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Abstract

The stable matching (or stable marriage) model of Gale and Shapley (1962) has been
generalized in various directions such as matroid kernels due to Fleiner (2001) and stable
allocations in bipartite networks due to Bäıou and Balinski (2002). Unifying these general-
izations, we introduce the concept of stable allocations in polymatroid intersection.

Our framework includes both integer- and real-variable versions. The integer-variable
version corresponds to a special case of the discrete-concave function model due to Eguchi,
Fujishige, and Tamura (2003), who established the existence of a stable allocation by showing
that a simple extension of the deferred acceptance algorithm of Gale and Shapley finds a
stable allocation in pseudopolynomial time. It has been open to develop a polynomial-time
algorithm even for our special case.

In this paper, we present the first strongly polynomial algorithm for finding a stable
allocation in polymatroid intersection. To achieve this, we utilize the augmenting path
technique for polymatroid intersection. In each iteration, the algorithm searches for an
augmenting path by simulating a chain of proposes and rejects in the deferred acceptance
algorithm. The running time of our algorithm is O(n3γ), where n and γ respectively denote
the cardinality of the ground set and the time for computing the saturation and exchange
capacities. Moreover, we show that the output of our algorithm is optimal for one side, where
this optimality is a generalization of the man-optimality in the stable marriage model.

∗An earlier version of this paper appeared in Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), SIAM, Philadelphia, 2016, pp. 1034–1047.

†Department of Mathematical Informatics, University of Tokyo, Tokyo 113-8656, Japan. E-mail: {iwata,
yu yokoi}@mist.i.u-tokyo.ac.jp
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1 Introduction

Since the famous min-max theorem of König [18] in 1931, the bipartite matching has served as a
prototype problem in combinatorial optimization. It has been generalized in various directions
such as the matroid intersection and transportation problems. In 1970, Edmonds [5] introduced
the framework of polymatroid intersection, which unifies these two generalizations as well as
various other efficiently solvable combinatorial optimization problems [11, 25].

The primary purpose of this paper is to shed new light from the viewpoint of polymatroids on
another fundamental problem on bipartite graphs, i.e., the stable matching (or stable marriage)
problem provided by Gale and Shapley [15] in 1962. We introduce the concept of stable alloca-
tion in polymatroid intersection and design a strongly polynomial algorithm to find it.

Problem Description A pair (E, f) of a finite set E and a set function f : 2E → R is called
a polymatroid if it satisfies

• f(∅) = 0,

• A ⊆ B ⊆ E =⇒ f(A) ≤ f(B), and

• ∀A,B ⊆ E : f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

We call f the rank function of the polymatroid (E, f). Examples include matroid rank functions,
coverage functions, and entropy functions [10]. We associate a polytope

P(f) = {x ∈ RE | x ≥ 0, ∀A ⊆ E : x(A) ≤ f(A) } ,

where x(A) =
∑

e∈A x(e) for each A ⊆ E and x = (x(e) | e ∈ E) ∈ RE . A vector x ∈ RE is
called independent if x ∈ P(f). For an independent vector x ∈ P(f), a subset A ⊆ E is said to
be tight if x(A) = f(A). If both A,B ⊆ E are tight at x ∈ P(f), then so are A∪B and A∩B.
For x ∈ P(f), we denote by satf (x) the unique maximal tight set. Then, we can observe

satf (x) = {u ∈ E | ∀α > 0 : x+ αχu ̸∈ P(f) } ,

where χu is the characteristic vector of u ∈ E. For each u ∈ satf (x), we denote by depf (x, u)
the unique minimal tight set that contains u. Then we have

depf (x, u) = { v ∈ E | ∃α > 0 : x+ α(χu − χv) ∈ P(f) } .

If u ∈ E \ satf (x), then depf (x, u) is defined to be empty. The functions satf (·) and depf (·, ·)
are called the saturation function and the dependence function, respectively [11]. If f is the rank
function of a matroid and x is the characteristic vector of an independent set I, then satf (x)
and depf (x, u) correspond to the closure of I and the unique circuit in I ∪ {u}, respectively.

A triple (E, f,≻) is called a (totally) ordered polymatroid if (E, f) is a polymatroid and ≻
is a total order on E, where a ≻ e means a ∈ E is preferred to e ∈ E. We denote a ⪰ e to mean
a ≻ e or a = e. For a subset A ⊆ E, we denote A ⪰ e to mean that every a ∈ A satisfies a ⪰ e.
Let (E, h,≻H) and (E, f,≻F) be two totally ordered polymatroids on the same ground set E.
The concept of stable allocations is defined as follows.

Definition 1.1. A stable allocation for a pair of totally ordered polymatroids (E, h,≻H) and
(E, f,≻F) is a common independent vector x ∈ P(h)∩P(f) such that, for every e ∈ E, we have
[e ∈ sath(x), deph(x, e) ⪰H e] or [e ∈ satf (x), depf (x, e) ⪰F e].

This model can represent, for example, a labor allocation model as follows. We have two
disjoint agent sets S and T , which correspond to workers and firms, respectively. Let E be
the set of worker-firm pairs, i.e., E = S × T , and define its subsets Es = { (s, t) | t ∈ T }
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for each s ∈ S and Et = { (s, t) | s ∈ S } for each t ∈ T . A labor allocation is a vector
x = (x(s, t) | (s, t) ∈ E) ∈ RE , where x(s, t) means the amount of contracted labor time of s at
t. For an allocation x, we write xs = x|Es = (x(s, t) | t ∈ T ) for each s ∈ S and xt = x|Et for
each t ∈ T .

The profile of each s ∈ S is given as an ordered polymatroid (Es, hs,≻s). The worker s
wishes to have as large allocation as possible in P(hs) ⊆ REs with the priority given by ≻s.
Note that {Es}s∈S is a partition of E. Define (E, h,≻H) as the direct sum of {(Es, hs,≻s)}s∈S ,
i.e., define h : 2E → R by h(A) =

∑
s∈S hs(A ∩ Es) (A ⊆ E), and let ≻H be an arbitrary total

order on E which is consistent with {≻s}s∈S . Then, (E, h,≻H) forms an ordered polymatroid.
Similarly, profiles of firms are given as ordered polymatroids {(Et, ft,≻t)}t∈T , and an ordered
polymatroid (E, f,≻F) is defined on the same ground set E.

An allocation x ∈ RE must be feasible for every agent, i.e., xs ∈ P(hs) (∀s ∈ S) and
xt ∈ P(ft) (∀t ∈ T ). This means x ∈ P(h) ∩ P(f). In addition, x should be stable in the
following sense. If (s, t) /∈ saths(xs) or (s, t) ≻s (s, t

′) for some (s, t′) ∈ dephs
(xs, (s, t)), then s

has incentive to increase x(s, t), possibly at the expense of x(s, t′). Similarly, if (s, t) /∈ satft(xt)
or (s, t) ≻s (s′, t) for some (s′, t) ∈ depft(xt, (s, t)), then t has incentive to increase x(s, t),
possibly at the expense of x(s′, t). If both s and t have incentives to increase x(s, t), there is no
direct way to prevent them from doing so. Definition 1.1 requires x not to admit such a pair
(s, t) ∈ E.

Note that the existence of a stable allocation appears to be unclear from the definition. By
using the general framework of Alkan and Gale [1], however, it is shown in [27] that a stable
allocation does exist in any setting of polymatroid intersection. This proof of existence does
not tell how to find such a solution efficiently.

Our Contribution In this paper, we present the first strongly polynomial algorithm for finding
a stable allocation in the general setting of polymatroid intersection. The algorithm combines
the augmenting path technique for polymatroid intersection [9, 23] and the deferred acceptance
procedure for stable matching [15]. The correctness of our algorithm provides an alternative
proof for the existence of a stable allocation. If h and f are integer-valued functions, then the
algorithm finds an integral stable allocation.

The running time of this algorithm is O(|E|3γ), where γ denotes the time for computing
the saturation and exchange capacities on the given polymatroids. Assuming an oracle for
evaluating the rank function, these capacities can be computed in strongly polynomial time via
submodular function minimization [16, 17, 19, 22, 24]. Most concrete examples of polymatroids,
however, admit more direct ways to design such procedures.

Furthermore, we show that our algorithm finds the ≻H-optimal stable allocation. Similarly
to the stable matching model of Gale and Shapley [15], an instance of our model has multiple
stable allocations in general. We prove that the output of our algorithm is ≻H-optimal, i.e., it
is ≻H-preferable to any other stable allocation. Here, we say that x ∈ RE is ≻H-preferable to
y ∈ RE if we have

∑
{x(e) | e ⪰H a } ≥

∑
{ y(e) | e ⪰H a } for every a ∈ E. For an instance

of the stable marriage problem, the ≻H-optimality coincides with the well-known notion of
“man-optimality” if ≻H is consistent with preferences of all men.

Related Stable Matching Models Our framework includes two major generalizations of the
stable matching model: stable allocations in bipartite networks due to Bäıou and Balinski [2]
and matroid kernels in matroid intersection due to Fleiner [7, 8]. On the other hand, it can
be regarded as a special case of the discrete-concave function model of Eguchi, Fujishige, and
Tamura [6]. We now describe these three related works.

The stable allocation model of Bäıou and Balinski [2] is a special case of the above labor
allocation model, which is representable by network flow as follows. Let G = (V,E) be a
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bipartite graph with edge set E and vertex set V partitioned into S and T . Nonnegative
capacity functions b : V → R+ and c : E → R+ are associated with G. In addition, each
v ∈ S ∪ T has a preference ≻v on δv, where δv denotes the set of edges incident to v. A flow
x : E → R+ is said to be feasible if x(e) ≤ c(e) holds for every e ∈ E and

∑
e∈δv x(e) ≤ b(v)

holds for every v ∈ S ∪ T . Define set functions h and f on E by

h(A) =
∑

s∈S min
{
b(s),

∑
e∈A∩δs c(e)

}
(A ⊆ E),

f(A) =
∑

t∈T min
{
b(t),

∑
e∈A∩δt c(e)

}
(A ⊆ E),

respectively. The set of the feasible flows then coincides with the intersection P(h)∩P(f). Let
≻H and ≻F be arbitrary total orders on E consistent with {≻s}s∈S and {≻t}t∈T , respectively.
Stable allocations in the bipartite network G are exactly the same as stable allocations for the
pair of totally ordered polymatroids (E, h,≻H) and (E, f,≻F).

Bäıou and Balinski [2] presented two algorithms for finding a stable allocation in G. The
first is a natural extension of the deferred acceptance algorithm of Gale and Shapley [15] and
runs in pseudopolynomial time if all the capacities are integers. However, for instances with
real capacities, this algorithm needs exponential time in the worst-case, as shown by Dean,
Goemans, and Immorlica [3]. In contrast, the second algorithm finds a stable allocation in
O(|V | · |E|) time using augmenting paths. Dean and Munshi [4] improved the latter algorithm
to run in O(|E| log |V |) time.

We now describe the matroid kernel model of Fleiner [7, 8]. Consider a pair of matroids
(E, IH) and (E, IF) on the same ground set E with independent set families IH and IF. Assume
that total orders ≻H and ≻F on E are attached to them. Let ρH and ρF be the rank functions
of (E, IH) and (E, IF), respectively. Then, the common independent sets of (E, IH) and (E, IF)
correspond to the integer vectors in P(ρH)∩P(ρF). A matroid kernel introduced by Fleiner [7, 8]
coincides with a subset K ⊆ E whose characteristic vector is a stable allocation for (E, ρH,≻H)
and (E, ρF,≻F). Fleiner [7, 8] presented a strongly polynomial algorithm for finding a matroid
kernel, extending the deferred acceptance algorithm of Gale and Shapley [15].

The discrete-concave function model, investigated in [6, 12, 13, 21], is a two-sided matching
model in which preferences of agents are represented by value functions on integer vectors. This
framework was originated by Eguchi, Fujishige, and Tamura [6]. In their model, each side has a
value function whose effective domain is the set of integer points of a polymatroid and function
values satisfy M♮-concavity, a kind of concavity for discrete functions [20]. Our framework can
be regarded as a special form of this model in which each function is linear in its effective domain
as follows. For an ordered polymatroid (E, h,≻H) with an integer-valued rank function, take
an arbitrary positive weight wH : E → R+ such that a ≻H e implies wH(a) > wH(e) for any
a, e ∈ E. Define a value function UH : ZE → R ∪ {−∞} by

UH(x) =

{
⟨wH, x⟩ if x ∈ ZE ∩P(h),

−∞ if x ∈ ZE \P(h),

where ⟨wH, x⟩ :=
∑

e∈E wH(e)x(e). Similarly, define a value function UF : ZE → R ∪ {−∞}
from an ordered polymatroid (E, f,≻F). Then, an integer allocation x ∈ ZE is stable for
(E, h,≻H) and (E, f,≻F) if and only if it is stable with respect to UH and UF in the sense of
the discrete-concave function model.

