
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Index Reduction via

Unimodular Transformations

Satoru IWATA and Mizuyo TAKAMATSU

METR 2017–05 February 2017

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Index Reduction via Unimodular Transformations∗

Satoru Iwata† Mizuyo Takamatsu‡

February 2017

Abstract

This paper presents an algorithm for transforming a matrix pencil A(s) into another

matrix pencil U(s)A(s) with a unimodular matrix U(s) so that the resulting Kronecker

index is at most one. The algorithm is based on the framework of combinatorial relaxation,

which combines graph-algorithmic techniques and matrix computation. Our algorithm

works for index reduction of linear differential-algebraic equations, including those for which

the existing index reduction methods based on Pantelides’ algorithm are known to fail.

1 Introduction

A matrix pencil is a polynomial matrix in which the degree of each entry is at most one.

By a strict equivalence transformation, each matrix pencil can be brought into its Kronecker

canonical form (KCF). Numerically stable computation of KCF is a challenging problem, which

has required enormous efforts [2, 4, 5, 9, 21].

Let A(s) be an n×n matrix pencil. The Kronecker index ν(A) of A(s) is defined in terms of

the KCF of A(s). Previous work given in [7, 8, 14, 19] aims at finding ν(A) without obtaining

the KCF. They utilize the following combinatorial characterization:

ν(A) = δn−1(A)− δn(A) + 1. (1)

Here, δk(A) denotes the maximum degree of minors of order k in A(s), i.e.,

δk(A) = max{deg detA(s)[I, J] | |I| = |J | = k}, (2)

where deg a(s) designates the degree of a polynomial a(s) and A(s)[I, J] denotes the submatrix

with row set I and column set J .

While the previous work [7, 8, 14, 19] deals with the index computation, this paper focuses

on the index reduction of a matrix pencil. Our aim is to transform A(s) into another matrix

pencil with the Kronecker index at most one. More precisely, we present an algorithm for finding

a unimodular polynomial matrix U(s) such that U(s)A(s) is a matrix pencil with ν(UA) ≤ 1.

∗This research is supported by CREST, JST.
†Department of Mathematical Informatics, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-

8656, Japan. E-mail: iwata@mist.i.u-tokyo.ac.jp
‡Department of Information and System Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo

112-8551, Japan. This author’s research is supported in part by JSPS KAKENHI Grant Number 25730009.

E-mail: takamatsu@ise.chuo-u.ac.jp

1

Once the KCF of A(s) is obtained together with the transformation matrices, it is straight-

forward to construct such a unimodular matrix U(s). Since numerical difficulty is inherent in

the computation of KCF, we aim at finding U(s) more directly without relying on the KCF.

Instead of computing the KCF, our algorithm makes use of (1).

Our motivation comes from the study of differential-algebraic equations (DAEs) [1, 3, 6,

11, 18]. Consider a linear DAE

F
dz(t)

dt
+Hz(t) = g(t) (3)

with an initial condition z(0) = z0, where F and H are constant matrices. By the Laplace

transformation, we obtain

A(s)z̃(s) = g̃(s) + Fz0

with the matrix pencil A(s) = sF +H. The numerical difficulty of the DAE (3) is measured

by the Kronecker index ν(A).

A common approach for solving a high index DAE is to transform it into an equivalent DAE

with index at most one, which can be solved easily by numerical methods including the back-

ward differentiation formulas (BDF). This motivates a variety of index reduction algorithms, in

which we are allowed to differentiate a certain equation and add it to another equation. Such an

operation corresponds to equivalence row transformations with unimodular polynomial matrix

U(s). The Laplace transform of the resulting DAE is in the form of

U(s)A(s)z̃(s) = U(s)(g̃(s) + Fz0).

If U(s)A(s) is a matrix pencil and ν(UA) ≤ 1 holds, the index of the DAE is now reduced to

at most one.

The modeling and simulation software for dynamical systems, such as Dymola, OpenMod-

elica, and MapleSim, is equipped with the index reduction methods based on Pantelides’ al-

gorithm [16], the dummy derivative approach [12], or the signature method [17]. These al-

gorithms adopt a structural approach, which extracts zero/nonzero pattern of coefficients in

equations, ignoring the numerical values. Such algorithms are efficient, because they exploit

graph-algorithmic techniques. However, the discard of numerical information can cause a fail-

ure even for linear DAEs. In contrast, our algorithm always works for any instances of linear

DAEs.

