪ {bi}] has a unique tight

perfect matching. Thus, G◦[P ∪ (RHi(x) \ {x}) ∪ {bi}] also has a unique tight perfect

matching. Since this shows that C ′[P ∪(RHi(x)\{x})∪{bi}] is nonsingular, we have that
C ′[P ∪ (RHi(x) \ {x, ti, t̄i})∪ {bi}] is nonsingular, and hence Ĉ ′[X] is nonsingular, where

X := (RHi(x) \ {x, ti, t̄i})∪{bi} ⊆ Ĥi \ {t̂i, ̂̄ti}. Furthermore, the tightness of the perfect

matching shows that X satisfies (13) after the augmentation. Therefore, X satisfies the

conditions in Lemma 9.2.

Case (ii): Suppose that P ∩Hi ̸= ∅. In this case, P ∩Hi = RHi(xi) for some xi ∈ Hi

and b̂i is defined as in Section 10.2. Let y ∈ P be the vertex matched with xi in the

unique tight perfect matching in G◦[P ]. Then, each of G◦[P \((RHi(xi)\{ti})∪{y})] and
G◦[(RHi(xi) \ {ti}) ∪ {y}] also has a unique tight perfect matching. By the definition of
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b̂i, C
′[(RHi(xi) \ {ti, xi})∪ {b̂i, y}] is nonsingular, and hence either C ′

b̂iy
̸= 0 or C ′

yb̂i
̸= 0.

We can also see that for any v ∈ V ′ \H ′
i, there is a tight edge in G◦ between b̂i and v

only if there is a tight edge in G◦ between b̂i and z for some z ∈ RHi(xi) \ {ti} (see the

proof of Claim 10.1). With these facts, we have that G◦[(P \ (RHi(xi) \ {ti})) ∪ {b̂i}]
has a unique tight perfect matching by using the same argument as Lemma 8.4. Let

Y := (P \ (RHi(xi) \ {ti})) ∪ {b̂i}. For the given vertex x ∈ Ĥi ∩ V , define Z ⊆ H ′
i as

follows:

Z :=

{
RHi(x) \ {x, ti} if x ̸∈ P ,

RHi(x̄) \ {x̄, ti} if x ∈ P .

Then, since G◦[Z] has a unique tight perfect matching, G◦[Y ∪ Z] also has a unique

tight perfect matching. Since this shows that C ′[Y ∪ Z] is nonsingular, we have that

Ĉ ′[X] is nonsingular, where X := (Y ∪Z)△P . If X contains {tj , t̄j} ̸⊆ Ĥi \ {t̂i, ̂̄ti}, then
we remove them from X. Note that this does not affect the nonsingularity of Ĉ ′[X].

Then, X ⊆ Ĥi \ {t̂i, ̂̄ti} and X consists of lines, dummy lines, and a source vertex b̂i.

Furthermore, the tightness of the perfect matching in G◦[Y ∪ Z] shows that X satisfies

(13) after the augmentation. Therefore, X satisfies the conditions in Lemma 9.2.

By these two cases, x is labeled without updating the dual variables by Lemma 9.2,

which completes the proof.

Suppose that Search returns ∅ when it is applied in Ĥi \ {t̂i, ̂̄ti}. Define R+, R−,

Z+, Z−, Y , and ϵ = min{ϵ1, ϵ2, ϵ3, ϵ4} as in Section 9. By Lemma 10.6, we have that

R+ = {b̂i}, R− = Y = ∅, and ϵ2 = ϵ3 = ϵ4 = +∞. We now modify the dual variables in

V̂ ∗ (not only in Ĥi \ {t̂i, ̂̄ti}) as follows. Let ϵ′ := min{ϵ, q̂(Ĥi)}, which is a finite positive

value. If Ĥi contains no source line, then update p̂(̂bi) as

p̂(̂bi) :=

{
p̂(̂bi) + ϵ′ (̂bi ∈ B̂∗),

p̂(̂bi)− ϵ′ (̂bi ∈ V̂ ∗ \ B̂∗),

and update p̂(t̂i) and p̂(̂̄ti) as p̂(t̂i) := p̂(̂̄ti) := p̂(̂bi). For each maximal blossom H in

{Ĥj ∈ Λ̂ | Ĥj ⊊ Ĥi}, which must be labeled with ⊕, update q̂(H) as q̂(H) := q̂(H) + ϵ′.