Eguchi et al. [6] established the existence of a stable allocation by showing that a simple
extension of the deferred acceptance algorithm of Gale and Shapley finds a stable allocation in
pseudopolynomial time. They asked if one can develop a weakly polynomial algorithm, which
has remained open for more than a decade. When applied to our framework, their algorithm still
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requires pseudopolynomial time. Indeed, there is a series of examples in which the algorithm
requires the numbers of iterations proportional to the width of the effective domain.

Related Polymatroid Algorithms We make comparison of our algorithm with previously
known algorithmic results on polymatroids. The concept of polymatroids was introduced by
Edmonds [5] as a polyhedral generalization of matroids. He showed that the linear optimization
over P(f) is solved by the greedy algorithm. Let w : E → R+ be an arbitrary weight function
that takes distinct positive values, and consider a total order ≻w on E such that a ≻w e means
w(a) > w(e). The correctness of the greedy algorithm implies that x ∈ P(f) maximizes ⟨w, x⟩
if and only if e ∈ satf (x) and depf (x, e) ⪰w e hold for every e ∈ E. This condition means that
x is a stable allocation for (E, f,≻w) and (E, f,≻w).

Given a nonnegative vector z ∈ RE , one can think of maximizing ⟨w, x⟩ subject to x ∈ P(f)
and x ≤ z. A feasible solution x is optimal if and only if e ∈ satf (x) and depf (x, e) ⪰w e
hold for every e ∈ E with x(e) < z(e). This optimality condition requires x to be a stable
allocation in the polymatroid intersection of (E, f,≻w) and (E, z,≻w), where z is regarded as
a rank function defined by z(A) =

∑
e∈A z(e). The feasible region of this problem is in fact

identical to the associated polytope P(fz) with a polymatroid (E, fz) defined by fz(A) :=
min{f(Y ) + z(A \ Y ) | Y ⊆ A}. A standard method for solving this optimization problem is to
apply the polymatroid greedy algorithm to P(fz). Our stable allocation algorithm when applied
to this setting coincides with this standard method, which runs in O(|E|γ) time, where γ denotes
the time for computing the saturation and exchange capacities on the given polymatroids.

Edmonds [5] also showed a min-max theorem on the polymatroid intersection problem, i.e.,
the problem of maximizing x(E) among common independent vectors of two polymatroids on
E. Schönsleben [23] invented a technique of using lexicographic shortest augmenting paths
to develop an algorithm for solving the polymatroid intersection problem in O(|E|5γ) time.
Tardos, Tovey, and Trick [26] improved this algorithm to run in O(|E|4γ) time. Currently the
best known running time bound for the polymatroid intersection problem is O(|E|3γ) due to
Fujishige and Zhang [14].

The weighted version of this problem, i.e., the weighted polymatroid intersection problem
asks for a common independent vector of two polymatroids maximizing a linear function. This
problem is also solvable in strongly polynomial time, but the current best running time bound
is as high as O(|E|6γ log |E|). As a special case with extremely distinct weights, we can think
of maximizing the components lexicographically with respect to a specified total order on E.
An optimal solution of this problem coincides with a stable allocation for the same total order
in both polymatroids. Our stable allocation algorithm when applied to this setting determines
each component greedily in the specified total order, which requires only O(|E|γ) time.

Organization The rest of this paper is organized as follows. Section 2 provides preliminaries on
polymatroids by recapitulating properties of saturation and exchange capacities. In Section 3,
we describe our algorithm and demonstrate it on a small example. Section 4 provides invariants
which are maintained in the algorithm and play a key role in our analysis. The correctness and
complexity of the algorithm are shown in Sections 5 and 6, respectively. Finally, we show the
≻H-optimality of the output in Section 7.

2 Saturation and Exchange Capacities

In this section, we describe fundamental properties of saturation and exchange capacities. For
each u ∈ E, we denote by χu its characteristic vector, i.e., χu(u) = 1 and χu(e) = 0 for
e ∈ E \ {u}.

5



Let (E, f) be a polymatroid. For an independent vector x ∈ P(f) and an element u ∈ E,
define the saturation capacity ĉf (x, u) by

ĉf (x, u) = max {α ∈ R | x+ αχu ∈ P(f) } .

For any α with 0 ≤ α ≤ ĉf (x, u), we have x+αχu ∈ P(f). The saturation capacity can also be
expressed as

ĉf (x, u) = min { f(A)− x(A) | u ∈ A ⊆ E } . (1)

For x ∈ P(f) and u, v ∈ E, define the polymatroid exchange capacity c̄f (x, u, v) by

c̄f (x, u, v) = max {α ∈ R | x+ α(χu − χv) ∈ P(f) } ,

where we let c̄f (x, u, u) =∞ > 0 for every u ∈ E. For any α with 0 ≤ α ≤ c̄f (x, u, v), we have
x+ α(χu − χv) ∈ P(f). For distinct u, v ∈ E, it is known that c̄f (x, u, v) is also written as

c̄f (x, u, v) = min{c̃f (x, u, v), x(v)}

where c̃f (x, u, v) is defined for x ∈ P(f) and distinct u, v ∈ E by

c̃f (x, u, v) = min { f(A)− x(A) | u ∈ A ⊆ E, v ̸∈ A } . (2)

It can be easily shown that c̄f (x, u, v) = c̃f (x, u, v) holds if u ∈ satf (x).
The saturation and dependence functions are now expressed as

satf (x) = {u ∈ E | ĉf (x, u) = 0 } (x ∈ P(f)),

depf (x, u) = { v ∈ E | c̄f (x, u, v) > 0 } (x ∈ P(f), u ∈ satf (x)),

where depf (x, u) is defined to be empty for u ∈ E \ satf (x).
Note that, for x ∈ P(f) and u, v ∈ satf (x), the condition v ∈ depf (x, u) implies x(v) > 0.

Also, observe that

c̄f (x, u, v) > 0 ⇐⇒ x(v) > 0 and [u ̸∈ satf (x) or v ∈ depf (x, u)]

holds for any x ∈ P(f) and u, v ∈ E. This observation implies the following lemma.

Lemma 2.1 (Transitivity of Dependence). For x ∈ P(f) and s, t, u ∈ E, if c̄f (x, s, t) > 0
and c̄f (x, t, u) > 0, then c̄f (x, s, u) > 0.

Proof. If two or three of s, t, u are the same element, the claim is obvious. We assume that they
are all distinct.

Since c̄f (x, t, u) > 0 implies x(u) > 0, it suffices to show u ∈ depf (x, s) assuming s ∈ satf (x).
Note that s ∈ satf (x) and c̄f (x, s, t) > 0 imply t ∈ depf (x, s) ⊆ satf (x). Suppose, to the
contrary, that we have u ̸∈ depf (s). Then, there is A ⊆ E such that x(A) = f(A), s ∈ A, and
u ̸∈ A. If t ̸∈ A, then A satisfies s ∈ A ̸∋ t, which implies c̄f (x, s, t) = 0 by s ∈ satf (x), a
contradiction. If t ∈ A, then A satisfies t ∈ A ̸∋ u which implies c̄f (x, t, u) = 0 by t ∈ satf (x),
a contradiction.

2.1 Moving in Polymatroids

Here we show how saturation and exchange capacities change when we move an independent
vector x in the polyhedron P(f).

Lemma 2.2 (Single Exchange). For any x ∈ P(f) and distinct u, v ∈ E, let y ∈ RE be the
vector defined by y := x + α(χu − χv) with 0 ≤ α ≤ c̄f (x, u, v). Then, we have y ∈ P(f) and
the following (a1)–(a5).
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(a1) c̄f (y, u, v) = c̄f (x, u, v)− α.

(a2) (i) For s ∈ E \ {v} with c̄f (x, s, v) = 0, every t ∈ E \ {s} satisfies c̄f (y, s, t) = c̄f (x, s, t).
(ii) For t ∈ E \ {u} with c̄f (x, u, t) = 0, every s ∈ E \ {t} satisfies c̄f (y, s, t) = c̄f (x, s, t).

(a3) For any s, t ∈ E \ {u, v}, we have
c̄f (y, s, v) ≥ min{c̄f (x, s, v), c̄f (y, u, v)} and c̄f (y, u, t) ≥ min{c̄f (x, u, t), c̄f (y, u, v)}.

(a4) If u ∈ satf (x), then satf (x) = satf (y) and ĉf (y, s) = ĉf (x, s) for every s ∈ E \ satf (x).
(a5) If u ̸∈ satf (x), then ĉf (y, u) ≥ min{ĉf (x, u), c̄f (y, u, v)} and s ∈ satf (y) for any s ∈ satf (x)

with c̄f (x, s, v) = 0.

Proof. It suffices to consider the case that c̄f (x, u, v) > 0, which means that we can assume
x(v) > 0 and [u ̸∈ satf (x) or v ∈ depf (x, u)].

(a1): Every A ⊆ E with u ∈ A ̸∋ v satisfies y(A) = x(A) + α, and hence f(A) − y(A) =
f(A) − x(A) − α. Then, by (2), c̃f (y, u, v) = c̃f (x, u, v) − α. Also, clearly y(v) = x(v) − α.
Then, c̄f (y, u, v) = min{c̃f (y, u, v), y(v)} = min{c̃f (x, u, v)− α, x(v)− α} = c̄f (x, u, v)− α.

(a2)-(i): Since x(v) > 0, the condition c̄f (x, s, v) = 0 implies s ∈ satf (x) and v ̸∈ depf (x, s).
By Lemma 2.1, c̄f (x, u, v) > 0 and c̄f (x, s, v) = 0 lead to c̄f (x, s, u) = 0, which implies u ̸∈
depf (x, s). Thus, C := depf (x, s) satisfies u, v ̸∈ C, s ∈ C, and x(C) = y(C) = f(C). Take any
t ∈ E \ {s} and recall (2). Note that now c̄f (x, s, t) = c̃f (x, s, t) because s ∈ satf (x). For every
A ⊆ E with s ∈ A, t ̸∈ A, by x(C) = f(C) and x ∈ P(f),

f(A)− x(A) = f(A) + f(C)− x(C)− x(A)

≥ f(A ∪ C) + f(A ∩ C)− x(A ∪ C)− x(A ∩ C)

≥ f(A ∩ C)− x(A ∩ C).

Also, A ∩C satisfies s ∈ A ∩C ̸∋ t. Hence c̄f (x, s, t) = min { f(A)− x(A) | A ⊆ C, s ∈ A ̸∋ t }.
Similarly, since y(C) = f(C) and y ∈ P(f), the above inequality also holds with x replaced by
y, and hence c̄f (y, s, t) = min { f(A)− y(A) | A ⊆ C, s ∈ A ̸∋ t }. Because A ⊆ C ⊆ E \ {u, v}
implies x(A) = y(A), the claim follows.

(a2)-(ii): By c̄f (x, u, v) > 0 and c̄f (x, u, t) = 0, t ∈ E \ {u} satisfies t ̸= v, and hence
y(t) = x(t). Then, it suffices to show c̃f (y, s, t) = c̃f (x, s, t). Assume x(t) > 0, since otherwise
the claim is obvious. Then, c̄f (x, u, t) = 0 implies u ∈ satf (x) and t ̸∈ depf (x, u). Also, then
c̄f (x, u, v) > 0 implies v ∈ depf (x, u). Thus, C := depf (x, u) satisfies u, v ∈ C, t ̸∈ C, and
x(C) = y(C) = f(C). Take any s ∈ E \ {t} and recall (2). For every A ⊆ E with s ∈ A, t ̸∈ A,
by x(C) = f(C) and x ∈ P(f),

f(A)− x(A) = f(A) + f(C)− x(C)− x(A)

≥ f(A ∪ C) + f(A ∩ C)− x(A ∪ C)− x(A ∩ C)

≥ f(A ∪ C)− x(A ∪ C).

Also, s ∈ A ∪ C ̸∋ t. Hence c̃f (x, s, t) = min { f(A)− x(A) | A ⊇ C, s ∈ A ̸∋ t }. Similarly,
by y(C) = f(C) and y ∈ P(f), we have c̃f (y, s, t) = min { f(A)− y(A) | A ⊇ C, s ∈ A ̸∋ t }.
Because u, v ∈ C ⊆ A implies x(A) = y(A), the claim follows.