The algorithms for computing δk(A) given in [7, 8, 14, 19] are based on the framework of

“combinatorial relaxation,” which combines graph-algorithmic techniques and matrix compu-

tation. In combinatorial relaxation algorithms, we find an estimate δ̂k(A) of δk(A) by solv-

ing a matching problem and check if δ̂k(A) = δk(A) by constant matrix computation. If

δ̂k(A) ̸= δk(A), then we modify A(s) to improve δ̂k(A) without changing δk(A). After a finite

number of iterations, the algorithms terminate with δ̂k(A) = δk(A). They mainly rely on fast

combinatorial algorithms and perform numerical computation only when necessary.

Our index reduction algorithm, which consists of two phases, inherits the idea of combina-

torial relaxation. In the first phase, we transform A(s) into another matrix pencil Ã(s) such

that an estimate of ν(Ã) is at most one. In the second phase, we determine if the estimate is

correct. If not, we further transform Ã(s) into another matrix pencil Â(s) with ν(Â) ≤ 1. In

2

the both phases, we exploit a feasible dual solution of the matching problem, which was also

used by Pryce [17] in the interpretation of Pantelides’ algorithm [16].

The rest of this paper is organized as follows. In Section 2, we explain the bipartite matching

problems associated with matrix pencils. We present an index reduction algorithm in Section 3.

Section 4 gives numerical examples, and Section 5 concludes this paper.

2 Matrix Pencils and Matching Problems

For a polynomial a(s), we denote the degree of a(s) by deg a, where deg 0 = −∞ by convention.

A polynomial matrix A(s) = (aij(s)) with deg aij ≤ 1 for all (i, j) is called a matrix pencil .

A matrix pencil A(s) is said to be regular if A(s) is square and detA(s) is a nonvanishing

polynomial.

Let us denote by block-diag(D1, . . . , Db) the block-diagonal matrix pencil with diagonal

blocks D1, . . . , Db. By a strict equivalence transformation, a regular matrix pencil A(s) can be

brought into its Kronecker canonical form block-diag(sIµ0 + Jµ0 , Nµ1 , . . . , Nµd
), where Iµ0 is a

µ0 × µ0 identity matrix, Jµ0 is a µ0 × µ0 constant matrix, and Nµ is a µ × µ matrix pencil

defined by

Nµ =

1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s

0 · · · · · · 0 1

.

The matrices Nµ1 , . . . , Nµd
are called the nilpotent blocks.

For a matrix pencil A(s), the Kronecker index ν(A) is defined to be the maximum size of

the nilpotent blocks in the Kronecker canonical form of A(s), i.e., max1≤i≤d µi. It is known [15,

Theorem 5.1.8] that ν(A) is expressed by (1).

A polynomial matrix is called unimodular if it is square and its determinant is a nonvan-

ishing constant. This implies that a square polynomial matrix is unimodular if and only if its

inverse is a polynomial matrix.

Let A(s) be an n×n regular matrix pencil with row set R and column set C. We construct

a bipartite graph G(A) = (R,C;E(A)) with E(A) = {(i, j) | i ∈ R, j ∈ C,Aij(s) ̸= 0}. The

weight ce of an edge e = (i, j) is given by ce = cij = degAij(s). We remark that ce is 0 or 1

for each e ∈ E(A) because A(s) is a matrix pencil. A subset M of E(A) is called a matching if

every pair of edges in M are disjoint. A matching M is called a perfect matching if M covers

all the vertices.

Consider the following maximum-weight perfect matching problem P(A):

maximize
∑
e∈M

ce

subject to M is a perfect matching.

Since A(s) is regular, G(A) has a perfect matching. The maximum weight of a perfect matching

in G(A), denoted by δ̂n(A), is an upper bound on δn(A).

3

The dual problem D(A) of P(A) is given by

minimize
∑
i∈R

pi −
∑
j∈C

qj

subject to pi − qj ≥ ce (e = (i, j) ∈ E(A)),

pi ∈ Z (i ∈ R),

qj ∈ Z (j ∈ C).

We denote the objective function of D(A) by ∆n(p, q).

We construct an optimal solution (p, q) of D(A) as follows. Let M be a maximum-weight

perfect matching in G(A) = (R,C;E(A)). The reorientation of a ∈ E(A) is denoted by ā.

