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Coordinate-wise Transformation of Probability

Distributions to Achieve a Stein-type Identity

Tomonari SEI∗

February 2017

Abstract

It is shown that for any given multi-dimensional probability distribution, there
exists a unique coordinate-wise transformation such that the transformed distribution
satisfies a Stein-type identity. The proof is based on an energy minimization problem
over a subset of the Wasserstein space. The result is interpreted as a generalization
of the diagonal scaling theorem established by Marshall and Olkin (1968).

Keywords: Copositive distribution, Copula, Energy minimization, Optimal trans-
portation, Stein-type distribution, Wasserstein space.

1 Introduction

In their seminal paper [20], Marshall and Olkin proved the following diagonal scaling

theorem. Let S be a d × d positive semi-definite matrix and assume that S is strictly

copositive in the sense that

inf
w1,...,wd>0

∑
i

∑
j wiSijwj∑
i w

2
i

> 0. (1)

Then, there exists a unique positive diagonal matrix D such that the sum of each row

of DSD is unity. Note that (1) is satisfied if S is positive definite. The theorem is

interpreted in a probabilistic framework. Let X be a random column vector with mean

zero and covariance matrix S. Then, since
∑d

j=1(DSD)ij = 1 for each i, the distribution

µ of the transformed random vector DX satisfies an identity

d∑
j=1

∫
xixjdµ = 1, i = 1, . . . , d. (2)

This property is applied to summarize multivariate data. Refer to [28] for details.

In the present paper, we provide a nonlinear analogue of the result. We admit a nonlinear

coordinate-wise transformation of a random vector to achieve a stronger condition than (2).

∗Graduate School of Information Science and Technology, The University of Tokyo.
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This condition will be referred to as the Stein-type identity. Under some mild conditions

on µ, it is shown that there exists such a unique transformation. The proof is based on

a variational formulation. The Marshall-Olkin theorem is, in fact, derived in a similar

manner [20, 15]. The space we use in the proof is the Wasserstein space, a distance

space induced from optimal transportation. Refer to [25, 32] for comprehensive studies of

optimal transportation and its applications. Another generalization of the Marshall-Olkin

theorem is considered by [3], where the dimension d is infinity but the transformation is

linear.

As is well known, Sklar’s theorem (see, e.g., [22]) states that any multi-dimensional

distribution is transformed by the probability integral transformation into a distribution

with uniform marginals. The resultant distribution is called a copula. Our result is

considered as an alternative to Sklar’s theorem.

The remainder of the present paper is organized as follows. In Section 2, we describe

the existence and uniqueness theorem as well as a variational characterization theorem. In

Section 3, we clarify the regularity properties of Stein-type distributions. In Section 4, we

prove the main results using the theory of optimal transportation. In Section 5, tractable

conditions for existence are considered. In Section 6, a numerical method to find the

transformation for piecewise uniform distributions is proposed. Finally, we discuss open

problems in Section 7.

2 Main results

We first define a class of distributions that satisfy a stronger condition than (2). Let P2 =

P2(Rd) be the set of probability distributions µ on Rd with mean zero and finite variance

such that each marginal distribution µi of µ is absolutely continuous with respect to the

Lebesgue measure on R. Note that µ itself is not assumed to be absolutely continuous.

The mean-zero condition is imposed only for simplicity. We say that a function f : R → R

is absolutely continuous if there exists a locally integrable function f ′ such that f(x) =

f(0) +
∫ x
0 f ′(y)dy in Lebesgue’s sense.

Definition 1. We say that a distribution µ ∈ P2 is Stein-type if it satisfies

∫
f(xi)

 d∑
j=1

xj

dµ =
∫

f ′(xi)dµ, i = 1, . . . , d, (3)

for any absolutely continuous function f : R → R with essentially bounded derivative f ′.
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Note that the equation (2) is a special case of (3), where f(xi) = xi.

We refer to the equation (3) as the Stein-type identity. Indeed, if d = 1, it reduces to

the Stein identity
∫

f(x1)x1dµ =
∫

f ′(x1)dµ, which implies that µ is the standard normal

distribution (see [29] and [5]). Similarly, if µ is completely independent in the sense that

µ is the direct product of its marginal µi, then only the d-dimensional standard normal

distribution satisfies (3). We focus on dependent cases.

For Gaussian random variables, we obtain the following lemma, where the expectation

is denoted by E.

Lemma 1 (Theorem 5 of [28]). Let µ denote the d-dimensional normal distribution with

mean zero and covariance matrix S. Then, µ is Stein-type if and only if
∑

j Sij = 1 for

each i.

Proof. Let (X1, . . . , Xd) be distributed according to µ. Then, E[Xj |Xi] = SijXi/Sii and

E

f(Xi)
∑

j

Xj

 =

∑
j Sij

Sii
E[f(Xi)Xi] =

∑
j

Sij

E[f ′(Xi)].

The last equality follows from the Stein identity for the univariate normal distributions.

The following example gives a rich class of Stein-type distributions.

Example 1. Let W be a random variable with the standard normal distribution and let

U be any random variable independent of W such that E[U ] = 0 and E[U2] < ∞. Then,

the joint distribution of two variables

X1 =
W + U√

2
and X2 =

W − U√
2

is Stein-type. Indeed, we obtain

E
[
f

(
W ± U√

2

)√
2W

]
= E

[
f ′
(

W ± U√
2

)]
for any f by the Stein identity with respect to W conditional on U . For d ≥ 3, define a

random vector (X1, . . . , Xd) by Xi = (W + Ui)/
√

d, where W has the standard normal

distribution independent of U1, . . . , Ud−1 and Ud = −
∑d−1

j=1 Uj . Then, the distribution of

(X1, . . . , Xd) is Stein-type as long as E[Ui] = 0 and E[U2
i ] < ∞.

The example does not cover the entire class of Stein-type distributions. Other examples

are given in Section 6 and Appendix B.
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If a random vector (X1, . . . , Xd) has a Stein-type distribution, then the sum
∑

j Xj

is positively correlated with any monotone transformation of Xi due to (3). Refer to

Section 8 of [28] for an application of this property.

For each µ ∈ P2, let Tcw(µ) be the set of coordinate-wise transformations

T (x) = (T1(x1), . . . , Td(xd)), x = (x1, . . . , xd) ∈ Rd,

such that each Ti : R → R ∪ {−∞,∞} is non-decreasing and T]µ belongs to P2. Here,

T]µ is the push-forward measure defined by (T]µ)(A) = µ(T−1(A)) for any measurable

set A. The set Tcw(µ) depends only on the marginal distributions of µ. Two maps T and

U in Tcw(µ) are identified if µ(T = U) = 1. Note that Ti has discontinuous points if the

support of (T]µ)i is not connected.

We consider a problem to find a map T ∈ Tcw(µ) such that T]µ is Stein-type. Let us

call such a map a Stein-type transformation of µ. For example, if µ is the direct measure

of one-dimensional continuous distributions µi, then the map T defined by Ti(xi) = Φ−1 ◦

µi((−∞, xi]) is the Stein-type transformation of µ, where Φ is the cumulative distribution

function of the standard normal distribution.

The following lemma is immediate.

Lemma 2. Let µ be the normal distribution with a covariance matrix S. Then, µ has a

Stein-type transformation if S is strictly copositive in the sense of (1).

Proof. Let D be the diagonal matrix with entries w1, . . . , wd satisfying (2). Set T (x) = Dx.

Then, T]µ is Stein-type due to Lemma 1.

Denote the set of coordinate-wise transformed distributions of µ by

Fµ = {T]µ | T ∈ Tcw(µ)} ⊂ P2.