(a3): For the first inequality, it suffices to show that c̄f (y, s, v) < c̄f (y, u, v) implies c̄f (y, s, v) ≥
c̄f (x, s, v). By (2), c̄f (y, s, v) < c̄f (y, u, v) means

min { f(A)− y(A) | A ⊆ E, s ∈ A ̸∋ v } < min { f(A)− y(A) | A ⊆ E, u ∈ A ̸∋ v } .

Then, a minimizer of the left-hand side, say A∗, satisfies s ∈ A∗ ̸∋ u, v. This implies c̄f (y, s, v) =
f(A∗)− y(A∗) = f(A∗)− x(A∗) ≥ min { f(A)− x(A) | A ⊆ E, s ∈ A ̸∋ v } = c̄f (x, s, v).
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To show the second inequality similarly, assume c̄f (y, u, t) < c̄f (y, u, v). Then

min { f(A)− y(A) | A ⊆ E, u ∈ A ̸∋ t } < min { f(A)− y(A) | A ⊆ E, u ∈ A ̸∋ v } ,

and a minimizer A∗ of the left-hand side satisfies u, v ∈ A∗ and t ̸∈ A∗. This implies c̄f (y, u, t) =
f(A∗)− y(A∗) = f(A∗)− x(A∗) ≥ min { f(A)− x(A) | A ⊆ E, u ∈ A ̸∋ t } = c̄f (x, u, t).

(a4): As u ∈ satf (x), the subset C := satf (x) satisfies u, v ∈ depf (x, u) ⊆ C by c̄f (x, u, v) >
0. Then, y(C ′) = x(C ′) for every C ′ ⊇ C, and hence satf (y) = C = satf (x).

Take any s ∈ E\satf (x) and recall (1). Since x(C) = f(C), the inequality in the proof of (a2)
holds for any A ⊆ E with s ∈ A. Hence, we have ĉf (x, s) = min { f(A)− x(A) | A ⊇ C, s ∈ A }.
Similarly, ĉf (y, s) = min { f(A)− y(A) | A ⊇ C, s ∈ A }. Because u, v ∈ C ⊆ A implies x(A) =
y(A), the claim follows.

(a5): When u ̸∈ satf (x), every s ∈ satf (x) satisfies u ̸∈ depf (x, s). Also, c̄f (x, s, v) = 0
implies v ̸∈ depf (x, s), and hence y(depf (x, s)) = x(depf (x, s)) = f(depf (x, s)). Thus, we have
{ s ∈ satf (x) | c̄f (x, s, v) = 0 } ⊆ satf (y).

For the inequality, it suffices to show that ĉf (y, u) < c̄f (y, u, v) implies ĉf (y, u) ≥ ĉf (x, u).
By (1), ĉf (y, u) < c̄f (y, u, v) means

min { f(A)− y(A) | A ⊆ E, u ∈ A } < min { f(A)− y(A) | A ⊆ E, u ∈ A ̸∋ v } .

Then, a minimizer A∗ ⊆ E of the left-hand satisfies u, v ∈ A∗. This implies ĉf (y, u) = f(A∗)−
y(A∗) = f(A∗)− x(A∗) ≥ min { f(A)− x(A) | A ⊆ E, u ∈ A } = ĉf (x, u).

For any positive integer d ∈ Z>0, we write [d] := {1, 2, . . . , d}. For two nonnegative integers
k, l ∈ Z+ with k ≤ l, we write the integer interval by [k, l] := {k, k + 1, k + 2, . . . , l}.

Lemma 2.3 (Multiple Exchange). For x ∈ P(f), let ui, vi (i = 1, 2, . . . , d) be 2d distinct
elements of E with

c̄f (x, ui, vi) > 0 (i ∈ [d]),

c̄f (x, ui, vj) = 0 (i, j ∈ [d] with i < j).

For any α ≥ 0 satisfying α ≤ c̄f (x, ui, vi) for every i ∈ [d], define y ∈ RE by

y := x+ α
∑d

i=1(χui − χvi).

Then, we have y ∈ P(f) and the following (b1)–(b6).

(b1) c̄f (y, ui, vi) = c̄f (x, ui, vi)− α for every i ∈ [d].

(b2) For any s, t ∈ E, if we have c̄f (x, s, t) ̸= c̄f (y, s, t), then there is a pair of indices (i, j) ∈ [d]2

such that i ≤ j, c̄f (x, s, vj) > 0, and c̄f (x, ui, t) > 0.

(b3) For every s, t ∈ E and i ∈ [d], we have the following.
If c̄f (x, s, vj) = 0 (∀j > i), then c̄f (y, s, vi) ≥ min{c̄f (x, s, vi), c̄f (y, ui, vi)}.
If c̄f (x, uj , t) = 0 (∀j < i), then c̄f (y, ui, t) ≥ min{c̄f (x, ui, t), c̄f (y, ui, vi)}.

(b4) {u1, u2, . . . , ud−1} ⊆ satf (x).

(b5) If ud ∈ satf (x), then satf (x) = satf (y) and ĉf (y, s) = ĉf (x, s) for every s ∈ E \ satf (x).
(b6) If ud ̸∈ satf (x), then ĉf (y, ud) ≥ min{ĉf (x, ud), c̄f (y, ud, vd)} and s ∈ satf (y) for any

s ∈ satf (x) with c̄f (x, s, vd) = 0.
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Proof. Define y0 := x and yl := yl−1 + α(χul
− χvl) for l = 1, 2, . . . , d. Note that yd = y. We

first show that for any l = 1, 2, . . . , d, a vector yl satisfies the following conditions:

c̄f (yl, ui, vi) = c̄f (x, ui, vi)− α (i ∈ [l]), (3)

c̄f (yl, ui, vi) = c̄f (x, ui, vi) (i ∈ [l + 1, d]), (4)

c̄f (yl, ui, vj) = c̄f (x, ui, vj) = 0 (i, j ∈ [d] with i < j), (5)

c̄f (yl, s, vi) = c̄f (x, s, vi) (i ∈ [l + 1, d], s ∈ E\{vi}), (6)

c̄f (yl, ui, t) = c̄f (yl−1, ui, t) (i ∈ [l − 1], t ∈ E\{ui}). (7)

We use induction on l. Assume (3)–(6) hold for l − 1; we will prove them for l.
Since yl = yl−1 + α(χul

− χvl), we have c̄f (yl, ul, vl) = c̄f (yl−1, ul, vl)− α = c̄f (x, ul, vl)− α
by Lemma 2.2 (a1) and (4) for yl−1. Hence, (3) for yl holds.

Note that yl−1 satisfies c̄f (yl−1, ui, vl) = 0 for i < l and c̄f (yl−1, ul, vj) = 0 for j > l by (5).
Then, Lemma 2.2 (a2) imply that we have c̄f (yl, ui, vj) ̸= c̄f (yl−1, ui, vj) only when j ≤ l ≤ i.
Thus, (4) and (5) hold for yl.

By (5) for yl−1, every i ∈ [d] with i > l satisfies c̄f (yl−1, ul, vi) = 0. By Lemma 2.2 (a2)-(ii),
then c̄f (yl, s, vi) = c̄f (yl−1, s, vi) for every s ∈ E \ {vi}. Note that i > l implies i ∈ [l′ + 1, d] for
every l′ ≥ l. Hence (6) holds by induction.

By (5) for yl−1, every i ∈ [d] with i < l satisfies c̄f (yl−1, ui, vl) = 0. By Lemma 2.2 (a2)-(i),
then c̄f (yl, ui, t) = c̄f (yl−1, ui, t) for every t ∈ E \ {ui}, and hence (7) holds.

(b1): This is already shown by (3) for yd = y.

(b2): For l = 1, 2, . . . , d, we show the following claim: For s, t ∈ E with 0 = c̄f (x, s, t) <
c̄f (yl, s, t), there is (i, j) such that 1 ≤ i ≤ j ≤ l and c̄f (x, s, vj) > 0 and c̄f (x, ui, t) > 0. Assume
that the claim holds for yl−1; we will prove it for yl.

In the case c̄f (x, s, t) < c̄f (yl−1, s, t), the claim immediately follows from induction. Hence,
suppose 0 = c̄f (x, s, t) = c̄f (yl−1, s, t) < c̄f (yl, s, t). Then, by Lemma 2.2 (a2), we have
c̄f (yl−1, s, vl) > 0 and c̄f (yl−1, ul, t) > 0. The former means c̄f (x, s, vl) > 0 by (6). The
latter implies c̄f (x, ul, t) > 0 or c̄f (yl−1, ul, t) > c̄f (x, ul, t) = 0, which yields c̄f (x, ui, t) > 0 for
some i ≤ l − 1 by the inductive hypothesis for yl−1. In both cases, we obtain c̄f (x, s, vl) > 0
and c̄f (x, ui, t) > 0 for some i ≤ l.

(b3): Fix s∗, t∗ ∈ E and i∗ ∈ [d]. Suppose s∗ ̸= vi∗ and t∗ ̸= ui∗ , since otherwise the claim
is obvious. By yi∗ = yi∗−1 + α(χui∗ − χvi∗ ) and Lemma 2.2 (a3),

c̄f (yi∗ , s
∗, vi∗) ≥ min{c̄f (yi∗−1, s

∗, vi∗), c̄f (yi∗ , ui∗ , vi∗)}, (8)

c̄f (yi∗ , ui∗ , t
∗) ≥ min{c̄f (yi∗−1, ui∗ , t

∗), c̄f (yi∗ , ui∗ , vi∗)}. (9)

For the first claim, assume c̄f (x, s
∗, vj) = 0 (∀j > i∗). Since c̄f (yj−1, s

∗, vj) = c̄f (x, s
∗, vj) by

(6), we obtain c̄f (yj−1, s
∗, vj) = 0 (∀j > i∗). As yj = yj−1+α(χuj−χvj ), apply Lemma 2.2 (a2)-

(i) with u, v, s, t replaced by uj , vj , s
∗, vi∗ , respectively. Then c̄f (yj , s

∗, vi∗) = c̄f (yj−1, s
∗, vi∗)

for every j > i∗, and hence c̄f (yi∗ , s
∗, vi∗) = c̄f (y, s

∗, vi∗). Also, we have c̄f (yi∗−1, s
∗, vi∗) =

c̄f (x, s
∗, vi∗) by (6) for l = i∗ − 1 and c̄f (yi∗ , ui∗ , vi∗) = c̄f (y, ui∗ , vi∗) by (3). Substituting these

three into (8) gives c̄f (y, s
∗, vi∗) ≥ min{c̄f (x, s∗, vi∗), c̄f (y, ui∗ , vi∗)}.

For the second claim, assume c̄f (x, uj , t
∗) = 0 (∀j < i∗). Then (a2)-(ii) implies c̄f (yj , ui∗ , t

∗) =
c̄f (yj−1, ui∗ , t

∗) for every j < i∗, and we obtain c̄f (yi∗−1, ui∗ , t
∗) = c̄f (x, ui∗ , t

∗). Note that every
l ∈ [i∗ + 1, d] satisfies i∗ ∈ [l − 1]. Then repeated application of (7) yields c̄f (yi∗ , ui∗ , t

∗) =
c̄f (y, ui∗ , t

∗). Substituting these two and c̄f (yi∗ , ui∗ , vi∗) = c̄f (y, ui∗ , vi∗) into (9), we obtain
c̄f (y, ui∗ , t

∗) ≥ min{c̄f (x, ui∗ , t∗), c̄f (y, ui∗ , vi∗)}.

(b4): Every l ∈ [d− 1] satisfies c̄f (x, ul, vd) = 0 by l < d, and hence ul ∈ satf (x).
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(b5): If ud ∈ satf (x), as we have (b4), ul ∈ satf (x) holds for every l ∈ [d]. Then, by
repeating application of Lemma 2.2 (a4) d times, we obtain satf (yl) = satf (x) and ĉf (yl, s) =
ĉf (x, s) (∀s ∈ E \ satf (x)) for each yl, and so for y = yd.

(b6): As shown in the proof of (b4), we have satf (yd−1) = satf (x) and ĉf (yd−1, s) =
ĉf (x, s) (∀s ∈ E \ satf (x)). Also, c̄f (yd−1, s, vd) = c̄f (x, s, vd) (∀s ∈ E \ {vd}) by (6). If
ud ̸∈ satf (x), by applying Lemma 2.2 (a5) for yd−1, we obtain the claim.