We also update q̂(Ĥi) by q̂(Ĥi) := q̂(Ĥi)− ϵ′. We now prove the following claim, which

shows the validity of this procedure.

Claim 10.7. The obtained dual variables p̂ and q̂ are feasible in V̂ ∗ with respect to Λ̂.

Proof. If suffices to show (DF2). Suppose that u ∈ B̂∗, v ∈ V̂ ∗ \ B̂∗, and (u, v) ∈ F
Λ̂
. If

u, v ∈ Ĥi \ {t̂i, ̂̄ti}, then the inequality in (DF2) holds by the argument in Section 10.3.

In the other cases, we will show that updating the dual variables does not decrease the

value of p̂(v)− p̂(u)− Q̂uv.
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• If u = t̂i and v ∈ Ĥi, then p̂(u) decreases by ϵ and p̂(v)− Q̂uv decreases by at most

ϵ, which shows that p̂(v)− p̂(u)− Q̂uv does not decrease.

• If v = t̂i and u ∈ Ĥi, then p̂(v) increases by ϵ and p̂(u) + Q̂uv increases by at most

ϵ, which shows that p̂(v)− p̂(u)− Q̂uv does not decrease.

• If u ∈ Ĥi and v ̸∈ Ĥi, then Q̂uv decreases by ϵ by updating q̂(Ĥi) and p̂(v) does not

change. Since p̂(u) + Q̂uv increases by at most ϵ by updating p̂(u) or q̂(H) where

H is the maximal blossom containing u, we have that p̂(v)− p̂(u)− Q̂uv does not

decrease.

• If u ̸∈ Ĥi and v ∈ Ĥi, then Q̂uv decreases by ϵ by updating q̂(Ĥi) and p̂(u) does not

change. Since p̂(v) − Q̂uv decreases by at most ϵ by updating p̂(v) or q̂(H) where

H is the maximal blossom containing v, we have that p̂(v) − p̂(u) − Q̂uv does not

decrease.

• If u, v ̸∈ Ĥi, then it is obvious that p̂(v)− p̂(u)− Q̂uv does not change.

Note that ̂̄ti is incident only to t̂i in F
Λ̂
. This shows that the inequality in (DF2) holds

for any (u, v) ∈ F
Λ̂
after updating the dual variables.

11 Algorithm Description and Complexity

Our algorithm for the minimum-weight parity base problem is described as follows.

Algorithm Minimum-Weight Parity Base

Step 1: Split the weight wℓ into p(v) and p(v̄) for each line ℓ = {v, v̄} ∈ L, i.e., p(v) +

p(v̄) = wℓ. Execute the greedy algorithm for finding a base B ∈ B with minimum

value of p(B) =
∑

u∈B p(u). Set Λ = ∅.

Step 2: If there is no source line, then return B := B∗ ∩ V as an optimal solution.

Otherwise, apply Search. If Search returns ∅, then go to Step 3. If Search finds an

augmenting path, then go to Step 4.

Step 3: Update the dual variables as in Section 9. If ϵ = +∞, then conclude that there

exists no parity base and terminate the algorithm. Otherwise, delete all blossoms

Hi with q(Hi) = 0 from Λ and go to Step 2.

Step 4: Apply Augment to obtain a new base B̂∗, a family Λ̂ of blossoms, and feasible

dual variables p̂ and q̂. For each Ĥi in increasing order of i, do the following.