We refer to Fµ as a fiber. The following lemma is a direct consequence of the one-

dimensional optimal transportation. See Appendix A.

Lemma 3. For given µ ∈ P2 and ν ∈ Fµ, the map T ∈ Tcw(µ) satisfying ν = T]µ is

uniquely determined µ-almost everywhere. Furthermore, the relation ν ∈ Fµ between two

measures µ and ν is an equivalence relation. In particular, P2 is partitioned into mutually

disjoint fibers.

Now, we state our three main theorems. All proofs are presented in Section 4.
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The first theorem characterizes Stein-type distributions in terms of the variational prin-

ciple. Define an energy functional E(µ) of µ by

E(µ) =
d∑

i=1

∫
pi(xi) log pi(xi)dxi +

∫  d∑
j=1

xj

2

dµ, (4)

where pi = dµi/dxi is the marginal density function. The first term of E(µ) represents the

negative entropy of the marginal distributions, and the second term is the variance of the

diagonal part
∑

j xj .

Theorem 1. A measure µ ∈ P2 is Stein-type if and only if E(µ) is finite and µ minimizes

E over the fiber Fµ.

The second theorem is on the uniqueness of Stein-type transformations. A distribution

µ on Rd is said to have a regular support if the support of µ is equal to the direct product of

the supports of the marginal distributions µi. This property is invariant under coordinate-

wise transformations. Note that the regular support condition does not imply absolute

continuity of µ with respect to
∏d

i=1 µi.

Theorem 2 (Uniqueness). Assume that µ ∈ P2 has a regular support. Then, a Stein-type

transformation of µ is unique if it exists.

We conjecture that the uniqueness follows without the regular support condition. See

Section 7 for more details.

The third theorem is on existence. A measure µ ∈ P2 is said to be copositive if

β(µ) := inf
T∈Tcw(µ)

∫
(
∑

i Ti)2dµ∑
i

∫
T 2

i dµ
> 0. (5)

For example, if µ is completely independent, then
∫

(
∑

i Ti)2dµ =
∑

i

∫
T 2

i dµ for any T ,

and therefore β(µ) = 1. It is not difficult to see that β(µ) ≤ 1 for any µ. If µ is associated

in the sense of [7], [8], and [16], then
∫

TiTjdµ ≥ 0 for each pair of i and j, and therefore

β(µ) ≥ 1. On the other hand, if d = 2 and µ({x | x1+x2 = 0}) = 1, then β(µ) = 0 because∫
(x1 + x2)2dµ = 0. Sufficient conditions for copositivity are presented in Section 5.

Theorem 3 (Existence). Let µ ∈ P2 be copositive. Then, there exists a Stein-type

transformation of µ.

We now present a few remarks before proceeding to the following section.

The uniqueness and existence results in Theorem 2 and Theorem 3 are consequences

of the variational characterization in Theorem 1, as will be shown in Section 4. For
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d = 1, the functional E(µ) is the Kullback-Leibler divergence from µ to the standard

normal density up to a constant term. For d ≥ 2, however, E is not even bounded from

below. Indeed, for each t > 0, let µt be the multivariate normal distribution with mean

zero and covariance matrix Σt = P + t(I − P ), where I is the identity matrix, and P

denotes the orthogonal projection to the direction (1, . . . , 1)> ∈ Rd. Then, each marginal

distribution of µt is normal with variance σ2
t = (1/d) + t(1 − 1/d). We can show that

E(µt) = −(d/2) log(2πσ2
t ), which tends to −∞ as t → ∞. Therefore, it is not trivial

if there is a minimizer of E over the fiber. Nevertheless, the existence and uniqueness

theorems are obtained.

If µ has the joint density function p(x), then the negative joint entropy is defined by

Ud(µ) =
∫

p(x) log p(x)dx.

In most cases, we can replace the marginal entropy term in E(µ) with the joint entropy

because the difference Ud(µ) −
∑d

i=1 U1(µi), which is referred to as the multi-information

function or the measure of multivariate dependence, is invariant in each fiber (e.g., [11]

and [30]). However, in some pathological cases, the difference diverges. Therefore, it is

more appropriate to adopt the marginal entropy.

According to Sklar’s theorem (e.g. [22]), any d-dimensional distribution µ is transformed

by the probability integral transformation Ti(xi) =
∫ xi

−∞ dµi into the distribution T]µ

with uniform marginals unless some µi has an atom. The resultant distribution T]µ is

called a copula. The Stein-type distribution we defined is considered as an alternative

representation of the copula. Copulas are also characterized by an energy minimization

problem. Here, the potential term in (4) is replaced with
∫

V (x)dµ, where V (x) = ∞

if x /∈ [0, 1]d and 0 otherwise. In parallel, we have to remove the condition
∫

xidµi = 0

from the definition of P2. Maximum entropy copulas under a given diagonal section are

discussed in [4], where, in contrast to the present paper, the marginals are fixed to be

uniform.

3 Regularity of Stein-type distributions

The Stein-type identity forces regularity of marginal density functions. We first charac-

terize this by an integral equation.

Theorem 4. Let µ ∈ P2. Denote the marginal density functions of µ by pi(xi). Then, µ
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is a Stein-type distribution if and only if it satisfies a set of integral equations

pi(a) =
∫ ∞

a
pi(xi)mi(xi)dxi, a ∈ R, i = 1, . . . , d, (6)

where mi(xi) denotes the conditional expectation of
∑d

j=1 xj given xi with respect to µ.

Proof. First, note that mi(xi) is finite µi-almost everywhere because µ belongs to P2.

Assume µ is Stein-type. For −∞ < a < b < ∞, let hab(x) = (b − a)−1
∫ x
−∞ I(a,b)(ξ)dξ,

where I(a,b) is the indicator function of (a, b). The Stein-type identity for hab implies

1
b − a

∫ b

a
dµi =

∫
h′

ab(xi)dµi =
∫

hab(xi)
∑

j

xjdµ =
∫

hab(xi)mi(xi)dµi. (7)

Letting b → a in (7), we obtain (6).

Conversely, assume (6). The right-hand side of (6) converges to zero as a → ±∞ because∫
xjdµj = 0 for all j. Then, for any bounded and absolutely continuous function f with

bounded derivative f ′, we obtain∫
f ′(a)pi(a)da =

∫ ∞

−∞
f ′(a)

(∫ ∞

a
pi(xi)mi(xi)dxi

)
da

=
∫ ∞

−∞
f(xi)pi(xi)mi(xi)dxi

=
∫

f(xi)
∑

j

xjdµ,

where the second equality follows from the integral-by-parts formula. If f is not bounded,

then let fM (x) = f(0) +
∫ x
0 f ′(u)1{|u|≤M}du and take M → ∞.

As a corollary, the regularity of the marginal density functions is established.

Corollary 1. Let µ be Stein-type. Then, its marginal density functions pi(xi) are

bounded, absolutely continuous, and converge to zero as xi → ±∞.

Proof. From the formula (6), it is obvious that pi is absolutely continuous and bounded

by
∫ ∑

i |xi|dµi < ∞. We also have pi(xi) → 0 as xi → ±∞ because the right-hand side

of (6) vanishes as a → ±∞.

Although the marginal density function of any Stein-type distribution is absolutely

continuous, it can have non-differentiable points as shown in an example in Section 6. The

continuous differentiability of pi(xi) follows from the regularity of the pair-wise copula of µ

along formula (6). We do not pursue this line of investigation here. On the other hand, we
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conjecture that the marginal density of any Stein-type distribution is positive everywhere.

See Section 7 for more details.

The following corollary will be used in Section 4.