Lemma 2.4 (Simple Augmentation). For any x ∈ P(f) and u ∈ E, define y ∈ RE by
y := x+ αχu with 0 ≤ α ≤ ĉf (x, u). Then, we have y ∈ P(f) and the following (c1)–(c3).

(c1) ĉf (y, u) = ĉf (x, u)− α.

(c2) For every s ∈ satf (x) and t ∈ E \ {s}, we have c̄f (y, s, t) = c̄f (x, s, t).

(c3) Every s ∈ satf (x) satisfies s ∈ satf (y) and depf (y, s) = depf (x, s).

Proof. We need only consider the case that ĉf (x, u) > 0, i.e., u ̸∈ satf (x). By the definition,
y ∈ P(f) and condition (c1) are obvious. For (c2), let s ∈ satf (x) and C := satf (x). Then
s ∈ C, u ̸∈ C, and x(C) = y(C) = f(C). Take any t ∈ E \ {s}. Then for any A ⊆ E with
s ∈ A and t ̸∈ A, we have s ∈ A ∩ C and t ̸∈ A ∩ C and x(A ∩ C) = y(A ∩ C). Hence, as is
the case in Lemma 2.2 (a1), we obtain c̄f (y, s, t) = c̄f (x, s, t). The statement (c3) follows from
u ̸∈ satf (x), which implies u ̸∈ depf (x, s) for any s ∈ satf (x), and hence y(A) = x(A) for every
A ⊆ depf (x, s).

2.2 Preferences on Polymatroids

We now introduce a partial order on vectors, which is induced from a total order on the ground
set. This partial order is regarded as a preference order in our model.

Let ≻ be a total order on E. For any element a ∈ E, we denote E⪰a := { e ∈ E | e ⪰ a }.
For two vectors x, y ∈ RE , we say that x is ≻-preferable to y if

∀a ∈ E : x(E⪰a) ≥ y(E⪰a).

A vector x is ≻-optimal in a set K ⊆ RE if x ∈ K and x is ≻-preferable to every y ∈ K.

Lemma 2.5. Let (E, f,≻) be an ordered polymatroid. For x, y ∈ P(f) if

∀e ∈ E : x(e) ≥ y(e) or [e ∈ satf (x), depf (y, e) ⪰ e],

then x is ≻-preferable to y.

Proof. Take an arbitrary a ∈ E. We show x(E⪰a) ≥ y(E⪰a). Define

C :=
∪
{depf (x, e) | e ∈ E⪰a, [e ∈ satf (x), depf (x, e) ⪰ e] } .

Then C ⊆ E⪰a and every e ∈ E⪰a \ C satisfies x(e) ≥ y(e). Also, since C is a union of
tight sets, it is also tight. As y ∈ P(f), this implies x(C) = f(C) ≥ y(C). Then, we have
x(E⪰a) = x(C) + x(E⪰a \ C) ≥ y(C) + y(E⪰a \ C) = y(E⪰a).

Lemma 2.6. Let (E, f,≻) be an ordered polymatroid. For x, y ∈ P(f) and a ∈ E, if we have

∀e ∈ E⪰a : x(e) ≥ y(e) or [e ∈ satf (x), depf (x, e) ⪰ e],

then we have
∀e ∈ E⪰a : y(e) ≥ x(e) or ¬[e ∈ satf (y), depf (y, e) ⪰ e].
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Proof. Assume that each e ∈ E⪰a satisfies x(e) ≥ y(e) or [e ∈ satf (x), depf (x, e) ⪰ e]. Also
assume that e′ ∈ E⪰a satisfies [e′ ∈ satf (y), depf (y, e

′) ⪰ e′]. We now show y(e′) ≥ x(e′). Let
Cy := depf (y, e

′) and

Cx :=
∪{

depf (x, e) | e ∈ Cy \ {e′}, [e ∈ satf (x), depf (x, e) ⪰ e]
}

and D := (Cy \ Cx) \ {e′}. Then, {{e′}, Cy ∩ Cx, D} is a partition of Cy. By definition,
y(Cy) = f(Cy) and x(Cx) = f(Cx), and hence the submodularity of f implies

y(Cy)− y(Cy ∩ Cx) ≥ f(Cy)− f(Cy ∩ Cx) ≥ f(Cy ∪ Cx)− f(Cx) ≥ x(Cy ∪ Cx)− x(Cx).

As we have Cy = depf (y, e
′) ⪰ e′ ∈ E⪰a, we obtain Cy ⊆ E⪰a, and hence every e ∈ D =

(Cy \ Cx) \ {e′} satisfies x(e) ≥ y(e), which implies x(D) ≥ y(D). Then, we have y(e′) =
y(Cy)− y(Cy ∩ Cx)− y(D) ≥ x(Cy ∪ Cx)− x(Cx)− x(D) = x(e′).

3 Algorithm

In this section, we present an algorithm for finding a stable allocation for (E, h,≻H) and
(E, f,≻F). The algorithm adopts the augmenting path technique for polymatroid intersec-
tion [23]. Each iteration searches for an augmenting path by simulating a chain of proposes and
rejects in the deferred acceptance algorithm [15].

We first introduce pointer functions nexth and nextf with reference to (E, h,≻H) and
(E, f,≻F), respectively. In our algorithm, they play fundamental roles of suggesting which
element to propose or reject at the next step.

For D ⊆ E, x ∈ P(h), and v ∈ E, define nexth(D,x, v) ∈ E by

nexth(D,x, v) := max
≻H

{u ∈ D \ {v} | c̄h(x, u, v) > 0 } .

If the set in the right-hand side is empty, then nexth(D,x, v) is undefined. Note that nexth(D,x, v)
is the best element w.r.t. ≻H in D to increase at an exchange with v.

For x ∈ P(f) and u ∈ E, define nextf (x, u) ∈ E by

nextf (x, u) := min
≻F

{ v ∈ E | c̄f (x, u, v) > 0 } .

If u ∈ satf (x), nextf (x, u) represents the best element w.r.t. ≻F to decrease at an exchange
with u. Note that nextf (x, u) = u means that every v ∈ E with u ≻F v satisfies c̄f (x, u, v) = 0.

For a common independent vector x ∈ P(h) ∩ P(f), we introduce capacities of sequences.
Let P = {u0, v1, u1, . . . , vk, uk} be a sequence of 2k + 1 distinct elements of E. We define the
path-capacity of P by

c(x, P ) = min

{
ĉh(x, u0), min

i:1≤i≤k
c̄f (x, ui−1, vi), min

i:1≤i≤k
c̄h(x, ui, vi), ĉf (x, uk)

}
.

Let Q = {u0, v1, u1, . . . , uk−1, vk} be a sequence of 2k distinct elements of E. We define the
cycle-capacity of Q by

c(x,Q) = min

{
min

i:1≤i≤k
c̄f (x, ui−1, vi), min

i:1≤i≤k
c̄h(x, ui, vi)

}
,

where we regard uk := u0.
The algorithm keeps a vector x ∈ P(h) ∩P(f) and updates it repeatedly. The algorithm

also maintains two disjoint subsets D,R ⊆ E.
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We now introduce three procedures which will be used in the algorithm. The procedure
Augment is applied to odd-length sequences. For a sequence P = {u0, v1, . . . , vk−1, uk−1} (P
can be {u0}), the procedure Augment(P ) updates (x,D,R) by

x← x+ c(x, P )
(
χu0 +

∑k−1
j=1(χuj − χvj )

)
,

D ← D \ {v1, v2, . . . , vk−1},
R← R ∪ {v1, v2, . . . , vk−1}.

The procedure Cycle is applied to even-length sequences. For a sequenceQ = {ul, vl+1, . . . , uk−1, vk}
with l < k, the procedure Cycle(Q) updates (x,D,R) by

x← x+ c(x,Q)
∑k

j=l+1(χuj−1 − χvj ),

D ← D \ {vl+1, vl+2, . . . , vk},
R← R ∪ {vl+1, vl+2, . . . , vk}.

The procedure Self-loop is applied to an element e ofD and moves e fromD toR, i.e,D ← D\{e}
and R← R ∪ {e}, without changing x.

We are now ready to describe the algorithm for finding a stable allocation.

Algorithm 1 Find a stable allocation

Input: (E, h,≻H) and (E, f,≻F);
Output: stable allocation;

1: D ← ∅, R← ∅, x← 0;
2: while D ∪R ̸= E do
3: e∗ ← max≻H E \ (D ∪R);
4: D ← D ∪ {e∗};
5: while e∗ ∈ D \ sath(x) do
6: u0 ← e∗;
7: for k = 1, 2, . . . do
8: if uk−1 ̸∈ satf (x) then Augment({u0, v1, . . . , uk−1}) and break;
9: vk ← nextf (x, uk−1);

10: if vk = uk−1 then Self-loop(uk−1) and break;
11: if vk = vl (∃l < k) then Cycle({ul, vl+1 . . . , uk−1, vk}) and break;
12: uk ← nexth(D,x, vk);
13: if uk = ul (∃l < k) then Cycle({ul, vl+1 . . . , uk−1, vk}) and break;
14: end for
15: end while
16: end while
17: return x.

We now describe how our algorithm works on an example.

Example 3.1. Consider total orders ≻H and ≻F on E = {e1, e2, e3, e4, e5, e6} given by

e1 ≻H e2 ≻H e3 ≻H e4 ≻H e5 ≻H e6,

e2 ≻F e3 ≻F e5 ≻F e6 ≻F e1 ≻F e4.

Let GH and GF be bipartite graphs with vertex sets E ∪ VH and E ∪ VF depicted in Figure 1,
where vertex capacity functions bH : VH → R and bF : VF → R are also given. Define rank
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Figure 1: Bipartite graphs inducing h and f .

Figure 2: Auxiliary graphs for x at some points of the algorithm. Each graph has two lines of nodes.
The upper line consists of the elements of E arranged in descending order w.r.t. ≻H, and so does the
lower line w.r.t. ≻F. In the upper line, an arc from e to e′ means c̄h(x, e

′, e) > 0 and an arc from the
outside to e means ĉh(x, e) > 0. In the lower line, an arc from e to e′ means c̄f (x, e, e

′) > 0 and an arc
from e to the outside means ĉf (x, e) > 0. We omit some exchangeability arcs incident to unsaturated
elements or implied by the transitivity. Elements in D ⊆ E and R ⊆ E are represented by single and
double circles, respectively. Other elements are colored gray.

functions h, f : 2E → R by

h(A) =
∑
{ bH(v) | v ∈ ΓH(A) } (A ⊆ E),

f(A) =
∑
{ bF(v) | v ∈ ΓF(A) } (A ⊆ E),

where ΓH(A) and ΓF(A) denote the sets of nodes adjacent to A in GH and in GF, respectively.
We now apply the algorithm to (E, h,≻H) and (E, f,≻F). Just after Line 4 with e∗ = e5, we

have x = (5, 3, 0, 1, 0, 0) and its auxiliary graph is depicted in Figure 2 (a). Then, the algorithm
searches an augmenting path and finds a cycle (e5, e4) whose cycle-capacity is 1. Hence, the
procedure Cycle({e5, e4}) updates x← (5, 3, 0, 0, 1, 0). The updated auxiliary graph is depicted
in Figure 2 (b). In the next search, the algorithm finds an augmenting path (e5, e1, e3) with path-
capacity 3, and calls Augment({e5, e1, e3}). Thus, x is updated as x← (2, 3, 3, 0, 4, 0). Then, we
see e5, e6 ∈ sath(x), and the algorithm terminates with returning this x, whose auxiliary graph
is depicted in Figure 2 (c). In this graph, for any e ∈ D in the upper line, every arc entering
e comes from left, which means [e ∈ sath(x), deph(x, e) ⪰H e]. Also, for any e ∈ R, every arc
leaving e in the lower line goes to left, i.e., [e ∈ satf (x), depf (x, e) ⪰F e]. Since D ∪R = E, we
may conclude that the output x = (2, 3, 3, 0, 4, 0) is indeed a stable allocation.
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4 Invariants

The main part of our analysis, provided in Section 5, is to show that the following invariants
are maintained for (x,D,R) throughout the algorithm.

(P) {D,R} is a partition of E⪰He∗ and x(e) = 0 for every e ∈ E\(D∪R), where e∗ := min≻H D.

(H) x ∈ P(h) holds and every e ∈ D \ {e∗} satisfies [e ∈ sath(x), deph(x, e) ⪰H e], where
e∗ := min≻H D. Also, for each t ∈ E, the inequality c̄h(x, e

∗, t) > 0 implies t ⪰H e∗.

(F) x ∈ P(f) holds and every e ∈ R satisfies [e ∈ satf (x), depf (x, e) ⪰F e].