While q̂(Ĥi) > 0, apply Search in Ĥi \ {t̂i, ̂̄ti} and update the dual vari-

ables as in Section 10.4. Then, remove Ĥi from Λ̂.
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Replace B∗, Λ, p, and q with B̂∗, Λ̂, p̂, and q̂, respectively, and go back to Step 2.

We have already seen the correctness of this algorithm. We now analyze the complex-

ity. Since |V ∗| = O(n), an execution of the procedure Search as well as the dual update

requires O(n2) arithmetic operations. By Lemma 9.3, Step 3 is executed at most O(n)

times per augmentation. In Step 4, we create a new blossom or remove Ĥi from Λ̂ when

we update the dual variables, which shows that the number of dual updates as well as

executions of Search in Step 4 is also bounded by O(n). Thus, Search and dual update

are executed O(n) times per augmentation, which requires O(n3) operations. We note

that it also requires O(n3) operations to update Ci and Gi after augmentation. Since

each augmentation reduces the number of source lines by two, the number of augmenta-

tions during the algorithm is O(m), where m = rankA, and hence the total number of

arithmetic operations is O(n3m).

Theorem 11.1. Algorithm Minimum-Weight Parity Base finds a parity base of minimum

weight or detects infeasibility with O(n3m) arithmetic operations over K.

If K is a finite field of fixed order, each arithmetic operation can be executed in O(1)

time. Hence Theorem 11.1 implies the following.

Corollary 11.2. The minimum-weight parity base problem over an arbitrary fixed finite

field K can be solved in strongly polynomial time.

When K = Q, it is not obvious that a direct application of our algorithm runs

in polynomial time. This is because we do not know how to bound the number of

bits required to represent the entries of Ci. However, the minimum-weight parity base

problem over Q can be solved in polynomial time by applying our algorithm over a

sequence of finite fields.

Theorem 11.3. The minimum-weight parity base problem over Q can be solved in time

polynomial in the binary encoding length ⟨A⟩ of the matrix representation A.

Proof. By multiplying each entry of A by the product of the denominators of all entries,

we may assume that each entry of A is an integer. Let γ be the maximum absolute value

of the entries of A, and put N := ⌈m log(mγ)⌉. Note that N is bounded by a polynomial

in ⟨A⟩. We compute the N smallest prime numbers p1, . . . , pN . Since it is known that

pN = O(N logN) by the prime number theorem, they can be computed in polynomial

time by the sieve of Eratosthenes.

For i = 1, . . . , N , we consider the minimum-weight parity base problem over GF(pi)

where each entry of A is regarded as an element of GF(pi). In other words, we consider the

problem in which each operation is executed modulo pi. Since each arithmetic operation

over GF(pi) can be executed in polynomial time, we can solve the minimum-weight parity
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base problem over GF(pi) in polynomial time by Theorem 11.1. Among all optimal

solutions of these problems, the algorithm returns the best one B. That is, B is the

minimum weight parity set subject to |B| = m and detA[U,B] ̸≡ 0 (mod pi) for some

i ∈ {1, . . . , N}.
To see the correctness of this algorithm, we evaluate the absolute value of the subde-

terminant of A. For any subset X ⊆ V with |X| = m, we have

| detA[U,X]| ≤ m!γm ≤ (mγ)m ≤ 2N <
N∏
i=1

pi.

This shows that detA[U,X] = 0 if and only if detA[U,X] ≡ 0 (mod
∏N

i=1 pi). Therefore,

detA[U,X] ̸= 0 if and only if detA[U,X] ̸≡ 0 (mod pi) for some i ∈ {1, . . . , N}, which
shows that the output B is an optimal solution.
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A Omitted Proofs

This appendix is devoted to proofs of Lemmas 5.2 and 5.3.

A.1 Proof of Lemma 5.2

It is easy to see that p and q satisfy (DF1) and (DF3) with respect to Λ if and only if p

and q′ satisfy (DF1) and (DF3) with respect to Λ′. Thus, it suffices to consider (DF2).