Corollary 2. Let µ be Stein-type. Then, its negative marginal entropy
∫

pi(xi) log pi(xi)dxi

is finite.

Proof. Since the marginal density pi(xi) is bounded, we have
∫

pi(xi) log pi(xi)dxi < ∞.

To prove
∫

pi(xi) log pi(xi)dxi > −∞, we use the non-negativity of the Kullback-Leibler

information from pi to the standard normal density φ(xi) = e−x2
i /2/

√
2π. Indeed,∫

pi(xi) log pi(xi)dxi ≥
∫

pi(xi) log φ(xi)dxi =
∫

{−(1/2) log(2π) − x2
i /2}dµi > −∞

because
∫

x2
i dµi < ∞.

As a remark, we also show that Stein-type distributions have finite Fisher information.

The Fisher information of a density function q on R is defined by

I(q) =
∫ (

q′(x)
q(x)

)2

q(x)dx,

where q is assumed to be absolutely continuous, and q′(x)/q(x) is set to 0 if q is not differ-

entiable or not positive at x. See [13] for properties implied by finite Fisher information.

Note that the Fisher information we defined is that of location family {q(x − θ) | θ ∈ R}

in statistics (e.g., [18]).

Corollary 3. For any Stein-type distribution µ, the Fisher information I(pi) of each

marginal density pi is bounded by the dimension d. In particular, pi has bounded variation.

Proof. From (6), the score function p′i(xi)/pi(xi) is equal to −mi(xi). Since mi(xi) is the

conditional expectation of
∑

j xj given xi, we obtain

I(pi) =
∫

mi(xi)2dµ ≤
∫ ∑

j

xj

2

dµ = d,

where the last equality follows from the Stein-type identity with f(xi) = xi. By the

Cauchy-Schwarz inequality, we also have
∫
|p′i(xi)|dxi ≤

√
I(pi). Then, pi has bounded

variation.

Other properties are given in Appendix C.
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4 Proofs based on the theory of optimal transportation

In this section, we prove the three main theorems stated in Section 2. The proof is based

on the theory of optimal transportation. Necessary facts about one-dimensional optimal

transportation are summarized in Appendix A.

4.1 Variational problem over a fiber of Wasserstein space

Let F be a fiber of P2 (see Section 2 for the definition) and choose two measures µ and

ν = T]µ in F , where T ∈ Tcw(µ). Define the geodesic, which is also referred to as the

displacement interpolation [21], from µ to ν by

[µ, ν]t = [(1 − t)Id + tT ]]µ, t ∈ [0, 1],

where Id denotes the identity map. Based on the one-dimensional optimal transportation,

it follows that [µ, ν]t ∈ F and [µ, ν]t = [ν, µ]1−t for each t.

Although a geodesic between any pair of distributions in P2 is similarly defined, we need

only geodesics in a common fiber. It is known that a geodesic actually attains the minimum

length of a path between two measures with respect to the L2-Wasserstein distance (see e.g.

[2] and [32]). Here the L2-Wasserstein distance is the infimum of
(∫

‖x − y‖2dγ(x, y)
)1/2

over the joint distribution γ on R2d with the marginal distributions µ and ν. Note that

each fiber F is totally geodesic in the sense of [31].

From a different perspective from ours, optimal transportation between two distributions

sharing the same copula is considered in [1], where the various cost functions are the center

of discussion.

Recall that µ is said to have a regular support if its support is the direct product of the

supports of marginal distributions.

Lemma 4. Let F be a fiber and choose any two distributions µ and ν in F , where µ 6= ν.

Then, E([µ, ν]t) is convex in t. Furthermore, E([µ, ν]t) is strictly convex if one of the

following conditions is satisfied:

(i) µ (and therefore ν) has a regular support, or

(ii) the supports of µi and νi are connected, respectively, for each i.

Proof. Let ν = T]µ, with T ∈ Tcw(µ). Let pi be the marginal density of µ. By the
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change-of-variable formula (Lemma 11 in Appendix A), we obtain

E([µ, ν]t) =
∑

i

∫
pi(xi) log

pi(xi)
(1 − t) + tT ′

i (xi)
dxi +

1
2

∫ (∑
i

((1 − t)xi + tTi(xi))

)2

dµ,

(8)

where T ′
i (xi) is the derivative of Ti if it exists, and T ′

i (xi) = 0 otherwise. Both terms in

(8) are convex in t.

Assume (i) and that E([µ, ν]t) is not strictly convex. Then, there is an interval over which

E([µ, ν]t) is linear. It is deduced from (8) that
∑d

i=1(Ti(xi)−xi) = 0, µ-almost everywhere.

Let I be the set of indices i such that µi(Ti(xi) 6= xi) > 0. Then, I is not empty because

T 6= Id. For each i ∈ I, the probability µi(Ti(xi) − xi > 0) is positive because
∫

(Ti(xi) −

xi)dµi = 0. Then, by the regular support condition, we have µ(
∑

i∈I(Ti(xi) − xi) > 0)

is positive. However, this contradicts
∑d

i=1(Ti(xi) − xi) = 0. Thus, E([µ, ν]t) should be

strictly convex under (i).

Next, assume (ii). Then, Ti has no discontinuous points. Assume E([µ, ν]t) is not

strictly convex. Then, if follows from (8) that T ′
i (xi) = 1 and, therefore, Ti(xi) = xi by

the connectedness of the support together with the condition
∫

Tidµi = 0. However, this

contradicts µ 6= ν. Thus, E([µ, ν]t) is strictly convex.

Example 2. The strict convexity of E([µ, ν]t) can fail if neither condition (i) nor condition

(ii) in Lemma 4 is satisfied. For example, let d = 2 and assume that µ is uniformly

distributed over the region ([−1, 0] × [0, 1]) ∪ ([0, 1] × [−1, 0]). Define the map T by

Ti(xi) = xi + 1 if xi > 0, and Ti(xi) = xi − 1 otherwise for each i. Let ν = T]µ.

Then, E([µ, ν]t) is constant along t ∈ [0, 1] because T ′
i (xi) = 1 and

∑
i Ti(xi) =

∑
i xi,

µ-almost everywhere. In this case, µi is supported on [−1, 1], whereas νi is supported on

[−2,−1] ∪ [1, 2].

Convexity along a geodesic is referred to as displacement convexity [21]. Lemma 4

shows that E is displacement convex over each fiber. Refer to [2] for further details on

displacement convexity.

4.2 Proof of Theorem 1

Let µ be a Stein-type distribution. Corollary 2 implies that µ belongs to dom E . From the

convexity (Lemma 4), it is sufficient to show that

d
dt+

E([µ, ν]t)
∣∣∣∣
t=0

≥ 0

10



for any ν = T]µ ∈ F , where d/dt+ denotes the right derivative. It follows from formula

(8) that

d
dt+

E([µ, ν]t)
∣∣∣∣
t=0

= −
∑

i

∫
pi(xi)(T ′

i (xi) − 1)dxi +
∑

i

∑
j

∫
(Ti(xi) − xi)xjdµ. (9)

If Ti is absolutely continuous, the right-hand side vanishes by the Stein-type identity,

where the boundedness of the derivatives T ′
i can be assumed by a standard approximation

argument, as in the proof of Theorem 4. If Ti is not absolutely continuous, Ti can be

decomposed into an absolutely continuous part and a discontinuous part as Ti = T ac
i +

T d
i . See Appendix A. The contribution of T ac

i in (9) vanishes due to the Stein-type

identity. It is sufficient to prove that
∑

j

∫
T d

i (xi)xjdµ ≥ 0 for each i because (T d
i )′ = 0

by definition. We can take a sequence {fi,n}∞n=1 of non-decreasing differentiable functions

with a bounded derivative such that fi,n(xi) converges to T d
i (xi) µ-almost everywhere.