Consider an auxiliary graph ǦM = (V̌ , Ě) with V̌ = R ∪ C ∪ {r} and Ě = Ē ∪M ∪W , where

r is a new vertex, Ē = {ā | a ∈ E(A)}, and W = {(r, i) | i ∈ R}. We define the arc length

γ : Ě → Z by

γ(a) =

−cā (a ∈ Ē)

ca (a ∈M)

0 (a ∈W)

.

Let d(i, j) be the shortest distance from i ∈ V̌ to j ∈ V̌ with respect to the arc length γ in

ǦM . We define

pi = −d(r, i) + max
ℓ∈C

d(r, ℓ) (i ∈ R), (4)

qj = −d(r, j) + max
ℓ∈C

d(r, ℓ) (j ∈ C). (5)

Lemma 2.1. Suppose that (p, q) is defined by (4) and (5). Then (p, q) is an optimal solution

of D(A) satisfying

min
i∈R

pi ≥ 0, min
j∈C

qj = 0, max
j∈C

qj ≤ n. (6)

Proof. By the definition of (p, q), pi ∈ Z (i ∈ R) and qj ∈ Z (j ∈ C) clearly hold. For

e = (i, j) ∈ E(A), we have d(r, i) ≤ d(r, j)− ce. Hence

pi − qj = −d(r, i) + d(r, j) ≥ ce (7)

holds. Thus (p, q) is a feasible solution of D(A).

Since ǦM has both arcs (i, j) and (j, i) for e = (i, j) ∈M , we obtain

pi − qj = −d(r, i) + d(r, j) = ce. (8)

It follows from |R| = |C| and (8) that∑
i∈R

pi −
∑
j∈C

qj = −
∑
i∈R

d(r, i) +
∑
j∈C

d(r, j) =
∑

(i,j)∈M

(−d(r, i) + d(r, j)) =
∑
e∈M

ce,

which implies that (p, q) is optimal to D(A).

4

Finally, we show that (p, q) satisfies (6). The second condition follows from the definition

of qj . Since G(A) has a perfect matching, each i ∈ R is incident to at least one vertex j ∈ C.

Hence we have pi ≥ qj + cij ≥ 0 by (7), qj ≥ 0, and cij ≥ 0. This implies mini∈R pi ≥ 0. Let

Pj and Pℓ denote the shortest paths from r to j and ℓ, respectively. Let v be the last common

vertex in Pj and Pℓ. Then d(r, ℓ) − d(r, j) = d(v, ℓ) − d(v, j). Note that d(v, ℓ) is at most the

number of arcs in M between v and ℓ along Pℓ, whereas −d(v, j) is at most the number of arcs

in Ē between v and j along Pj . The sum of these upper bounds is at most n. Thus we obtain

qj ≤ n for every j ∈ C.

Next, consider the following matching problem corresponding to δn−1(A).

maximize
∑
e∈M

ce

subject to M is a matching,

|M | = n− 1.

The optimal value is denoted by δ̂n−1(A), which is an upper bound on δn−1(A).

For a feasible solution (p, q) of D(A), we define

∆n−1(p, q) = ∆n(p, q)−min
i∈R

pi +max
j∈C

qj .

The following lemma gives upper bounds on δ̂n(A) and δ̂n−1(A).

Lemma 2.2. For a feasible solution (p, q) of D(A), we have

δ̂n(A) ≤ ∆n(p, q), δ̂n−1(A) ≤ ∆n−1(p, q).

Proof. Let M∗
n denote a maximum-weight matching of size n. Since (p, q) is a feasible solution

of D(A), we have pi − qj ≥ ce for e = (i, j) ∈ E(A). The former follows from the weak duality

for the maximum-weight perfect matching problem:

δ̂n(A) =
∑
e∈M∗

n

ce ≤
∑

(i,j)∈M∗
n

(pi − qj) =
∑
i∈R

pi −
∑
j∈C

qj = ∆n(p, q).

We now prove the latter. Let M∗
n−1 denote a maximum-weight matching of size n− 1. Let

∂M∗
n−1 denote the set of vertices incident to M∗

n−1. Then we have

δ̂n−1(A) =
∑

e∈M∗
n−1

ce ≤
∑

(i,j)∈M∗
n−1

(pi − qj) =
∑

i∈R∩∂M∗
n−1

pi −
∑

j∈C∩∂M∗
n−1

qj

≤
∑
i∈R

pi −min
i∈R

pi −
∑
j∈C

qj +max
j∈C

qj = ∆n−1(p, q).