As will be shown in Section 5, if these conditions hold at the end of the algorithm, then the
output is a stable allocation.

In this section, we prepare three lemmas related to these invariants. They will be used to
analyze the algorithm later in Sections 5–7.

Lemma 4.1 (Multiple Exchange in P(h)). For an independent vector x ∈ P(h) and D ⊆ E,
let ui, vi (i = 1, 2, . . . , d) be 2d distinct elements of E such that

(h0) nexth(D,x, vi) = ui

holds for every i ∈ [d]. For any α ≥ 0 satisfying α ≤ c̄h(x, ui, vi) for every i ∈ [d], define y ∈ RE

by y := x+ α
∑d

i=1(χui − χvi). Then, we have y ∈ P(h) and the following (h1)–(h3), where
E′ := E \ {u1, v1, . . . , ud, vd} and D′ := D \ {v1, v2, . . . , vd}.

(h1) If (H) holds for x and D, then the same statement holds with x and D replaced by y and
D′, respectively.

(h2) For t ∈ E \{u1, u2, . . . , ud}, if nexth(D,x, t) is defined, then nexth(D
′, y, t) is undefined or

it is defined and satisfies nexth(D,x, t) ⪰H nexth(D
′, y, t). If nexth(D,x, t) is undefined,

then nexth(D
′, y, t) is also undefined.

(h3) For i ∈ [d], we have c̄h(y, ui, vi) = c̄h(x, ui, vi) − α. For s, t ∈ E′ with nexth(D,x, t) = s,
we have c̄h(y, s, t) = c̄h(x, s, t). For t ∈ E′ and i ∈ [d] with nexth(D,x, t) = ui, we have
c̄h(y, ui, t) ≥ min{c̄h(x, ui, t), c̄h(y, ui, vi)}.

Proof. Without loss of generality, we can assume u1 ≻H u2 ≻H . . . ≻H ud. Then, the definition
of nexth and the assumption that (h0) holds for every i ∈ [d] imply

ui ∈ D \ {v1, v2, . . . , vd} (i ∈ [d]), (10)

c̄h(x, ui, vi) > 0 (i ∈ [d]), (11)

s ≻H ui =⇒ c̄h(x, s, vi) = 0 (i ∈ [d], s ∈ D \ {vi}). (12)

In particular, since i < j implies ui ≻H uj for every i, j ∈ [d], the condition (12) yields

c̄h(x, ui, vj) = 0 (i, j ∈ [d] with i < j). (13)

By (11) and (13), we can apply Lemma 2.3 on multiple exchange to see that y ∈ P(h) holds.

(h1): Suppose that (H) holds for x and D. This is equivalent to the combination of the
following two conditions.

(H1) x ∈ P(h) and D \ {min≻H D} ⊆ sath(x).

(H2) For any s ∈ D and t ∈ E, if c̄h(x, s, t) > 0, then t ⪰H s.
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We show that (H1) and (H2) hold with x and D replaced by y and D′. We already have
y ∈ P(h). Fix e∗ := min≻H D, and note that D′ ⊆ D implies D′ \ {min≻H D′} ⊆ D′ \ {e∗}.

To obtain (H1) for y and D′, it suffices to show D′ \ {e∗} ⊆ sath(y). Recall that we have
(10), (11), and (13). If ud ≠ e∗, then ud ∈ D \ {e∗} ⊆ sath(x) and Lemma 2.3 (b5) implies
sath(y) = sath(x), and hence D′ \ {e∗} ⊆ D \ {e∗} ⊆ sath(x) = sath(y). Also, if ud = e∗, then
nexth(D,x, vd) = ud = e∗ = min≻H D. This implies that, for every s ∈ D \ {e∗, vd}, we have
c̄h(x, s, vd) = 0, and hence s ∈ sath(y) by (b6). Thus, D′ \ {e∗} ⊆ D \ {e∗, vd} ⊆ sath(y).

We show (H2) for y and D′. Suppose, to the contrary, that there are s ∈ D′ and t ∈ E such
that c̄h(y, s, t) > 0 and s ≻H t. Then s ∈ D′ ⊆ D and s ≻H t imply c̄h(x, s, t) = 0, because (H2)
holds for x and D. As we have c̄h(x, s, t) = 0 and c̄h(y, s, t) > 0, Lemma 2.3 (b2) implies that
there are i, j ∈ [d] such that

i ≤ j, c̄h(x, s, vj) > 0, c̄h(x, ui, t) > 0.

Since nexth(D,x, vj) = uj , conditions s ∈ D′ ⊆ D \ {vj} and c̄h(x, s, vj) > 0 imply uj ⪰H s. As
(H2) holds for x and D, conditions ui ∈ D and c̄h(x, ui, t) > 0 imply t ⪰ ui. Also, i ≤ j implies
ui ⪰H uj . Thus, we obtain t ⪰H ui ⪰H uj ⪰H s, which contradicts s ≻H t.

(h2): Suppose, to the contrary, the claim fails for some t ∈ E \ {u1, u2, . . . , ud}. Then,
either of the following holds.

1. Both s = nexth(D,x, t) and s′ = nexth(D
′, y, t) are defined and s′ ≻H s.

2. s′ = nexth(D
′, y, t) is defined while nexth(D,x, t) is undefined.

In Case 1, we have s ∈ D \{t} and s′ ∈ D′ \{t} ⊆ D \{t}. By s′ = nexth(D
′, y, t), the definition

of nexth implies c̄h(y, s
′, t) > 0. Also, by s′ ≻H s = nexth(D,x, t) and s′ ∈ D \ {t}, we see that

c̄h(x, s
′, t) = 0. By Lemma 2.3 (b2), then there are i, j ∈ [d] such that

i ≤ j, c̄h(x, s
′, vj) > 0, c̄h(x, ui, t) > 0.

Note that ui ∈ D \ {t} by t ∈ E \ {u1, u2, . . . , ud}. Then, c̄h(x, ui, t) > 0 and nexth(D,x, t) = s
imply s ≻H ui. Similarly, by s′ ∈ D′ ⊆ D \ {vj}, c̄h(x, s′, vj) > 0, and nexth(D,x, vj) = uj , we
have uj ⪰H s′. Also, i ≤ j implies ui ⪰H uj . Thus, we obtain s ⪰H ui ⪰H uj ⪰H s′, which
contradicts s′ ≻H s.

In Case 2, we also have c̄h(y, s
′, t) > 0 and c̄h(x, s

′, t) = 0, and hence there are i, j ∈ [d] such
that i ≤ j, c̄h(x, s

′, vj) > 0, and c̄h(x, ui, t) > 0. Since ui ∈ D \{t}, the condition c̄h(x, ui, t) > 0
contradicts the fact that nexth(D,x, t) is undefined.

(h3): The first claim of (h3) immediately follows from Lemma 2.3 (b1).
To show the second claim by contradiction, suppose c̄h(y, s, t) ̸= c̄h(x, s, t) for some s, t ∈ E′

with nexth(D,x, t) = s. By (b2), there exist i, j ∈ [d] such that i ≤ j, c̄h(x, s, vj) > 0, and
c̄h(x, ui, t) > 0. Since nexth(D,x, vj) = uj , the condition c̄h(x, s, vj) > 0 implies uj ⪰H s, and
in particular uj ≻H s by s ∈ E′. Also, nexth(D,x, t) = s and c̄h(x, ui, t) > 0 imply s ≻H ui,
and hence uj ≻H ui, which contradicts i ≤ j.

We show the last claim of (h3). Let t ∈ E′ and i ∈ [d] be such that nexth(D,x, t) = ui.
Every j ∈ [d] with j < i satisfies uj ≻H ui and uj ∈ D \ {vj}, and hence the condition
nexth(D,x, t) = ui implies c̄h(x, uj , t) = 0. By Lemma 2.3 (b3), then we obtain c̄h(y, ui, t) ≥
min{c̄h(x, ui, t), c̄h(y, ui, vi)}.

Lemma 4.2 (Multiple Exchange in P(f)). For an independent vector x ∈ P(f), let
ui−1, vi (i = 1, 2, . . . , d) be 2d distinct elements of E such that
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(f0) ui−1 ∈ satf (x), nextf (x, ui−1) = vi

holds for every i ∈ [d]. For any α ≥ 0 satisfying α ≤ c̄h(x, ui, vi) for every i ∈ [d], define y ∈ RE

by y := x+ α
∑d

i=1(χui−1 − χvi). Then, we have y ∈ P(f) and the following (f1)–(f3), where
E′ = E \ {u0, v1, u1, . . . , ud−1, vd}.

(f1) If (F) holds for x and some R ⊆ E, then the same statement holds with x and R replaced
by y and R′ := R ∪ {v1, v2, . . . , vd}, respectively.

(f2) For every s ∈ satf (x), we have s ∈ satf (y) and nextf (y, s) ⪰F nextf (x, s).

(f3) For i ∈ [d], we have c̄f (y, ui−1, vi) = c̄f (x, ui−1, vi)− α. For s, t ∈ E′ with nextf (x, s) = t,
we have c̄f (y, s, t) = c̄f (x, s, t). For s ∈ E′ and i ∈ [d] with nextf (x, s) = vi, we have
c̄f (y, s, vi) ≥ min{c̄f (x, s, vi), c̄f (y, ui−1, vi)}.

Proof. Without loss of generality, we can assume v1 ≻F v2 ≻F . . . ≻F vd. Then, the definition
of nextf and the assumption that (f0) holds for every i ∈ [d] imply

c̄f (x, ui, vi) > 0 (i ∈ [d]), (14)

vi ≻F t =⇒ c̄f (x, ui, t) = 0 (i ∈ [d], t ∈ E). (15)

In particular, since i < j implies vi ≻F vj , the condition (15) yields

c̄f (x, ui, vj) = 0 (i, j ∈ [d] with i < j). (16)

By (14),(16), we can apply Lemma 2.3 on multiple exchange. Then, y ∈ P(f). Since (f0) says
ui−1 ∈ satf (x) for every i ∈ [d], Lemma 2.3 (b5) implies satf (y) = satf (x). Also, (f0) implies
vi ∈ satf (x) for every i ∈ [d], and hence we have

{v1, v2, . . . , vd} ⊆ satf (x) = satf (y). (17)

We show (f2) first, and then (f1) and (f3).
(f2): Since we have satf (y) = satf (x), it suffices to show nextf (y, s) ⪰F nextf (x, s) for

every s ∈ satf (x). Suppose, to the contrary, there is s ∈ satf (x) such that t = nextf (x, s), t
′ =

nextf (y, s) and t′ ≺F t. By the definition of nextf , we have c̄f (y, s, t
′) > 0 and c̄h(x, s, t

′) = 0. By
Lemma 2.3 (b2), then there are i, j ∈ [d] such that i ≤ j, c̄f (x, s, vj) > 0, and c̄f (x, ui, t

′) > 0.
By c̄h(x, ui, t

′) > 0 and nextf (x, ui) = vi, we have t′ ⪰F vi. Similarly, c̄f (x, s, vj) > 0 and
nextf (x, s) = t imply vj ⪰F t. Also, i ≤ j implies vi ⪰F vj . Thus, we have t′ ⪰F vi ⪰F vj ⪰F t,
a contradiction.

(f1): Suppose that (F) holds for x and R. By the definition of nextf , for any s ∈ satf (x),
the condition depf (x, s) ⪰F s is equivalent to nextf (x, s) = s. Then, (F) is rephrased as

∀s ∈ R : s ∈ satf (x), nextf (x, s) = s.

We show that (F) holds for y and R′. By (F) for x and R, we have R ⊆ satf (x). Then,
(17) implies R′ = R ∪ {v1, v2, . . . , vd} ⊆ satf (x) = satf (y). By (f2) and the definition of
nextf , every s ∈ R′ ⊆ satf (x) satisfies s ⪰F nextf (y, s) ⪰F nextf (x, s). Hence, it suffices
to show nextf (x, s) = s for every s ∈ R′ = R ∪ {v1, v2, . . . , vd}. For every s ∈ R, we have
nextf (x, s) = s by (F) for x and R. Also, every vi satisfies nextf (x, vi) = vi as follows. Suppose,
to the contrary, we have nextf (x, vi) = t ≺F vi. Then, c̄f (x, vi, t) > 0. Since we also have
c̄f (x, ui, vi) > 0 by nextf (x, ui) = vi, the transitivity (Lemma 2.1) implies c̄f (x, ui, t) > 0. This
contradicts nextf (x, ui) = vi ≻F t

(f3): The first claim of (f3) immediately follows from Lemma 2.3 (b1).
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To show the second claim by contradiction, suppose c̄f (y, s, t) ̸= c̄f (x, s, t) for some s, t ∈ E′

with nextf (x, s) = t. By (b2), there exist i, j ∈ [d] such that i ≤ j, c̄f (x, s, vj) > 0, and
c̄f (x, ui−1, t) > 0. Since nextf (x, ui−1) = vi, the condition c̄f (x, ui−1, t) > 0 implies t ⪰F vi,
and in particular t ≻F vi by t ∈ E′. Also, nextf (x, s) = t and c̄f (x, s, vj) > 0 imply vj ≻F t,
and hence vj ≻F vi, which contradicts i ≤ j.