More specifically, a step function I[ξ,∞)(xi) at each ξ ∈ R is approximated by a logistic

function 1/(1 + exp(−n(xi − ξ))). Then, by Lebesgue’s dominated convergence theorem

and the Stein-type identity, we obtain

∑
j

∫
T d

i (xi)xjdµ = lim
n→∞

∑
j

∫
fi,n(xi)xjdµ

= lim
n→∞

∫
f ′

i,n(xi)dµ

≥ 0.

Conversely, assume that E(T]µ) is minimized at T = Id. Let f be an absolutely con-

tinuous function with bounded derivative f ′. Then, for sufficiently small ε > 0, both

of T (x) = x ± εf(x) belong to Tcw(µ). Thus, (9) is zero, and µ satisfies the Stein-type

identity.

4.3 Proof of Theorem 2

Assume that µ has a regular support and admits a Stein-type transformation T . Then,

Theorem 1 implies that T]µ minimizes E over the fiber Fµ. However, it is deduced from

Lemma 4 that E is strictly convex over Fµ. Thus, the minimizer is unique.

4.4 Proof of Theorem 3

Assume that µ is copositive. Denote the functional E restricted to the fiber Fµ by Eµ.

From Theorem 1, it is sufficient to show that Eµ has a minimum point. We first show that
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Eµ is bounded from below and that the level set {ν | Eµ ≤ c} for each c ∈ R is tight. For

any ν ∈ Fµ, the copositivity condition implies

Eµ(ν) ≥
d∑

i=1

{∫
qi(xi) log qi(xi)dxi +

β

2

∫
x2

i dνi

}
,

where qi = dνi/dxi and β = β(ν) = β(µ) > 0. We obtain∫
qi(xi) log qi(xi)dxi =

∫
qi(xi) log

qi(xi)√
β/(4π)e−βx2

i /4
dxi −

β

4

∫
x2

i dνi +
1
2

log
β

4π

≥ −β

4

∫
x2

i dνi +
1
2

log
β

4π
,

where the last inequality follows from the nonnegativity of the Kullback-Leibler divergence.

Then, Eµ is bounded from below as

Eµ(ν) ≥ C +
β

4

d∑
i=1

∫
x2

i dνi,

where C is a constant independent of ν. This inequality also implies that the level set

{ν | Eµ(ν) ≤ c} is tight.

Now there exists a weakly converging sequence νk such that Eµ(νk) converges to inf Eµ(ν).

Let ν∗ be the weak limit. Then, Corollary 3.5 of [21] shows that ν∗ ∈ P2 and Eµ(ν∗) ≤

limk Eµ(νk). The distribution ν∗ gives a minimum point of Eµ. This completes the proof.

5 Sufficient conditions for copositivity

We now present the sufficient conditions for copositivity of a given distribution µ. In

Subsection 5.1, we first take into account the measures with a non-zero mean as well as

coordinate-wise transformations that are constant over an interval. We then present a

lower bound of the quantity β(µ) in (5). Subsequent subsections are devoted to finding

sufficient conditions for copositivity.

5.1 Extension of the definition and a lower bound

Let P2
∗ be the set of measures on Rd such that each marginal µi is absolutely continuous

and
∫

x2
i dµi < ∞ without assuming

∫
xidµi = 0. The set Tcw∗(µ) for µ ∈ P2

∗ is defined

by the set of coordinate-wise non-decreasing map T : Rd → Rd such that
∫

Tidµi = 0 and∫
T 2

i dµi < ∞ for each i.

The following lemma is useful to consider copositivity. Denote the inner product and

norm of L2(µ) by 〈f, g〉 =
∫

f(x)g(x)dµ and ‖f‖ = 〈f, f〉1/2, respectively.

12



Lemma 5. If µ ∈ P, then

β(µ) = inf
0 6=T∈Tcw∗(µ)

‖
∑

i Ti‖2∑
i ‖Ti‖2

. (10)

Proof. Denote the right-hand side of (10) by δ(µ). Then, it is obvious that β(µ) ≥ δ(µ)

since Tcw(µ) ⊂ Tcw∗(µ). In order to prove the converse inequality, choose 0 6= T ∈ Tcw∗(µ)

such that ‖
∑

i Ti‖2/(
∑

i ‖Ti‖2) ≤ δ(µ) + ε for given ε. It follows from Lemma 13 in

Appendix A that a map T η defined by T η(x) = T (x) + ηx belongs to Tcw(µ) for each

η > 0. Then, we have
‖
∑

i Ti‖2∑
i ‖Ti‖2

= lim
η→0

‖
∑

i T
η
i ‖2∑

i ‖T
η
i ‖2

,

implying β(µ) ≤ δ(µ) + ε.

We extend the definition of β(µ) for any µ ∈ P2
∗ by (10). In the following, µ is a measure

in P2
∗ unless otherwise stated.

Let L2
0(µi) be the set of functions Ti : R → R such that

∫
Tidµi = 0 and

∫
T 2

i dµi < ∞.

The set Tcw∗(µ) is a subset of
∏d

i=1 L2
0(µi). The space L2

0(µi) is considered to be a subspace

of L2(µ). More precisely, Ti ∈ L2
0(µi) is identified with the function x 7→ Ti(xi) in L2(µ).

By relaxing the set Tcw∗(µ) in (10), we obtain a lower bound of β(µ) as

βL(µ) := inf
0 6=T∈

Qd
i=1 L2

0(µi)

‖
∑

i Ti‖2∑
i ‖Ti‖2

≤ β(µ).

Therefore, µ is copositive if βL(µ) > 0.

It is shown that β(µ) and βL(µ) are invariant under coordinate-wise transformations.

Thus, β(µ) and βL(µ) depend only on the copula of µ. Furthermore, they depend only on

the set of two-dimensional marginal copulas of µ.

If d = 2, then the quantity βL(µ) is related to the Hirschfeld-Gebelein-Rényi maximal

correlation coefficient (refer to [9], [26] and [19])

γ(µ) = sup
0 6=T1∈L2

0(µ1),06=T2∈L2
0(µ2)

〈T1, T2〉
‖T1‖‖T2‖

.

Lemma 6. Let d = 2. Then, βL(µ) = 1− γ(µ). In particular, µ is copositive if γ(µ) < 1.

Proof. Let γ = γ(µ). For any T1 ∈ L2
0(µ1) and T2 ∈ L2

0(µ2), we have

‖T1 + T2‖2 = ‖T1‖2 + ‖T2‖2 + 2〈T1, T2〉

≥ ‖T1‖2 + ‖T2‖2 − 2γ‖T1‖‖T2‖

= γ(‖T1‖ − ‖T2‖)2 + (1 − γ)(‖T1‖2 + ‖T2‖2)

≥ (1 − γ)(‖T1‖2 + ‖T2‖2).

13



Thus, we have βL(µ) ≥ 1 − γ. In order to prove the converse inequality, take sequences

T1n and T2n satisfying ‖T1n‖ = ‖T2n‖ = 1 and limn→∞〈T1n, T2n〉 = γ. Then,

βL(µ) ≤ lim
n→∞

‖T1n − T2n‖2

‖T1n‖2 + ‖T2n‖2
= 1 − γ.

In the literature, two subspaces H1 and H2 of a Hilbert space with the property

sup
h1∈H1,h2∈H2

〈h1, h2〉
‖h1‖‖h2‖

< 1

are said to satisfy the strengthened Cauchy-Schwarz inequality [6]. In our setting, µ is

copositive if L2
0(µ1) and L2

0(µ2) satisfy the strengthened Cauchy-Schwarz inequality.