5

3 Index Reduction Algorithm

3.1 Outline of Algorithm

Let A(s) be an n× n regular matrix pencil, and (p, q) be a feasible solution of D(A) satisfying

(6). By Lemma 2.2, we have

δn(A) ≤ δ̂n(A) ≤ ∆n(p, q), (9)

δn−1(A) ≤ δ̂n−1(A) ≤ ∆n−1(p, q). (10)

Our aim is to find a unimodular matrix U(s) such that Ā(s) = U(s)A(s) is a matrix pencil

with index ν(Ā) ≤ 1. The following algorithm updates a matrix pencil A(s) and a feasible

solution (p, q). The upper bounds ∆n(p, q) and ∆n−1(p, q) are non-increasing. The resulting

matrix pencil Ā(s) and its feasible solution (p̄, q̄) satisfy

δn(Ā) = δ̂n(Ā) = ∆n(p̄, q̄), δn−1(Ā) = δ̂n−1(Ā) = ∆n−1(p̄, q̄), (11)

p̄i ∈ {0, 1} (i ∈ R), q̄j = 0 (j ∈ C). (12)

We describe the outline of the index reduction algorithm. The algorithm consists of two

phases. In the first phase, we make use of

ν̂(p, q) := ∆n−1(p, q)−∆n(p, q) + 1

as an estimate of ν(A) = δn−1(A) − δn(A) + 1. At the end of the first phase, we obtain an

updated matrix pencil A(s) and a feasible solution (p, q) with ν̂(p, q) ≤ 1. It should be remarked

that this does not imply ν(A) ≤ 1, because ν̂(p, q) is not an upper bound on ν(A).

In the second phase, we check if both δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) =

∆n−1(p, q) hold without computing δn(A) and δn−1(A) directly. If these equations hold, we

obtain

ν(A) = δn−1(A)− δn(A) + 1 = ∆n−1(p, q)−∆n(p, q) + 1 = ν̂(p, q) ≤ 1.

If not, we further update A(s) to another matrix pencil. A formal description is as follows.

Outline of Index Reduction Algorithm

Step 1: Construct an optimal solution (p, q) of D(A) satisfying (6).

Step 2: If qj = 0 for every j ∈ C, then go to Step 4.

Step 3: Bring A(s) into another matrix pencil Ã(s) by a unimodular transformation, and

construct a feasible solution (p̃, q̃) of D(Ã) from (p, q). Set A(s) ← Ã(s) and (p, q) ←
(p̃, q̃). Go back to Step 2.

Step 4: If both δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) hold, then

terminate.

Step 5: Bring A(s) into another matrix pencil Â(s) by a unimodular transformation, and

construct a feasible solution (p̂, q̂) of D(Â) from (p, q). Set A(s) ← Â(s) and (p, q) ←
(p̂, q̂). Go back to Step 4.

6

Phase 1 corresponds to Steps 1–3, while Phase 2 corresponds to Steps 4–5. In Steps 1–3, we

aim at constructing a feasible solution (p, q) satisfying (12), which implies ν̂(p, q) ≤ 1. Then

we further update p to obtain a feasible solution satisfying (11) in Steps 4–5. The details of

Steps 3–5 are given in Sections 3.2–3.4, respectively.

3.2 Unimodular Transformations in Step 3

We describe how to construct (p̃, q̃) from a feasible solution (p, q) of D(A) satisfying (6) in

Step 3. For nonnegative integer h, we define

Rh = {i ∈ R | pi = h}, Ch = {j ∈ C | qj = h}.

Then A(s) is expressed as

A(s) =

Cη Cη−1 Cη−2 · · · C1 C0

Rη ∗ ∗∗ ∗∗ · · · · · · ∗∗

Rη−1 O ∗ ∗∗ . . .
...

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . ∗∗

R1 O · · · · · · O ∗ ∗∗
R0 O · · · · · · O O ∗

for some η, where ∗ and ∗∗ denote a constant matrix and a matrix pencil, respectively. Since

A(s) is regular, the submatrix A[R0, C0] is of full-row rank, and hence we can express it as(
∗ H0

)
with a nonsingular constant matrix H0.