We show the last claim of (f3). Let s ∈ E′ and i ∈ [d] be such that nextf (x, s) = vi. Since
every j ∈ [d] with j > i satisfies vi ≻F vj , the condition nextf (x, s) = vi implies c̄f (x, s, vj) = 0.
By Lemma 2.3 (b3), then we obtain c̄f (y, s, vi) ≥ min{c̄f (x, s, vi), c̄f (y, ui−1, vi)}.

Lemma 4.3. Assume that (P) holds for x ∈ P(h) ∩ P(f) and D,R ⊆ E. Let u0, ui, vi (i =
1, 2, . . . , d) be (not necessarily distinct) elements such that u0 ∈ D and (h0) and (f0) hold
for every i ∈ [d]. Define y := x+ α

∑d
i=1(χui−1 − χvi) for an arbitrary α ≥ 0. Then (P)

also holds with (x,D,R) replaced by (y,D′, R′), where D′ := D \ {v1, v2, . . . , vd} and R′ :=
R ∪ {v1, v2, . . . , vd}.

Proof. By (f0), we have x(vi) > 0 for every i ∈ [d]. Then {v1, v2, . . . , vd} ⊆ D ∪ R since x
satisfies (P). Therefore, D′ ∪ R′ = D ∪ R ∪ {v1, v2, . . . , vd} = D ∪ R. By u0 ∈ D and (h0), we
have {u0, u1, . . . , ud−1} ⊆ D ⊆ D′ ∪ R′. Then, every e′ ∈ E \ (D′ ∪ R′) = E \ (D ∪ R) satisfies
y(e′) = x(e′) = 0. Thus, (P) holds with (x,D,R) replaced by (y,D′, R′).

5 Correctness

In this section, we show that the output of the algorithm is indeed a stable allocation. We
first provide basic observations from the description of the algorithm. Recall that [k, l] =
{k, k + 1, . . . , l} for two nonnegative integers k, l ∈ Z+ with k ≤ l.

Claim 5.1. Just before Line 11, vi ̸= uj for every i ∈ [k] and j ∈ [0, k − 1].

Proof. By Line 10, vi ̸= ui−1 for every i ∈ [k]. We then show the case that j < i − 1 or
j > i − 1. Suppose, to the contrary, that vi = uj for such i and j. The definition of nextf
implies c̄f (x, uj , vj+1) > 0 and c̄f (x, ui−1, vi) = c̄f (x, ui−1, uj) > 0. Then, the transitivity of
dependence (Lemma 2.1) implies c̄f (x, ui−1, vj+1) > 0. As nextf (x, ui−1) = vi, this implies
vj+1 ⪰F vi = uj , and hence vj+1 ⪰F uj . On the other hand, by Line 10 for j ∈ [0, k − 1], we
have nextf (x, uj) = vj+1 ̸= uj , which implies uj ≻F vj+1. This contradicts nextf (x, uj) ⪯F uj ,
which must hold by the definition of nextf .

Claim 5.2. Just before Line 12, e∗ ∈ D \ {vk} and c̄h(x, e
∗, vk) > 0 hold. Hence, just after

Line 12, nexth(D,x, vk) satisfies nexth(D,x, vk) ⪰H e∗.

Proof. Just before Line 12, x(vk) > 0 by nextf (x, uk−1) = vk ̸= uk−1. Also, by Line 5, we have
e∗ ∈ D and e∗ ̸∈ sath(x), which implies c̄f (x, e

∗, vk) > 0. Also, e∗ = u0 ̸= vk by Claim 5.1.

Lemma 5.3. In the algorithm, the following statements hold.

• When Self-loop(uk−1) is called, uk−1 ∈ satf (x) and nextf (x, uk−1) = uk−1.

• When Cycle({ul, vl+1 . . . , uk−1, vk}) is called, the elements of {ul, vl+1 . . . , uk−1, vk} are all
distinct and every i ∈ [l + 1, k] satisfies (h0) and (f0), where uk = ul.

• When Augment({u0, v1, . . . , vk−1, uk−1}) is called, the elements of {u0, v1, . . . , vk−1, uk−1}
are all distinct, we have u0 ∈ D \ sath(x) and uk−1 ̸∈ satf (x), and every i ∈ [k − 1] satisfies
(h0) and (f0).
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Proof. By the algorithm, when Cycle is called, we have ui ̸= uj and vi ̸= vj for every distinct
i, j ∈ [l+ 1, k], where uk = ul. With Lemma 5.1, then all elements in the sequence are distinct.
Similarly, when Augment is called, ui ̸= uj for every distinct i, j ∈ [0, k−1] and vi ̸= vj for every
distinct i, j ∈ [k − 1], and hence all elements in the sequence are distinct. Other statements
immediately follow from the algorithm.

We prove the correctness of the algorithm by showing that conditions (P), (H), and (F) are
maintained throughout the algorithm.

Observation 5.4. When the algorithm reaches Line 5 for the first time, (P), (H), and (F) hold.

Lemma 5.5. Suppose that conditions (P), (H), and (F) hold just after Line 15. If D ∪R ̸= E,
then the conditions also hold when the algorithm reaches Line 5 the next time. If D ∪R = E,
then the algorithm halts and the current x is a stable allocation.

Proof. After Line 15, we have e∗ ̸∈ D \ sath(x) by Line 5, and hence e∗ ̸∈ D or e∗ ∈ sath(x).
Also, in the latter case, deph(x, e

∗) ⪰H e∗ because x(e) = 0 for every e ∈ E with e∗ ≻H e.
Then, just after Line 15, every e ∈ D satisfies [e ∈ sath(x), deph(x, e) ⪰H e]. This means that
(H) holds when the algorithm reaches Line 5 next time. Also, (P) and (F) obviously hold since
x and R do not change. If D ∪R = E, these conditions mean that x is a stable allocation.

By Observation 5.4 and Lemma 5.5, what is left is to show that conditions (P), (H), and
(F) are maintained whenever the procedures are applied.

Lemma 5.6. If (P), (H), and (F) hold when the procedure Self-loop(uk−1) is called, then they
also hold just after the procedure.

Proof. The procedure Self-loop(uk−1) does not change the vector x and replaces (D,R) by
(D \ {uk−1}, R ∪ {uk−1}). Clearly the conditions (P) and (H) are maintained. The element
uk−1, which is added to R, satisfies uk−1 ∈ satf (x) by Line 8 and nextf (x, uk−1) = uk−1 by
Line 10, which implies depf (x, uk−1) ⪰F uk−1. Thus, (F) is maintained.

Lemma 5.7. If (P), (H), and (F) hold when the procedure Cycle({ul, vl+1, . . . , uk−1, vk}) is
called, then they also hold just after the procedure.

Proof. Let Q denote the sequence {ul, vl+1, . . . , uk−1, vk}. The procedure updated the triple
(x,D,R) to (y,D′, R′), where

y = x+ c(x,Q)
∑k

i=l+1(χui−1 − χvi),

D′ = D \ {vl+1, vl+2, . . . , vk},
R′ = R ∪ {vl+1, vl+2, . . . , vk}.

We now show that conditions (P), (H), and (F) hold with (x,D,R) replaced by (y,D′, R′). By
Lemma 5.3, ul, vl+1, . . . , uk−1, vk are distinct and every i ∈ [l+1, k] satisfies (h0) and (f0), where
uk = ul. Then by Lemma 4.2 (f1), the condition (F) holds with (x,R) replaced by (y,R′). Note
that y is also written as y = x + c(x,Q)

∑k
i=l+1(χui − χvi), and hence Lemma 4.1 (h1) imply

that (H) holds with (x,D) replaced by (y,D′). By Lemma 4.3, (P) holds with (x,D,R) replaced
by (y,D′, R′).

Lemma 5.8. If (P), (H), and (F) hold when the procedure Augment({u0, v1, . . . , vk−1, uk−1})
is called, then they also hold just after the procedure.
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Proof. Let P denote the sequence {u0, v1, . . . , vk−1, uk−1}. The procedure updated the triple
(x,D,R) to (y,D′, R′), where

y = x+ c(x, P )
(
χu0 +

∑k−1
i=1 (χui − χvi)

)
,

D′ = D \ {v1, v2, . . . , vk−1},
R′ = R ∪ {v1, v2, . . . , vk−1}.

We now show that conditions (P), (H), and (F) hold with (x,D,R) replaced by (y,D′, R′). By
Lemma 5.3, u0, v1, . . . , vk−1, uk−1 are all distinct and there hold u0 ∈ D\sath(x), uk−1 ̸∈ satf (x),
and every i ∈ [k − 1] satisfies (h0) and (f0).

We first show (F). Define a vector

x′ := x+ c(x, P )
∑k−1

i=1 (χui−1 − χvi) = y − c(x, P )χuk−1
.

As we have (f*) for each i ∈ [k − 1], Lemma 4.2 (f1) implies that (F) holds for (x′, R′).
As {u0, u1, . . . , uk−2} ⊆ satf (x), Lemma 2.3 (b5) and uk−1 ̸∈ satf (x) imply ĉf (x

′, uk−1) =
ĉf (x, uk−1) ≥ c(x, P ). Apply Lemma 2.4 to obtain y = x′+ c(x, P )χuk−1

. Then Lemma 2.4 (c3)
implies that (F) also holds with (x′, R′) replaced by (y,R′).

The condition (H) can be checked similarly. Define a vector

x′′ := x+ c(x, P )
∑k−1

i=1 (χui − χvi) = y − c(x, P )χu0 .

As we have (h*) for each i ∈ [k − 1], Lemma 4.1 (h1) implies that (H) holds for (x′′, D′). As
{u1, u2, . . . , uk−1} ⊆ D \ {e∗} ⊆ sath(x), Lemma 2.3 (b5) and u0 ̸∈ sath(x) imply ĉh(x

′, u0) =
ĉf (x, u0) ≥ c(x, P ). Apply Lemma 2.4 to obtain y = x′′ + c(x, P )χu0 . Then Lemma 2.4 (c3)
implies that (H) also holds with (x′′, D′) replaced by (y,D′).

As for (P), Lemma 4.3 implies that it holds with (x,D,R) replaced by (x′, D′, R′). Also,
since uk−1 ∈ D ⊆ D′ ∪R′ and y = x′ + c(x, P )χuk−1

, it also holds for (y,D′, R′).

Observation 5.4 and Lemmas 5.5–5.8 yield the correctness of the algorithm. Also, the
definition of the algorithm implies that, if given functions are integer-valued functions, then x
is an integer vector at any time of the algorithm. Thus we obtain the following.

Theorem 5.9. At the termination of the algorithm, the output x is a stable allocation. If h
and f are integer-valued functions, then the output x is an integer vector.

6 Complexity

We now consider the time complexity of the algorithm.
First, observe that each element never moves from D to R in the algorithm. Since the

procedure Self-loop moves one element from D to R, this yields the following fact.

Lemma 6.1. The procedure Self-loop is called at most |E| times in the algorithm.

We say that an element e ∈ E is h-saturated (resp. f -saturated) by a procedure, if we have
e ̸∈ sath(x) (resp., e ̸∈ satf (x)) just before the procedure and e ∈ sath(x) (resp., e ∈ satf (x))
just after the procedure.

We say that, nexth(D,x, e) (resp., nextf (x, e)) increases if it becomes larger in ≻H (resp.,
in ≻F) by some update. Similarly, we say that nexth(D,x, e) (resp., nextf (x, e)) decreases if it
becomes smaller in ≻H (resp., in ≻F). We also say that nexth(D,x, e) decreases when it turns
undefined. Recall that nexth(D,x, e) may not be defined, while nextf (x, e) is always defined.

Lemma 6.2. In the algorithm, the following statements hold for every e ∈ E.
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1. After e is added to R, e stays in R and nexth(D,x, e) never increases. Also, if nexth(D,x, e)
once turns undefined and turns defined again, it becomes smaller compared to the last
time it is defined.