5.2 Gaussian case

We obtain an explicit expression of βL(µ) if µ is a multivariate normal distribution.

Lemma 7. Let µ be the multivariate normal distribution with mean vector 0 and covari-

ance matrix S. Then, βL(µ) is the minimum eigenvalue of the correlation matrix of S. In

particular, µ is copositive if S is non-singular.

Proof. The case of d = 2 has been proven by [17].

Assume that the marginal density of µ is the standard normal φ(x) = (2π)−1/2e−x2/2

without loss of generality. Then, the covariance matrix coincides with the correlation

matrix R = (ρij). We prove that βL(µ) = λmin(R), where the minimum eigenvalue of

a positive definite matrix A is denoted by λmin(A). Note that λmin(R) ≤ 1 because

tr(R) = d.

Denote the Hermite polynomial of order k by ηk(x) = (−1)kφ(x)−1(dk/dxk)φ(x) for

x ∈ R. Any function Ti ∈ L2
0(µi) is expanded as

Ti(xi) =
∑
k≥1

cikηk(xi),
∑
k≥1

k!c2
ik < ∞.

Since
∫

ηk(xi)ηl(xj)dµ = δkl(k!ρk
ij), we obtain

∫ (∑
i

Ti

)2

dµ =
∑
k≥1

k!
∑

i

∑
j

cikcjkρ
k
ij

and ∑
i

∫
T 2

i dµi =
∑
k≥1

k!
∑

i

c2
ik.
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For any k ≥ 1, we can show that

∑
i

∑
j

cikcjkρ
k
ij ≥ λmin(R)

∑
i

c2
ik.

Indeed, set Aij = ρij and Bij = cikcjkρ
k−1
ij in an inequality tr(AB) ≥ λmin(A)tr(B) for

any positive definite matrices A and B. Thus, we have∫
(
∑

i

Ti)2dµ ≥ λmin(R)
∑

i

∫
T 2

i dµi,

which implies βL(µ) ≥ λmin(R).

Conversely, let (v1, . . . , vd) be the eigenvector corresponding to λmin(R) and Ti(xi) =

vixi. Then, we have
∫

(
∑

i Ti)2dµ = λmin(R)
∑

i

∫
T 2

i dµi. Thus, βL(µ) ≤ λmin(R).

We conjecture that β(µ) coincides with (1) if µ is Gaussian and S is its covariance

matrix. See Section 7.

5.3 Rényi’s condition of positive copula densities

The following theorem, which has been proven by [26] for d = 2, provides a checkable

condition for copositivity.

Theorem 5 ([26] for d = 2). Assume that µ has a regular support (see Section 2 for the

definition) and for each pair i 6= j, the two-dimensional marginal copula density function

cij of µ is square integrable. Then, βL(µ) > 0. In particular, µ is copositive.

Proof. We first prove that if T ∈
∏d

i=1 L2
0(µi) satisfies an equation

∑
i Ti = 0, then T = 0.

Assume
∑

i Ti = 0. Let I ⊂ {1, . . . , d} be the set of indices i such that µ(Ti 6= 0) > 0.

Next, by contradiction, assume I is not empty. Let Ai = {xi | Ti > 0} for i ∈ I. Since∫
Tidµi = 0, we have µi(Ai) > 0. However, based on the assumption about the support,

we obtain µ(∩i∈IAi) > 0, which implies that µ(
∑

i Ti > 0) > 0 and contradiction. Thus,

I is empty, and T = 0.

Now, we prove that βL(µ) > 0 using elementary cocepts of functional analysis (refer

to [33]). Assume that µi is uniform over [0, 1], i.e., µ is a copula distribution. Let H =∏d
i=1 L2

0(µi) be a Hilbert space of Rd-valued functions and define the inner product of H

as 〈T,U〉H =
∑

i

∫
TiUidxi. Let cij be the pairwise copula density and define an operator

C : H → H by

(CT )i =
∑
j 6=i

∫ 1

0
cijTjdxj , i = 1, . . . , d.
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Based on the assumption that
∫∫

c2
ijdxidxj < ∞, we deduce that C is a Hilbert-Schmidt

operator. It is easy to see that C is self-adjoint. Now, we can write∫
(
∑

i

Ti)2dµ = 〈T, (I + C)T 〉L (11)

If (I + C)T = 0, then (11) implies
∑

i Ti = 0 and, therefore, T = 0. Thus, I + C is

injective. Since the operator I + C is an injective Fredholm operator, it is surjective. By

the continuous inverse theorem, we deduce that the inverse operator (I +C)−1 is bounded.

Therefore, we have

〈T, (I + C)T 〉L ≥ 1
‖(I + C)−1‖

〈T, T 〉L,

which means βL(µ) ≥ ‖(I + C)−1‖−1 > 0.

Corollary 4. If µ has a positive and bounded copula density function, then µ is copositive.

By Theorem 5, we obtain an alternative proof of Lemma 7 without evaluating βL(µ)

(details omitted). In Section 6, we deal with positive and piecewise uniform copula density

functions.

Note that the support of µ is not determined from the support of two-dimensional

marginal distributions. See the following example. Refer to [27] for related topics.

Example 3. Let µ ∈ P2(R4) be the uniform measure supported on the region

(+, +,−,−) ∪ (+,−, +,−) ∪ (+,−,−,+) ∪ (−, +, +,−) ∪ (−, +,−, +) ∪ (−,−, +, +),

where (+, +,−,−) denotes the set [0, 1]× [0, 1]× [−1, 0]× [−1, 0], and so on. Then µ is not

copositive although each two-dimensional marginal distribution is supported on [−1, 1]2.

In order to demonstrate this point, let Ti(xi) = sign(xi) for each i. Then
∫

Tidµi = 0 and∫
T 2

i dµi > 0 but
∫

(
∑

i Ti)2dµ = 0. Hence, β(µ) = 0.

5.4 A condition without regular supports

Theorem 5 assumes regularity of the support. Here, we present a result without assuming

the regular support condition.

Theorem 6. Let µ be a d-dimensional copula with density c(x). Assume that there exists

a constant 0 < δ ≤ 1 such that an inequality

c(x1, . . . , min(xi, yi), . . . , xd) + c(y1, . . . , max(xi, yi), . . . , yd) ≥ δ{c(x) + c(y)} (12)

holds for any i and x, y ∈ [0, 1]d. Then, µ is copositive.
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Proof. We first prove the case d = 2. For each i ∈ {1, 2}, let 0 6= Ti ∈ L2
0(µi), and let T±

i

be the positive and negative parts of Ti such that Ti = T+
i − T−

i . Let I±i be the support

of T±
i . Assume that T1 is non-decreasing. Then, we have a1 < b1 for any a1 ∈ I−1 and

b1 ∈ I+
1 . Setting Zi =

∫
T+

i (xi)dxi =
∫

T−
i (xi)dxi > 0, we obtain

〈T−
1 , T−

2 〉 + 〈T+
1 , T+

2 〉

=
∫

I−1 ×I−2

c(a1, a2)T−
1 (a1)T−

2 (a2)da1da2 +
∫

I+
1 ×I+

2

c(b1, b2)T+
1 (b1)T+

2 (b2)db1db2

= Z1Z2

∫
I−1 ×I−2 ×I+

1 ×I+
2

{c(a1, a2) + c(b1, b2)}
T−

1 (a1)
Z1

T−
2 (a2)
Z2

T+
1 (b1)
Z1

T+
2 (b2)
Z2

da1da2db1db2

≥ δZ1Z2

∫
I−1 ×I−2 ×I+

1 ×I+
2

{c(b1, a2) + c(a1, b2)}
T−

1 (a1)
Z1

T−
2 (a2)
Z2

T+
1 (b1)
Z1

T+
2 (b2)
Z2

da1da2db1db2

= δ(〈T+
1 , T−

2 〉 + 〈T−
1 , T+

2 〉).