Next, consider the submatrix

(C0

R1 ∗∗ sF1 +H1

R0 ∗ H0

)

with constant matrices F1 and H1. By multiplying a unimodular matrix

(
I −sF1H

−1
0

O I

)
from

the left, we obtain

(C0

R1 sF2 +H2 H1

R0 ∗ H0

)
with constant matrices F2 and H2. Since A[R0, C1] = O, this transformation does not change

A[R1, C1].

Then consider the submatrix
(

sF2 +H2 H1

)
, which can be transformed into(

sF3 +H3 ∗∗ ∗
∗ ∗ ∗

)
by row transformations, so that the lower part does not contain s with nonsingular constant

matrix F3 and constant matrix H3.

As a result, we obtain another matrix pencil Ã(s) satisfying the following conditions.

7

• It holds that

Ã(s)[R1 ∪R0, C1 ∪ C0] =

 ∗ sF3 +H3 ∗∗ ∗
∗ ∗ ∗ ∗
O ∗ ∗ H0

 , (13)

where the first two row sets correspond to R1, the last row set corresponds to R0, the

first column set corresponds to C1, and the last three column sets correspond to C0.

• The other entries coincide with the corresponding entries of A(s).

Let us denote the first row set of (13) by S. We construct (p̃, q̃) from (p, q) by

p̃i = pi − 1 (i ∈ R \ (R0 ∪ S)), p̃i = pi (i ∈ R0 ∪ S),

q̃j = qj − 1 (j ∈ C \ C0), q̃j = qj = 0 (j ∈ C0).

The following lemma ensures that (p̃, q̃) is a feasible solution of D(Ã).

Lemma 3.1. Let (p, q) be a feasible solution of D(A) satisfying (6). Then (p̃, q̃) is a feasible

solution of D(Ã) satisfying (6).

Proof. By the construction rule of Ã(s), we have pi − qj ≥ c̃ij . If p̃i − q̃j ≥ pi − qj holds, then

p̃i − q̃j ≥ pi − qj ≥ c̃ij also holds.

Consider the case with p̃i− q̃j < pi−qj . This implies that i ∈ R\(R0∪S) and j ∈ C0. Then

we have p̃i − q̃j = pi − 1. If i /∈ R1 holds, it follows from pi ≥ 2 that p̃i − q̃j = pi − 1 ≥ 1 ≥ c̃ij .

Next, suppose i ∈ R1 \ S. Then we have pi = 1 and c̃ij = 0 for (i, j) ∈ E(Ã) by (13). Hence

p̃i − q̃j = pi − 1 = 0 ≥ c̃ij holds. Moreover, (p̃, q̃) satisfies (6) by the construction rule.

The following lemma shows that the values of the right-hand sides in (9) and (10) decrease

or remain the same when we update (p, q) to (p̃, q̃).

Lemma 3.2. Let (p, q) be a feasible solution of D(A) satisfying (6). The dual solution (p̃, q̃)

obtained by the above procedure satisfies

∆n(p, q) ≥ ∆n(p̃, q̃), ∆n−1(p, q) ≥ ∆n−1(p̃, q̃).

Proof. By the definition of p̃i and q̃j , we have∑
i∈R

p̃i −
∑
j∈C

q̃j =
∑
i∈R

pi − |R \ (R0 ∪ S)| −
∑
j∈C

qj + |C \ C0|.

Since F3 and H0 in (13) are nonsingular, Ã[R0 ∪ S,C0] is of full-row rank. Hence we have

|R0 ∪ S| ≤ |C0|, which implies that

|R \ (R0 ∪ S)| ≥ |C \ C0|. (14)

Thus the first inequality holds.

By the definition of p̃, the value of mini∈R p̃i is equal to mini∈R pi or mini∈R pi − 1. Since∑
i∈R p̃i =

∑
i∈R pi − |R \ (R0 ∪ S)| holds, we have∑

i∈R
p̃i −min

i∈R
p̃i ≤

∑
i∈R

p̃i −min
i∈R

pi + 1 =
∑
i∈R

pi −min
i∈R

pi − |R \ (R0 ∪ S)|+ 1.