Necessity (only if part). Assume that p and q are feasible with respect to Λ, and

suppose that (u, v) ∈ FΛ′ . If (u, v) ∈ FΛ, then

p(v)− p(u) ≥
∑

j∈Iuv\Juv

q(Hj)−
∑

j∈Iuv∩Juv

q(Hj)

=
∑

j∈(Iuv\Juv)\{i}

q′(Hj)−
∑

j∈(Iuv∩Juv)\{i}

q′(Hj),

which shows that p and q′ satisfy the inequality in (DF2) for (u, v).

Thus, it suffices to consider the case when (u, v) ∈ FΛ′ and (u, v) ̸∈ FΛ. Note that

(u, v) ∈ FΛ′ implies that u ∈ B∗ and v ∈ V ∗ \ B∗. By Lemma 5.1, (u, v) ∈ FΛ′ shows

that C∗[X] is nonsingular, where X := {u, v} ∪
∪
{{bj , tj} | j ∈ (Iuv \ Juv) \ {i}, Hj ∈

Λn}. Furthermore, by Lemma 5.1, (u, v) ̸∈ FΛ shows that i ∈ Iuv \ Juv, Hi ∈ Λn, and

C∗[X ∪ {bi, ti}] is singular. By applying row and column transformations, we have that

Ci−1[X ∪ {bi, ti}] is singular and Ci−1[X] is nonsingular. Let

X ′ := X \
∪
{{bj , tj} | j ∈ (Iuv \ Juv) \ {i}, Hj ∈ Λn, Hj ⊆ Hi}.

By Lemma 4.1, if bj ∈ (X \X ′) ∩ B∗, then Ci−1
bjv′

= 0 for any v′ ∈ (V ∗ \ B∗) \ {tj} and
Ci−1
bjtj
̸= 0. Similarly, if bj ∈ (X \ X ′) \ B∗, then Ci−1

u′bj
= 0 for any u′ ∈ B∗ \ {tj} and

Ci−1
tjbj
̸= 0. By these properties, the singularity of Ci−1[X ∪ {bi, ti}] is equivalent to that

of Ci−1[X ′∪{bi, ti}], and the nonsingularity of Ci−1[X] is equivalent to that of Ci−1[X ′].

We consider the following two cases separately.

Case (i): Suppose that v ∈ Hi and u ∈ V ∗ \Hi. If bi ∈ V ∗ \B∗ and ti ∈ B∗, then

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

tibi
· det

(
Ci−1[X ′]

)
,

because Ci−1
u′bi

= 0 for any u′ ∈ X ′ ∩B∗ by Lemma 5.1. This contradicts that Ci−1[X ′ ∪
{bi, ti}] is singular, Ci−1[X ′] is nonsingular, and Ci−1

tibi
̸= 0. Otherwise, bi ∈ B∗ and

ti ∈ V ∗ \B∗. In this case,

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

biti
· det

(
Ci−1[X ′]

)
± Ci−1

biv
· det

(
Ci−1[(X ′ \ {v}) ∪ {ti}]

)
,

because Ci−1
biv′

= 0 for any v′ ∈ (X ′ \ B∗) \ {v} by Lemma 5.1. Since Ci−1[X ′ ∪ {bi, ti}]
is singular, Ci−1[X ′] is nonsingular, and Ci−1

biti
̸= 0, we obtain Ci−1

biv
̸= 0 and Ci−1[(X ′ \
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{v}) ∪ {ti}] is nonsingular. By the dual feasibility of p and q, Ci−1
biv
̸= 0 implies that

(bi, v) ∈ FΛ and

p(v)− p(bi) ≥ Qbiv. (33)

Since Ci−1[(X ′\{v})∪{ti}] = C∗[(X ′\{v})∪{ti}], its nonsingularity shows that (u, ti) ∈
FΛ and

p(ti)− p(u) ≥ Quti (34)

by Lemma 5.1. By combining (33), (34), p(bi) = p(ti), and q(Hi) = 0, we obtain

p(v)− p(u) ≥ Quv, which shows that p and q′ satisfy the inequality in (DF2) for (u, v).