Therefore,

‖T1 + T2‖2 = ‖T1‖2 + ‖T2‖2 + 2(〈T+
1 , T+

2 〉 − 〈T+
1 , T−

2 〉 − 〈T−
1 , T+

2 〉 + 〈T−
1 , T−

2 〉)

≥ ‖T1‖2 + ‖T2‖2 − 2(1 − δ)(〈T+
1 , T−

2 〉 + 〈T−
1 , T+

2 〉)

= δ(‖T1‖2 + ‖T2‖2) + (1 − δ)(‖T+
1 − T−

2 ‖2 + ‖T−
1 − T+

2 ‖2)

≥ δ(‖T1‖2 + ‖T2‖2)

and the result follows. Note that we did not use the monotonicity of T2.

Now, we prove the case d ≥ 3. In the same manner as above, we have

‖T1 + · · · + Td‖2 ≥ δ{‖T1‖2 + ‖T2 + · · · + Td‖2}.

Since the condition (12) is invariant under marginalization, it is inductively shown that

‖T1 + · · · + Td‖2 ≥ δ‖T1‖2 + · · · + δd−1‖Td−1‖2 + δd−1‖Td‖2.

Thus, µ is copositive, where β(µ) ≥ δd−1.

For example, if µ is the uniform distribution over the region [−1, 1]2 \ [−1, 0]2, then µ

does not have a regular support but is copositive, where the constant δ in (12) is 1/2.

5.5 Tail dependence

Many useful copulas in application exhibit tail dependence (e.g. [22], [12], [10]). The

following lemma shows that, unfortunately, Theorem 5 is not helpful for this class of

copulas.
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Lemma 8. Let d = 2 and assume that the copula density c(u1, u2) has lower-tail depen-

dency

λ = lim
δ→0

∫ δ
0

∫ δ
0 c(u1, u2)du1du2

δ
> 0.

Then,
∫∫

c(u1, u2)2du1du2 = ∞. Similar results hold for other types of tail dependency.

Proof. The Cauchy-Schwarz inequality implies that∫ δ

0

∫ δ

0
c(u1, u2)2du1du2 ≥ 1

δ2

(∫ δ

0

∫ δ

0
c(u1, u2)du1du2

)2

.

If c is square-integrable, then the left-hand side should converge to 0 as δ → 0, which is

impossible. Thus, c is not square-integrable.

We conjecture that many copulas with tail dependence are copositive. On the other

hand, there is a non-copositive measure with positive copula density, as follows.

Example 4 (Tail counter-comonotonic copula). It is known that there is a positive copula

density function with the property

lim
δ→0

P (X2 < δ|X1 < δ) = 1,

which is equivalent to λ = 1 in Lemma 8. Such a copula is referred to as a lower tail

comonotonic copula (see Section 2.21 of [12]). Let µ be the induced measure of Y1 = X1

and Y2 = 1 − X2. Then, µ is not copositive. Indeed, define a map T ∈ Tcw∗(µ) by

T1(y1) = δI(δ,1)(y1) − (1 − δ)I(0,δ)(y1), T2(y2) = (1 − δ)I(1−δ,1)(y2) − δI(0,1−δ)(y2),

where IA denotes the indicator function of a set A. Then, ‖T1‖ = ‖T2‖ =
√

δ(1 − δ) and

〈T1, T2〉 = −δ(1 − δ)2P (Y2 > 1 − δ|Y1 < δ) + O(δ2), δ → 0.

Therefore,

lim
δ→0

〈T1, T2〉
‖T1‖‖T2‖

= −1.

In a similar manner to Lemma 6, we deduce that β(µ) = 0.

6 Piecewise uniform densities

In this section, it is shown that if µ has piecewise uniform density function, then the

Stein-type transformation of µ is obtained by finite-dimensional optimization. Here, we

do not impose the zero mean condition on measures µ as the preceding section.
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We say that a probability density function c(u) on [0, 1]d is piecewise uniform if its

two-dimensional marginal densities are written as

cij(ui, uj) = n2πij
ab if (ui, uj) ∈ (a−1

n , a
n ] × ( b−1

n , b
n ], a, b ∈ {1, . . . , n}, (13)

for some n, where πij
ab is a positive number such that

n∑
a=1

n∑
b=1

πij
ab = 1.

Let πi
a =

∑n
b=1 πij

ab. Note that c is not necessarily a copula density. However, it is

transformed by a piecewise linear transform into a copula density. Then, Corollary 4

guarantees the existence of a Stein-type transformation.

By solving Equation (6), we obtain an expression of the Stein-type transformation of

c as follows. Denote the cumulative distribution function and density function of the

standard normal distribution by Φ and φ, respectively.

Lemma 9. Let c satisfy (13), and let p be the Stein-type density corresponding to c.

Then, there exist real constants α1i, . . . , αni and ξ1i < · · · < ξn−1,i such that

pi(xi) = πi
a

φ(xi − αai)
Zai

for ξa−1,i < xi ≤ ξai (14)

where ξ0i = −∞, ξni = ∞, and Zai = Φ(ξai − αai) − Φ(ξa−1,i − αai). The Stein-type

transformation is

xi = Ti(ui) = αai + Φ−1
(
Φ(ξa−1,i − αai) + n(ui − a−1

n )Zai

)
, ui ∈ (a−1

n , a
n ], (15)

and the two-dimensional marginal density is

pij(xi, xj) = πij
ab

φ(xi − αai)
Zai

φ(xj − αbj)
Zbj

, (xi, xj) ∈ (ξa−1,i, ξai] × (ξb−1,j , ξbj ]. (16)

Furthermore, the following identity is satisfied:

αai = −
∑
j 6=i

∑
b

πij
ab

πi
a

∫ ξbj

ξb−1,j

xjφ(xj − αbj)
Zbj

dxj . (17)

Proof. Equation (6) implies that ∂ipi(xi) = −(xi +
∑

j 6=i E[Xj |xi])pi(xi), where ∂i =

∂/∂xi. Since the conditional expectation E[Xj |xi] has to be piecewise constant, pi(xi)

is piecewise Gaussian up to a normalizing constant. Since the mass of each piece is

preserved under a coordinate-wise transformation, we obtain the form (14). Then, the

unique monotone transformation (15) is derived from ci(ui)dui = pi(xi)dxi. Equation

(16) results from the transformation of cij(ui, uj). Finally, Equation (17) is obtained from

∂i log pi(xi) = −(xi +
∑

j 6=i E[Xj |xi]).
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The parameters αai and ξai are determined by the continuity of (14) at xi = ξai and the

identity (17). However, instead of solving the simultaneous equations directly, we adopt

an optimization approach.