2. After e is f -saturated, e stays in satf (x) and nextf (x, e) never decreases.

Proof. We show Condition 1. For any e ∈ E, assume e ∈ R at some point of the algorithm.
Since R is monotone increasing, e ∈ R is maintained thereafter. By the algorithm, nexth(D,x, e)
may change at Line 4 or when some procedure is applied.

At Line 4, x does not change and the added element e∗ is smallest in D ∪ {e∗} w.r.t.
≻H. Then, if nexth(D,x, e) is defined just before Line 4, it remains the same. Otherwise,
nexth(D,x, e) becomes e∗, which is smaller than previous values of nexth(D,x, e) w.r.t. ≻H.

When Self-loop is applied, x does not change and D becomes a subset of D. When Cycle
(resp. Augment) is called, by Lemma 5.3, we can apply Lemma 4.1 (h2), and then e ∈ R implies
e ̸= ui for each i ∈ [0, k − 1] (resp. for each i ∈ [l, k − 1]). In each case, nexth(D,x, e) never
increases, and it does not turn defined if it is undefined just before.

We now show Condition 2. Since nextf (x, e) is independent from D, it changes only when
Cycle or Augment is applied. By Lemma 5.3 and Lemma 4.2 (f2), once e ∈ satf (x) holds, then
e ∈ satf (x) remains to hold and nextf (x, e) never decreases until the end of the algorithm.

Lemma 6.3. When Cycle({ul, vl+1, . . . , uk−1, vk}) is applied in the algorithm, there exists
i ∈ [l + 1, k] such that nexth(D,x, vi) decreases or nextf (x, ui−1) increases.

Proof. Let Q denote the sequence {ul, vl+1, . . . , uk−1, vk} and let y denote the vector obtained
from x by the procedure. By Lemmas 4.1 (h3) and 4.2 (f3), for every i ∈ [l + 1, k], we have
c̄h(y, ui, vi) = c̄h(x, ui, vi)− c(x,Q) and c̄f (y, ui−1, vi) = c̄f (x, ui−1, vi)− c(x,Q), where uk = ul.
Also, by the definition of c(x,Q), some i satisfies either c̄h(y, ui, vi) = 0 or c̄f (y, ui−1, vi) = 0.
By Lemmas 4.1 (h2) and 4.2 (f2), in the former case nexth(D, y, vi) decreases, and in the latter
case nextf (x, ui) increases.

Lemma 6.4. When Augment({u0, v1, . . . , vk−1, uk−1}) is applied in the algorithm, at least one
of the following hold: (i) u0 = e∗ is h-saturated, (ii) uk−1 is f -saturated, (iii) there is i ∈ [k− 1]
such that nexth(D,x, vi) decreases or nextf (x, ui−1) increases.

Proof. Let P denote the sequence {u0, v1, . . . , vk−1, uk−1} and let y denote the vector obtained
from x by the procedure. As shown in the proof of Lemma 5.8, y is obtained by combining
a multiple exchange and a simple augmentation. By Lemmas 4.1 (h3), 4.2 (f3), and 2.4 (c3),
then ĉh(y, u0) = ĉh(x, u0)− c(x, P ) and ĉf (y, uk−1) = ĉh(x, uk−1)− c(x, P ), and every i ∈ [k−1]
satisfies c̄h(y, ui, vi) = c̄h(x, ui, vi)−c(x, P ) and c̄f (y, ui−1, vi) = c̄f (x, ui−1, vi)−c(x, P ). By the
definition of c(x, P ), at least one of their values is 0. The condition ĉh(y, u0) = 0 implies (i), i.e.,
u0 is h-saturated. Similarly, ĉf (y, uk−1) = 0 implies (ii), i.e., uk−1 is f -saturated. Otherwise,
we have (iii) since, by Lemmas 4.1 (h3) and 4.2 (f3), c̄h(y, ui, vi) = 0 implies that nexth(D, y, vi)
decreases and c̄f (y, ui−1, vi) = 0 implies that nextf (y, ui−1) increases.

Lemma 6.5. Procedures Cycle and Augment are called at most 2(|E|+ |E|2) times in total.

Proof. By Lines 3–5 of the algorithm, each element is h-saturated at most once in the algorithm,
and hence the case (i) of Lemma 6.4 occurs at most |E| times. Also, the case (ii) occurs at
most |E| times since satf (x) is monotonically increasing by Lemma 6.2. Note that Cycle and
Augment in the case (iii) makes either a decrease of nexth(D,x, e) with e added to R or an
increase of nextf (x, e) preserving e ∈ satf (x). By Lemma 6.2, for each e ∈ E, such decreases or
increases occur at most |E| times, respectively. Therefore, the total number of applications of
procedures Cycle and Augment is at most 2(|E|+ |E|2).
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As shown in Lemma 6.2, for each e ∈ E, after the first call of nexth(D,x, e), the value of
nexth(D,x, e) is monotone nonincreasing in ≻H. Similarly, after the first call of nextf (x, e), the
value of nextf (x, e) is monotone nondecreasing in ≻F. We exploit this property to compute the
functions efficiently. Let the algorithm keep pointers pth(e) and ptf (e) for each e ∈ E. Initially,
pth(e) and ptf (e) are set to be the maximum element in ≻H and the minimum element in
≻F, respectively, for every e ∈ E. Each time the algorithm needs nexth(D,x, v), it proceeds
as follows. If c̄h(x, s, v) > 0 and s ∈ D \ {v} hold for s = pth(v), then nexth(D,x, v) =
s. Otherwise, the algorithm decrement pth(v) in ≻H and iterates. The algorithm eventually
achieves c̄h(x, s, v) > 0 and s ∈ D \ {v} for s = pth(v), and then nexth(D,x, v) = s. To find
nextf (x, u), the algorithm repeatedly computes c̄h(x, u, t) for t = pth(u), incrementing pth(u) in
≻F in the case of c̄h(x, u, t) = 0. With the aid of these pointers, we obtain the following running
time bound of our algorithm. Recall that γ denotes the time for computing the saturation and
exchange capacities on the given polymatroids.

Theorem 6.6. The algorithm finds a stable allocation in O(|E|3γ) time.

Proof. By Lemmas 6.1 and 6.5, the algorithm calls procedures Self-loop, Augment, and Cycle
O(|E|2) times in total. Each of these procedures requires O(|E|γ) time. To compute the
pointer functions nextf and nexth, the algorithm performs additional calls of exchange capacity
computation. The total number of such calls during the entire algorithm is O(|E|2). Thus, the
algorithm runs in O(|E|3γ) time.

7 Optimality

For the stable marriage model of Gale and Shapley [15], it is known that the output of the
man-oriented deferred acceptance algorithm is optimal for men among all stable matchings.
Likewise, our algorithm finds the ≻H-optimal stable allocation, which is what we show in this
section.

Recall that a vector x ∈ RE is said to be ≻-preferable to y ∈ RE if x(E⪰a) ≥ y(E⪰a) for
every a ∈ E. Also, x is called ≻-optimal in a set K ⊆ RE if x ∈ K and x is ≻-preferable to
every y ∈ K. In this section, we show that the output of the algorithm is ≻H-optimal in the
set of all the stable allocations. For this purpose, we show that the following condition is also
maintained in the algorithm besides (P), (H), and (F).

(R) For each e ∈ R, x(e) ≥ z(e) holds for every stable allocation z ∈ P(h) ∩P(f).

Lemma 7.1. If (x,D,R) satisfies (R) at the end of the algorithm, then x is ≻H-optimal in the
set of all the stable allocations.

Proof. Take any stable allocation z. At the end of the algorithm, we have D ∪ R = E and
[e ∈ sath(x), deph(x, e) ⪰H e] holds for every e ∈ D (as shown in the proof of Lemma 5.5).
Then, by (R), every e ∈ E satisfies x(e) ≥ z(e) or [e ∈ sath(x), deph(x, e) ⪰H e]. This implies
that x is ≻H-preferable to z by Lemma 2.5.

At the beginning of the algorithm, R = ∅ and hence the condition (R) clearly holds. What
is left is to show that (R) is maintained throughout the algorithm. To do so, we prepare the
following two lemmas.

Lemma 7.2. If (P), (H), and (R) hold for (x,D,R), then any stable allocation z satisfies

∀e ∈ E : z(e) ≥ x(e) or [e ∈ satf (z), depf (z, e) ⪰F e]. (18)
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Proof. Take an arbitrary stable allocation z ∈ P(h) ∩P(f). Fix a ∈ E by a := e∗ = min≻H D
if x(e∗) > z(e∗) and otherwise a := min≻H { e ∈ E | e ≻H e∗ }. By (P), then every e ∈ E \E⪰Ha

satisfies z(e) ≥ x(e). Then, it suffices to show that every e ∈ E⪰Ha satisfies the condition in
(18). Since (P), (H), and (R) hold, we have

∀e ∈ E⪰Ha : x(e) ≥ z(e) or [e ∈ sath(x), deph(x, e) ⪰H e].

By Lemma 2.6 for x, z ∈ P(h), this implies

∀e ∈ E⪰Ha : z(e) ≥ x(e) or ¬[e ∈ sath(z), deph(z, e) ⪰H e].

Since z is a stable allocation, ¬[e ∈ sath(z), deph(z, e) ⪰H e] implies [e ∈ satf (z), depf (z, e) ⪰F e].
Thus, we obtain (18).

For a sequence W = {u0, v1, u1, . . . , ud−1, vd, ud} of (not necessarily distinct) elements of E,
we define its walk-capacity by

č(x,W ) = min

{
ĉh(x, u0), min

i:1≤i≤d
c̄f (x, ui−1, vi), min

i:1≤i≤d
c̄h(x, ui, vi)

}
.

Lemma 7.3. Suppose that (P), (H), (F) and (R) hold for (x,D,R). Also, suppose that (not
necessarily distinct) elements u0, ui, vi (i = 1, 2, . . . , d) satisfies u0 ∈ D and (h0) and (f0) for
every i ∈ [d]. Then for any stable allocation z, we have x(vi)− č(x,W ) ≥ z(vi) for each i ∈ [d].

Proof. Take an arbitrary stable allocation z. Consider vectors

x0 := x+ č(x,W )χu0 ,

yi := x+ č(x,W )(χui−1 − χvi) (i ∈ [d]),

xi := x+ č(x,W )(χui − χvi) (i ∈ [d]).

Also, set Di := D \ {vi} and Ri := R ∪ {vi} for i ∈ [d] and D0 := D, R0 := R. Note that
for each i ∈ [d], the condition x(vi) − č(x,W ) ≥ z(vi) is equivalent to yi(vi) ≥ z(vi). Hence,
showing the following three statements completes the proof.

(i) (P), (H), and (R) hold for (x0, D0, R0).

(ii) For each i ∈ [d], if (P), (H), and (R) hold for (xi−1, Di−1, Ri−1), then yi(vi) ≥ z(vi).

(iii) For each i ∈ [d], if yi(vi) ≥ z(vi), then (P), (H), and (R) hold for (xi, Di, Ri).

We first show (i). The conditions (P) and (R) are obvious by definition. Since č(x,W ) ≤
ĉh(x, u0), we can apply Lemma 2.4 (c3) to see that e ∈ sath(x0) and deph(x0, e) = deph(x, e)
for every e ∈ D \ {e∗} ⊆ sath(x).

We then show (ii). Since both x and xi−1 satisfy (P), (H) and (R), by Lemma 7.2, the
condition (18) holds for both x and xi−1. Note that yi(e) ≤ max{x(e), xi−1(e)} for every e ∈ E
by definition. Then, the condition z(e) < yi(e) implies either z(e) < x(e) or z(e) < xi−1(e),
each of which implies [e ∈ satf (z), depf (z, e) ⪰F e] by (18). Therefore, we have

∀e ∈ E : z(e) ≥ yi(e) or [e ∈ satf (z), depf (z, e) ⪰F e].

By Lemma 2.6, this implies

∀e ∈ E : yi(e) ≥ z(e) or ¬[e ∈ satf (yi), depf (yi, e) ⪰F e]. (19)
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By č(x,W ) ≤ c̄f (x, ui−1, vi) and (f0), Lemma 4.2 (f1) implies that the statement (F) holds with
(x,R) replaced by (yi, R ∪ {vi}), which implies [vi ∈ satf (yi), depf (yi, vi) ⪰F vi]. Then, (19)
implies yi(vi) ≥ z(vi).