Case (ii): Suppose that u ∈ Hi and v ∈ V ∗ \Hi. If bi ∈ B∗ and ti ∈ V ∗ \B∗, then

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

biti
· det

(
Ci−1[X ′]

)
,

because Ci−1
biv′

= 0 for any v′ ∈ X ′ \ B∗ by Lemma 5.1. This contradicts that Ci−1[X ′ ∪
{bi, ti}] is singular, Ci−1[X ′] is nonsingular, and Ci−1

biti
̸= 0. Otherwise, bi ∈ V ∗ \B∗ and

ti ∈ B∗. In this case,

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

tibi
· det

(
Ci−1[X ′]

)
± Ci−1

ubi
· det

(
Ci−1[(X ′ \ {u}) ∪ {ti}]

)
,

because Ci−1
u′bi

= 0 for any u′ ∈ (X ′ ∩ B∗) \ {u} by Lemma 5.1. Since Ci−1[X ′ ∪ {bi, ti}]
is singular, Ci−1[X ′] is nonsingular, and Ci−1

tibi
̸= 0, we obtain Ci−1

ubi
̸= 0 and Ci−1[(X ′ \

{u}) ∪ {ti}] is nonsingular. By the dual feasibility of p and q, Ci−1
ubi
̸= 0 implies that

(u, bi) ∈ FΛ and

p(bi)− p(u) ≥ Qubi . (35)

Since Ci−1[(X ′ \ {u}) ∪ {ti}] = C∗[(X ′ \ {u}) ∪ {ti}], its nonsingularity shows that

(ti, v) ∈ FΛ and

p(v)− p(ti) ≥ Qtiv (36)

by Lemma 5.1. By combining (35), (36), p(bi) = p(ti), and q(Hi) = 0, we obtain

p(v)− p(u) ≥ Quv, which shows that p and q′ satisfy the inequality in (DF2) for (u, v).

Sufficiency (if part). Assume that p and q′ are feasible with respect to Λ′, and

suppose that (u, v) ∈ FΛ. If (u, v) ∈ FΛ′ , then

p(v)− p(u) ≥
∑

j∈(Iuv\Juv)\{i}

q′(Hj)−
∑

j∈(Iuv∩Juv)\{i}

q′(Hj)

=
∑

j∈Iuv\Juv

q(Hj)−
∑

j∈Iuv∩Juv

q(Hj),

which shows that p and q satisfy the inequality in (DF2) for (u, v).
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Thus, it suffices to consider the case when (u, v) ̸∈ FΛ′ and (u, v) ∈ FΛ. We define X

and X ′ in the same way as the necessity part. Then, we have that Ci−1[X ′ ∪ {bi, ti}] is
nonsingular and Ci−1[X ′] is singular. We consider the following two cases separately.

Case (i): Suppose that v ∈ Hi and u ∈ V ∗ \Hi. If bi ∈ V ∗ \B∗ and ti ∈ B∗, then

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

tibi
· det

(
Ci−1[X ′]

)
.

This contradicts that Ci−1[X ′ ∪ {bi, ti}] is nonsingular and Ci−1[X ′] is singular. Other-

wise, bi ∈ B∗ and ti ∈ V ∗ \B∗. In this case,

det
(
Ci−1[X ′ ∪ {bi, ti}]

)
= ±Ci−1

biti
· det

(
Ci−1[X ′]

)
± Ci−1

biv
· det

(
Ci−1[(X ′ \ {v}) ∪ {ti}]

)
.