Assume the density of a distribution µ obeys the parametric form given by Equation

(14). Then, the energy function E(µ) defined in Section 4 is a function of α and ξ, which

is denoted by F (α, ξ) and is obtained as follows:

F (α, ξ) =
∑

i

∫
pi(xi) log pi(xi) +

1
2

∑
i

∫
x2

i pi(xi)dxi +
∑
i<j

∫
xixjpij(xi, xj)dxidxj

=
∑

i

∑
a

πi
a

∫ ξai

ξa−1,i

φ(xi − αai)
Zai

(
log

πi
a√
2π

− (xi − αai)2

2
− log Zai +

x2
i

2

)

+
∑
i<j

∑
a

∑
b

πij
ab

ZaiZbj

∫ ξai

ξa−1,i

∫ ξbj

ξb−1,j

xixjφ(xi − αai)φ(xj − αbj)dxidxj

=
∑

i

∑
a

πi
a log

πi
a√
2π

+
∑

i

∑
a

πi
a

(
−α2

ai

2
+ αaiMai − log Zai

)
+
∑
i<j

∑
a

∑
b

πij
abMaiMbj ,

where

Mai =
1

Zai

∫ ξai

ξa−1,i

xiφ(xi − αai)dxi

= αai +
1

Zai
(−φ(ξai − αai) + φ(ξa−1,i − αai)) .

Since Zai and Mai are functions of three parameters αai, ξai, and ξa−1,i, we denote the

corresponding partial derivative by D1, D2, and D3. The derivatives of F are

∂F

∂αai
= πi

a

(
−αai + Mai + αaiD1Mai −

D1Zai

Zai

)
+
∑
j 6=i

∑
b

πij
ab(D1Mai)Mbj

= πi
a

αai +
∑
j 6=i

∑
b

πij
ab

πi
a

Mbj

 (D1Mai), (18)

∂F

∂ξai
= πi

a

(
αaiD2Mai −

D2Zai

Zai

)
+ πi

a+1

(
αa+1,iD3Ma+1,i −

D3Za+1,i

Za+1,i

)
+
∑
j 6=i

∑
b

{
πij

ab(D2Mai) + πij
a+1,b(D3Ma+1,i)

}
Mbj

= πi
a

αai +
∑
j 6=i

∑
b

πij
ab

πi
a

Mbj

D2Mai + πi
a+1

αa+1,i +
∑
j 6=i

∑
b

πij
a+1,b

πi
a+1

Mbj

D3Ma+1,i

− πi
a

D2Zai

Zai
− πi

a+1

D3Za+1,i

Za+1,i
. (19)

By using these formulas, we obtain the following theorem.
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Theorem 7. A stationary point of F together with formula (14) provides the global

minimum point of the energy functional E(µ) over the fiber. In other words, F has a

unique stationary point that corresponds to the Stein-type density.

Proof. Since Mai =
∫

xiφ(xi −αai)dxi/Zai is the expectation parameter of an exponential

family φ(xi−αai)/Zai, it is an increasing function of αai (e.g., [18]). Therefore, D1Mai > 0.

Thus, the stationary condition ∂F/∂αai = 0 is equivalent to

αai +
∑
j 6=i

∑
b

πij
ab

πi
a

Mbj = 0,

which is equivalent to (17) and solves the integral equation (6) except at boundary points

ξai. Furthermore, substituting this relation into (19), we obtain

∂F

∂ξai
= −πi

a

D2Zai

Zai
− πi

a+1

D3Za+1,i

Za+1,i

= −pi(ξai−) + pi(ξai+).

Therefore, ∂F/∂ξai = 0 is equivalent to the continuity of pi at ξai. Then, the density p is

the Stein-type density, which is unique due to Theorem 2.

The minimization problem of F (α, ξ) over αai ∈ R and ξ1i < · · · < ξn−1,i is performed

using a standard optimization package (e.g., the function optim in R [24]) when the coor-

dinate τai = ξai − ξa−1,i, rather than ξai, is used for 2 ≤ a ≤ n − 1.

Example 5. We numerically obtain the Stein-type densities of discretized copulas. The

result is shown in Figure 1. The copula used here is the Clayton copula

Cθ(x1, x2) =
[
max(x−θ

1 + x−θ
2 − 1, 0)

]−1/θ
.

The discretized copula density of n × n cells is given by (13) with

π12
ab = Cθ( a

n , b
n) − Cθ(a−1

n , b
n) − Cθ( a

n , b−1
n ) + Cθ(a−1

n , b−1
n ).

7 Discussion

In the present paper, we showed that a class of multi-dimensional distributions has a

unique representation via the Stein-type identity. Now, we describe areas for future study

and some open problems.

In Section 3, we derived some properties of Stein-type distributions. The author could

not find any counter-example against the following conjecture.
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Figure 1: Coordinate-wise transformation for the two-dimensional discretized Clayton
copula with θ = 2 and n = 10 is shown. The joint density function (top-left) is transformed
into a Stein-type density function (top-right) by the inverse function of a cumulative
distribution (bottom-left), the density of which is piece-wise Gaussian (bottom-right).
The dashed curve in the bottom figures represents the standard normal distribution.
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Conjecture 1. The marginal density function of any Stein-type distribution is positive

everywhere.

A partial answer to Conjecture 1 is given in the following lemma.

Lemma 10. Let µ be a Stein-type distribution. If the copula of µ has pair-wise marginal

densities cij such that

D = sup
i,j:i6=j

sup
ui∈[0,1]

∫ 1

0
cij(ui, uj)2duj < ∞,

then each marginal density pi of µ is positive everywhere. In particular, if the copula

density of µ is bounded, then the same consequence follows.

Proof. The density pi(xi) satisfies ∂ipi(xi) + pi(xi)mi(xi) = 0 with mi(xi) = E[
∑

j Xj |xi]

by Theorem 4. The conditional expectation satisfies

|E[Xj |xi]| =
∣∣∣∣∫ xjcij(Fi(xi), Fj(xj))pj(xj)dxj

∣∣∣∣ ≤ (DE[X2
j ])1/2,

where F (xi) =
∫ xi

−∞ pi(ξ)dξ. Let D∗ =
∑

j 6=i(DE[X2
j ])1/2. Then, we obtain an inequality

−(xi + D∗)pi(xi) ≤ ∂ipi(xi) ≤ −(xi − D∗)pi(xi)

Let a ∈ R be a point at which pi(a) > 0. Then, Gronwall’s lemma shows that pi(xi) ≥

pi(a)e−(xi+D∗)2/2+(a+D∗)2/2 > 0 for xi > a, and similarly pi(xi) > 0 for xi < a.

If Conjecture 1 is positively solved, then the following conjecture, which is based on

Theorem 2, is also positive according to Lemma 4 (ii).

Conjecture 2. A Stein-type transformation is unique if it exists.

We state a relevant conjecture that is the converse of Theorem 3.

Conjecture 3. A distribution is copositive if it has a Stein-type transformation.

In Section 4, we showed that a Stein-type distribution is characterized by the stationary

point of an energy functional E over a fiber F . From the perspective of optimal trans-

portation, we can construct the gradient flow of the energy functional with respect to the

L2-Wasserstein space ([14], [23] and [32]). The formal equation is as follows

∂tpi = ∂i(∂ipi + mipi), t ≥ 0, i = 1, . . . , d, (20)

where mi(xi) = E[
∑

j Xj |xi]. Although this appears to be an independent system of one-

dimensional Fokker-Planck equations, the equations interact with each other via mi(xi).
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Moreover, the physical meaning of the equation is not clear. From Theorem 4, it follows

that each Stein-type density is a stationary point of (20). The time evolution will be

theoretically of interest.

In Section 5, we presented sufficient conditions for copositivity of distributions. In

particular, a Gaussian distribution is copositive if its covariance matrix is not degenerated.

Conversely, if a Gaussian distribution is copositive, then the covariance matrix must, by

definition, be strictly copositive (see Equation (1)). The following conjecture naturally

arises but is not proven. This is positively solved if Conjecture 3 is correct, due to Lemma 2.

Conjecture 4. A Gaussian distribution is copositive if the covariance matrix is strictly

copositive.