Finally, we show (iii). As we have (h0) and (f0), it follows that ui, vi ∈ D ∪ R, and hence
(P) holds. By (h0), we can apply Lemma 4.1 (h1), and hence (H) holds for (xi, Di). We now
show (R). Since yi satisfies yi(vi) ≥ z(vi), we have xi(vi) = yi(vi) ≥ z(vi). Also, xi(e) ≥ x(e)
for every e ∈ E \ {vi}. Thus, (R) holds for (xi, Ri).

We now show that each procedure keeps the conditions (P), (H), (F), and (R).

Lemma 7.4. If (P), (H), (F), and (R) hold when the procedure Self-loop(uk−1) is called, then
they also hold just after the procedure.

Proof. We only consider (R) because other conditions are already shown in Lemma 5.6. Since
the procedure adds uk−1 to R, it suffices to show x(uk−1) ≥ z(uk−1). For a stable allocation z,
we have (18) by Lemma 7.2. Apply Lemma 2.6 to z, x ∈ P(f) with respect to (E, f,≻F).
Then, each e ∈ E satisfies x(e) ≥ z(e) or ¬[e ∈ satf (x), depf (x, e) ⪰F e]. Note that
[uk−1 ∈ satf (x), depf (x, uk−1) ⪰F uk−1] follows from nextf (x, uk−1) = uk−1, and hence we
have x(uk−1) ≥ z(uk−1).

Lemma 7.5. If (P), (H), (F), and (R) hold when Augment({u0, v1, . . . , vk−1, uk−1}) is called,
then they also hold just after the procedure.

Proof. We only consider (R) because other conditions are already shown in Lemma 5.8. Let y
denote the vector obtained from x by the procedure. Since (R) is assumed and R is updated
to R ∪ {v1, v2, . . . , vk−1}, it suffices to show y(vi) ≥ z(vi) for every i ∈ [k − 1], where z is an
arbitrary stable allocation.

Let P denote {u0, v1, . . . , vk−1, uk−1}. By Lemma 5.3, we can apply Lemma 7.3 to x and
P , and obtain x(vi)− č(x, P ) ≥ z(vi) for every i ∈ [k − 1]. By the definitions of path and walk
capacities, we have c(x, P ) ≤ č(x, P ). Then y(vi) = x(vi)− c(x, P ) ≥ x(vi)− č(x, P ) ≥ z(vi) for
every i ∈ [k − 1].

Lemma 7.6. If (P), (H), (F), and (R) hold when the procedure Cycle({ul, vl+1, . . . , uk−1, vk})
is called, then they also hold just after the procedure.

Proof. Let Q denote the sequence {ul, vl+1, . . . , uk−1, vk} and define χQ :=
∑k

i=l+1(χui−1−χvi).
The procedure Cycle for Q updates the vector x to y := x + c(x,Q)χQ. Let W denote the
sequence {u0, v1, . . . , uk−1, vk, uk} and set vectors x0 := x and xm := xm−1 + č(xm−1,W )χQ for
every m ∈ Z>0. Then

xm = x+
∑m−1

j=0 č(xj ,W )χQ (m ∈ Z>0).

We will show finite convergence of {xm}m∈Z≥0
to y.

Note that uk = ul when Cycle is called, and recall the definitions of capacities:

c(xm, Q) = min

{
min

i:l+1≤i≤k
c̄f (xm, ui−1, vi), min

i:l+1≤i≤k
c̄h(xm, ui, vi)

}
,

č(xm,W ) = min

{
ĉh(xm, u0), min

i:1≤i≤k
c̄f (xm, ui−1, vi), min

i:1≤i≤k
c̄h(xm, ui, vi)

}
.

By these definitions, for every m ∈ Z≥0, we have

č(xm,W ) ≤ c(xm, Q). (20)

We now show the following conditions for every m ∈ Z>0. Here, D′ and R′ are defined as
D′ = D \ {vl+1, vl+2, . . . , vk} and R′ = R ∪ {vl+1, vl+2, . . . , vk}, respectively.
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(i) (xm, D′, R′) satisfies (P), (H), (F), and (R).

(ii) If xm ̸= y, then č(xm,W ) > 0, u0 ∈ D′, and (xm, D′) satisfies (h0), (f0) for every i ∈ [k].
If xm = y, then č(xm,W ) = 0, and hence xm+1 = xm.

(iii) c(xm, Q) = c(x,Q)−
∑m−1

j=0 č(xj ,W ).

(iv) č(xm,W ) = c(xm, Q) or č(xm,W ) ≥ č(xm−1,W ), where we put č(x−1,W ) = 0.

We show (i)–(iv) by simultaneous induction on m ≥ 0.
Consider the case that m = 0. Clearly (iii) and (iv) hold. Note that x0 satisfies conditions

(i) and (ii) with D, R replaced by D′, R′. By applying Lemmas 4.1 (h1), 4.2 (f1), and 4.3 with
α = 0, we see that (x0, D

′, R′) still satisfies (P), (H), (F) and (ii). Also, (R) for (x0, D
′, R′)

follows from Lemma 7.3. Thus, all of (i)–(iv) hold in the case that m = 0.
We now turn to the case that m ≥ 1. We first show (i). By the inductive assumption,

(xm−1, D
′, R′) satisfies (P), (H), (F), and (R). By applying Lemma 7.3 to xm−1, we obtain

xm−1(vi) − č(xm−1,W ) ≥ z(vi) for any stable allocation z and i ∈ [l + 1, k]. Since xm(vi) =
xm−1(vi) − č(xm−1,W ), this means that (R) holds for xm and R′. Also, since (20) holds for
xm−1, we can apply Lemmas 4.1 (h1), 4.2 (f1), and 4.3, which respectively imply (H), (F), and
(P) for (xm, D′, R′). Thus, (i) holds for m. To show conditions (ii)–(iv), let us observe the
saturation and exchange capacities of xm.

1. By Lemma 2.3 (b5) and (b6), the saturation capacity ĉh(·, u0) satisfies the following.

(1-1) If u0 ̸= uk, then ĉh(xm, u0) = ĉh(xm−1, u0).

(1-2) If u0 = uk, then ĉh(xm, u0) ≥ min{ĉh(xm−1, u0), c̄h(xm, uk, vk)}.

2. By Lemma 4.2 (f3), exchange capacity c̄f satisfies the following.

(2-1) If 1 ≤ i < l, then c̄f (xm, ui−1, vi) = c̄f (xm−1, ui−1, vi)

(2-2) If vl ̸= vk, then c̄f (xm, ul−1, vl) = c̄f (xm−1, ul−1, vl).

(2-3) If vl = vk, then c̄f (xm, ul−1, vl) = c̄f (xm, ul−1, vk) ≥ min{c̄f (xm−1, ul−1, vl), c̄f (xm, uk−1, vk)}.
(2-4) If l + 1 ≤ i ≤ k, then c̄f (xm, ui−1, vi) = c̄f (xm−1, ui−1, vi)− č(xm−1,W ).

3. By Lemma 4.1 (h3), exchange capacity c̄h satisfies the following. Note that uk = ul.

(3-1) If 1 ≤ i < l, then c̄h(xm, ui, vi) = c̄h(xm−1, ui, vi)

(3-2) If vl ̸= vk, then c̄h(xm, ul, vl) = c̄h(xm, uk, vl) ≥ min{c̄h(xm−1, ul−1, vl), c̄h(xm, uk, vk)}.
(3-3) If vl = vk, then c̄h(xm, ul, vl) = c̄h(xm, uk, vk).

(3-4) If l + 1 ≤ i ≤ k, then c̄h(xm, ui, vi) = c̄h(xm−1, ui, vi)− č(xm−1,W ).

Using these, we first show (iii). By (2-4) and (3-4), every i ∈ [l+1, k] satisfies c̄f (xm, ui−1, vi) =
c̄f (xm−1, ui−1, vi)− č(xm−1,W ) and c̄h(xm, ui, vi) = c̄h(xm−1, ui, vi)− č(xm−1,W ). Hence,

c(xm, Q) = c(xm−1, Q)− č(xm−1,W ) = c(x,Q)−
∑m−1

j=0 č(xj ,W ),

where the last equality is obtained by substituting c(xm−1, Q) = c(x,Q)−
∑m−2

j=0 č(xj ,W ), which
follows from the inductive assumption. Thus, (iii) holds.

We next show (iv). By the definitions of č(xm−1,W ) and c(xm, Q), we have ĉh(xm−1, u0) ≥
č(xm−1,W ) and c̄h(xm, uk, vk) ≥ c(xm, Q). Then, (1-1) and (1-2) above imply

ĉh(xm, u0) ≥ min{č(xm−1,W ), c(xm, Q)}. (21)
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Also, we have c̄f (xm−1, ui−1, vi) ≥ č(xm−1,W ) for every i ∈ [k] and c̄f (xm, uj−1, vj) ≥ c(xm, Q)
for every j ∈ [l + 1, k]. Then, the conditions (2-1)–(2-3) imply

c̄f (xm, ui−1, vi) ≥ min{č(xm−1,W ), c(xm, Q)} (i ∈ [k]). (22)

Similarly, the conditions (3-1)–(3-3) imply

c̄h(xm, ui, vi) ≥ min{č(xm−1,W ), c(xm, Q)} (i ∈ [k]). (23)

By (21), (22) and (23), we obtain č(xm,W ) ≥ min{č(xm−1,W ), c(xm, Q)}, i.e., č(xm,W ) ≥
č(xm−1,W ) or č(xm,W ) ≥ c(xm, Q). As we have (20), this implies (iv).

Finally, we show (ii). We first consider the case that xm ̸= y. Since (ii) holds for m − 1
by the inductive assumption, xm ̸= y implies xm−1 ̸= y and č(xm−1,W ) > 0. Also, xm ̸=
y implies

∑m−1
j=0 č(xj ,W ) ̸= c(x,Q), which implies c(xm, Q) > 0 by (iii). Thus, we have

min{č(xm−1,W ), c(xm, Q)} > 0. By (23), every i ∈ [k] satisfies c̄h(xm, ui, vi) > 0. By the
definition of nexth and its monotonicity (Lemma 4.1 (h2)), this implies nextf (D

′, xm, vi) = ui.
Similarly, by (22) and Lemma 4.2 (f2), we obtain nextf (xm, ui−1) = vi for every i ∈ [k].
Thus, we have (h0) and (f0) for every i ∈ [k]. Also, u0 ∈ D′ is clear and č(xm,W ) ≥
min{č(xm−1,W ), c(xm, Q)} > 0. Thus, all requirements in (ii) hold when xm ̸= y. In the
case that xm = y, we have

∑m−1
j=0 č(xj ,W ) = c(x,Q), which implies c(xm, Q) = 0 by (iii). As

we have (20), this implies č(xm,W ) = 0. Hence, xm+1 = xm + č(xm,W )χQ = xm.

So far, we have shown that xm satisfies (i)–(iv) for every m ∈ Z≥0. By (i), it completes
the proof to show that there is a finite m∗ ∈ Z≥0 such that xm∗ = y. Let m∗ ∈ Z≥0 be the
minimum number satisfying

m∗ · č(x,W ) > c(x,Q).

Since č(x,W ) > 0 by the definition of the algorithm, m∗ is finite. To prove xm∗ = y by
contradiction, suppose that xm∗ ̸= y. By the second claim of (ii), this implies that xm ̸= y for
every m ∈ [m∗]. Then, for every m ∈ [m∗], we have

∑m−1
j=0 č(xj ,W ) ̸= c(x,Q), which implies

č(xm−1,W ) ̸= c(x,Q)−
∑m−2

j=0 č(xj ,W ) = c(xm−1, Q), where the last equality follows from (iii).
Therefore, č(xm,W ) ̸= c(xm, Q) for every m ∈ [m∗ − 1]. As we have (iv), this implies

č(x0,W ) ≤ č(x1,W ) ≤ č(x2,W ) ≤ · · · ≤ č(xm∗−1,W ).

Then (iii) for m∗ implies

c(xm∗ , Q) = c(x,Q)−
∑m∗−1

j=0 č(xj ,W ) ≤ c(x,Q)−m∗ · č(x0,W ) < 0,

which contradicts the nonnegativity of c(xm∗ , Q).

We now obtain the ≻H-optimality of the output of the algorithm.

Theorem 7.7. The output of the algorithm is the stable allocation that is ≻H-preferable to
any stable allocation z. That is, the output is ≻H-optimal in the set of all the stable allocations.

Proof. At the beginning of the algorithm, R = ∅ and hence (R) holds. By Observation 5.4 and
Lemmas 7.4–7.6, the output of the algorithm satisfies (P), (H), (F), and (R). Then, Lemma 7.1
implies the ≻H-optimality of the output.
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