Since Ci−1[X ′ ∪{bi, ti}] is nonsingular and Ci−1[X ′] is singular, we obtain Ci−1
biv
̸= 0 and

Ci−1[(X ′\{v})∪{ti}] is nonsingular. By the dual feasibility of p and q′, Ci−1
biv
̸= 0 implies

that (bi, v) ∈ FΛ′ and

p(v)− p(bi) ≥ Qbiv. (37)

Since Ci−1[(X ′\{v})∪{ti}] = C∗[(X ′\{v})∪{ti}], its nonsingularity shows that (u, ti) ∈
FΛ′ and

p(ti)− p(u) ≥
∑

j∈(Iuti\Juti )\{i}

q′(Hj) = Quti (38)

by Lemma 5.1. By combining (37), (38), and p(bi) = p(ti), we obtain p(v)− p(u) ≥ Quv,

which shows that p and q satisfy the inequality in (DF2) for (u, v).

Case (ii): Suppose that u ∈ Hi and v ∈ V ∗ \Hi. In this case, in the same way as

Case (ii) of the necessity part, p and q satisfy the inequality in (DF2) for (u, v).

A.2 Proof of Lemma 5.3

We prove the lemma by induction on k. If k = 0, then the statement is obvious since

Iuv = ∅. Let u, v ∈ V ∗ be vertices such that iuv ≤ k and Ck
uv ̸= 0.

Suppose that iuv = k. In this case, since Ck
uv ̸= 0, (3) is immediately obtained from

the dual feasibility.

In what follows, we consider the case when iuv ≤ k−1. If Ck−1
uv ̸= 0, then (3) holds by

the induction hypothesis. Otherwise, since Ck
uv ̸= 0 and Ck−1

uv = 0, we have {u, v} ⊆ Hk

and one of the following.

(A) bk ∈ B∗, tk ∈ V ∗ \B∗, Ck−1
bkv
̸= 0, and Ck−1

utk
̸= 0, or

(B) tk ∈ B∗, bk ∈ V ∗ \B∗, Ck−1
tkv
̸= 0, and Ck−1

ubk
̸= 0.
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In the case (A), by the induction hypothesis and (DF3), we obtain

p(v)− p(bk) ≥ Qbkv =
∑

i∈Ibkv\Jbkv

q(Hi)−
∑

i∈Ibkv∩Jbkv

q(Hi),

p(tk)− p(u) ≥ Qutk =
∑

i∈Iutk\Jutk

q(Hi)−
∑

i∈Iutk∩Jutk

q(Hi),

p(tk)− p(bk) = 0.

By combining these inequalities, we obtain

p(v)− p(u) ≥
∑

i∈Ibkv\Jbkv

q(Hi)−
∑

i∈Ibkv∩Jbkv

q(Hi)

+
∑

i∈Iutk\Jutk

q(Hi)−
∑

i∈Iutk∩Jutk

q(Hi). (39)

We will show that, for each i, the coefficient of q(Hi) in the right hand side of (39) is

greater than or equal to that in the right hand side of (3).

• Suppose that ti ̸∈ {u, v, tk}. In this case i is not contained in Iuv ∩ Juv, Ibkv ∩ Jbkv,
and Iutk ∩ Jutk . If i is contained in Iuv \ Juv, then exactly one of Ibkv \ Jbkv and

Iutk \ Jutk contains i, which shows that the coefficient of q(Hi) in (39) is greater

than or equal to that in (3).

• Suppose that ti = tk, i.e., i = k. In this case, i is not contained in Iuv, Ibkv, and

Iutk , which shows that the coefficient of q(Hk) is equal to zero in both (3) and (39).

• Suppose that i ̸= k and ti = u. If v ∈ Hi, then i is contained in Ibkv \ Jbkv and

Iutk ∩ Jutk , and it is not contained in the other sets. Otherwise, i is contained in

Iuv ∩ Juv and Ibkv ∩ Jbkv and it is not contained in the other sets. In both cases,

the coefficient of q(Hi) in (39) is greater than or equal to that in (3). The same

argument can be applied to the case with ti = v.

Thus, we obtain (3) from (39).

The same argument can be applied to the case (B), which completes the proof.

57