As stated in Subsection 5.5, tail-dependent copulas do not satisfy the sufficient condition

in Theorem 5. The copositivity of tail-dependent copulas remains unclear.

In the present paper, we did not consider statistical models that explain a given data

set. A statistical model involving a Stein-type distribution is essentially equivalent to

a copula model because such models correspond to each other through coordinate-wise

transformations, whereas the marginal distributions are not of much interest in copula

modelling. The class given in Example 1 provides a flexible model because the distribution

of Ui’s in the construction can be selected arbitrarily.

Finally, it is expected that there is a coordinate-wise transformation to satisfy

E[f(Xi)g(X1 + · · · + Xd)] > 0, i = 1, . . . , d, (21)

for any monotone increasing functions f and g. Although the condition (21) appears to

be too strong, how to deal with this problem remains unclear.
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Appendix

A One-dimensional optimal transportation

Necessary information about one-dimensional optimal transportation is summarized. Re-

fer to [25] and [32] for further details.
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Let P2(R) be the set of absolutely continuous probability distributions µ on R such that∫
xdµ = 0 and

∫
x2dµ < ∞. For given µ ∈ P2(R), let T (µ) be the set of non-decreasing

functions T : R → R ∪ {−∞,∞} such that T]µ ∈ P2(R).

For given µ and ν in P2(R), there exists T ∈ T (µ) such that ν = T]µ. The map is

uniquely determined µ-almost everywhere. More explicitly, T is given by T = G− ◦ F ,

where F (x) =
∫ x
−∞ dµ, G(x) =

∫ x
−∞ dν, and G−(u) = inf{x ∈ R | G(x) > u}. The

map T is called the optimal transportation from µ to ν because this map minimizes the

functional
∫

(T (x) − x)2dµ over {T | T]µ = ν}. Since µ and ν are absolutely continuous,

T is decomposed into an absolutely continuous part, T ac, and a discontinuous part, T d,

without a singular continuous part. This is because G− constructed above has the same

property. The decomposition is unique up to a µ-negligible set.

The following lemmas are used in Section 4 and Section 5. These lemmas were originally

proven for multi-dimensional measures but here we simplify them for the one-dimensional

case.

Lemma 11 (Theorem 4.4 of [21]). For given µ and ν in P2(R), let T be a unique monotone

map such that ν = T]µ. Let p and q be density functions of µ and ν, respectively. Let

X ⊂ R denote the set of points where the derivative T ′ is defined and positive. Then,

µ(X) = 1. Furthermore, ∫
A(q(y))dy =

∫
X

A

(
p(x)
T ′(x)

)
T ′(x)dx

for any measurable function A on [0,∞) with A(0) = 0.

Lemma 12 (Proposition 1.3 of [21]). Let µ ∈ P2 and T ∈ T (µ). Then, (1 − t)Id + tT ∈

T (µ) for each t ∈ [0, 1].

Lemma 13 (Proposition 4.2 of [21]). Let µ ∈ P2. If T : R → R is a non-decreasing

function written as T = T ac + T d and the derivative (T ac)′ of the absolutely continuous

part is strictly positive µ-almost everywhere, then T]µ is absolutely continuous.

B Explicit expression of Stein-type distributions

We formally derive an explicit expression of the Stein-type distributions.

Assume that µ ∈ P2 has a smooth density function p with decay at infinity. Then, µ is

Stein-type if and only if there exists a function r(x) such that
p∑

j=1

(
∂p(x)
∂xj

+ xjp(x)
)

= r(x),
∫

Rd−1

r(x)dx−i = 0 for all i, (22)
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where dx−i means dx1 · · · dxi−1dxi+1 · · ·dxd. In fact, formula (22) is rewritten as ∂pi/∂xi+

pi(xi)mi(xi) = 0, where mi(xi) is the conditional expectation of
∑

j xj given xi, and this

equation is equivalent to (6).

Equation (22) is explicitly solved if r(x) is given. Let Q be a fixed orthogonal matrix

such that (Q>x)1 =
∑

j xj/
√

d, where Q> denotes the matrix transpose of Q. Then, (22)

is written as
∂p(Qw)

∂w1
+ w1p(Qw) =

r(Qw)√
d

, w = Q>x.

The general solution is

p(Qw) =
1√
2π

e−w2
1/2

(
q(w2, . . . , wd) +

∫ w1

0

√
2π√
d

ev2
1/2r(Q(v1, w2, . . . , wd))dv1

)
,

where q is any probability density function on Rd−1.

In particular, if r(x) = 0, we obtain a simple formula

p(x) =
1√
2π

e−w2
1/2q(w2, . . . , wd), w = Q>x. (23)

Example 1 in Section 2 is this solution. The class of densities (23) is characterized by a

stronger condition than the Stein-type identity, i.e.,∫
f(x)

∑
j

xjdµ =
∫ ∑

i

∂f(x)
∂xi

dµ

for any function f(x) = f(x1, . . . , xd).

C Closedness properties of Stein-type distributions

Let S be the set of Stein-type distributions on Rd. We prove that S is closed under

mixture, normalized convolution, and weak limit.

Lemma 14 (Mixture). If µ and ν are two distributions in S, then (1 − t)µ + tν belongs

to S for any t ∈ [0, 1].

Proof. This follows from the linearity of the Stein-type identity (3) with respect to µ.

Lemma 15 (Normalized convolution). Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be

independent random vectors with Stein-type distributions. Let a and b be real numbers

with a2 + b2 = 1. Then, aX + bY has a Stein-type distribution.
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Proof. The Stein-type identity with respect to X implies that

E

f(aXi + bYi)

∑
j

Xj

 = aE
[
f ′(aXi + bYi)

]
for each i, because X and Y are independent. By changing the roles of X and Y , we have

E

f(aXi + bYi)

∑
j

Yj

 = bE
[
f ′(aXi + bYi)

]
Their average is

E

f(aXi + bYi)

∑
j

(aXj + bYj)

 = (a2 + b2)E
[
f ′(aXi + bYi)

]
.

Thus, the Stein-type identity for aX + bY holds if and only if a2 + b2 = 1.

The set S is also closed under weak limit in the following sense. Denote the Euclidean

norm on Rd by ‖x‖ for x ∈ Rd.

Lemma 16 (Weak convergence). Let µ(n) be a sequence in S. If µ(n) converges to µ in

law and
∫
‖x‖2dµ(n) converges to

∫
‖x‖2dµ < ∞, then µ belongs to S.

Proof. These conditions imply that
∫

ϕdµ(n) →
∫

ϕdµ for any continuous function ϕ such

that |ϕ(x)| ≤ C(1 + ‖x‖2) for some C > 0. (Refer to Theorem 7.12 of [32].) Letting ϕ(x)

be f(xi)
∑

j xj and f ′(xi), respectively, we obtain the Stein-type identity for µ. Absolute

continuity of µi is shown in the same manner as in the proof of Theorem 4.

The condition regarding moment convergence in Lemma 16 is necessary. Indeed, we

can construct a sequence (W,U (n)) of Stein-type random variables in the same manner as

in Example 1 of Section 2 such that U (n) converges in law to a random variable U with

E[U2] = ∞.

By Lemma 15 and Lemma 16 together with the central limit theorem, if we have indepen-

dent and identically distributed samples X1, . . . , Xn according to a Stein-type distribution

µ, then the limit distribution of (X1 + · · · + Xn)/
√

n is a Stein-type normal distribution

that is characterized by Lemma 1.

Note that the set of copulas satisfies the same consequence as Lemma 14 and Lemma 16.

If we modify the definition of the copulas in such a way that the marginal distribution is

standard normal, then the same consequence as Lemma 15 also follows.
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