8

Now C ̸= C0 holds, because the condition in Step 2 is not fulfilled. Hence∑
j∈C

q̃j −max
j∈C

q̃j =
∑
j∈C

qj −max
j∈C

qj − (|C \ C0| − 1)

follows. Thus we obtain

∆n−1(p̃, q̃) ≤
∑
i∈R

pi −min
i∈R

pi − |R \ (R0 ∪ S)| −
∑
j∈C

qj +max
j∈C

qj + |C \ C0|

≤
∑
i∈R

pi −min
i∈R

pi −
∑
j∈C

qj +max
j∈C

qj

= ∆n−1(p, q),

where the second inequality is due to (14).

By executing Steps 1–3, we obtain a matrix pencil A(s) and its feasible solution (p, q) with

the following property.

Lemma 3.3. At the end of Phase 1, we obtain (p, q) such that pi ∈ {0, 1} for every i ∈ R and

qj = 0 for every j ∈ C. Moreover, the number of iterations in Phase 1 is at most n.

Proof. Step 2 ensures that qj = 0 for every j ∈ C. Since cij = 0 or 1, this implies pi ∈ {0, 1}
for each i ∈ R. At each iteration, maxj∈C qj decreases by one. Lemma 2.1 ensures that

maxj∈C qj ≤ n holds for an initial solution (p, q), which indicates that the number of iterations

is at most n.

Lemma 3.3 leads to the following corollary.

Corollary 3.4. At the end of Phase 1, we have ν̂(p, q) ≤ 1.

Proof. By Lemma 3.3, pi ∈ {0, 1} holds for every i ∈ R and qj = 0 holds for every j ∈ C. Let

m denote the number of rows with pi = 1. Then we have

∆n(p, q) = m, ∆n−1(p, q) =

{
m (m < n),

m− 1 (m = n).
(15)

Hence it holds that

ν̂(p, q) = ∆n−1(p, q)−∆n(p, q) + 1 =

{
1 (m < n),

0 (m = n).

3.3 Test for Tightness in Step 4

In this section, we present how to check if both δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) =

δ̂n−1(A) = ∆n−1(p, q) hold in Step 4.

Suppose that we have a feasible solution (p, q) of D(A) such that pi ∈ {0, 1} for every i ∈ R

and qj = 0 for every j ∈ C. The tight coefficient matrix of A(s) is defined to be the constant

matrix A# = (A#
ij) with A#

ij being the coefficient of spi−qj in Aij(s). The following lemma

enables us to check δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) efficiently.

9

Lemma 3.5. The tight coefficient matrix A# is nonsingular if and only if both δn(A) =

δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) hold.

Proof. Note that detA(s) = s∆n(p,q){detA# + o(1)} holds. Therefore, if δn(A) = ∆n(p, q),

then A# must be nonsingular. Conversely, if A# is nonsingular, then δn(A) = ∆n(p, q), which

together with (9) implies δn(A) = δ̂n(A) = ∆n(p, q). The nonsingularity of A# further implies

that there exists a nonsingular submatrix A#[I, J] such that |I| = |J | = n−1 and I ⊇ R∗, where

R∗ = {i ∈ R | pi > min
ℓ∈R

pℓ}. Since detA(s)[I, J] = s∆n−1(p,q){detA#[I, J] + o(1)}, we have

δn−1(A) ≥ ∆n−1(p, q), which together with (10) implies δn−1(A) = δ̂n−1(A) = ∆n−1(p, q).

By Lemma 3.5, we can perform Step 4 by checking the nonsingularity of A#.

3.4 Unimodular Transformations in Step 5

Let A(s) be a matrix pencil in Step 5. The algorithm has detected that the condition in Step 4

is not fulfilled, i.e., the tight coefficient matrix A# is singular. Hence there exists a nonzero

row vector u = (ui | i ∈ R) such that

uA# = 0.

By executing the Gaussian elimination on A# with column transformations, we can find u such

that suppu := {i ∈ R | ui ̸= 0} is minimal with respect to set inclusion.

By the definition of A#, we have A#[R0, C] = A(s)[R0, C]. Since A(s) is regular, A#[R0, C]

is of full-row rank. This implies that there exists l ∈ suppu with pl = 1.

We now define U by

Uik =

{
uk/ul (i = l),

δik (i ̸= l),

where δik denotes Kronecker’s delta. We remark that the row set and the column set of U

correspond to R1 ∪R0 and U [R0, R1] = O. We denote by diag(s; p) the square diagonal matrix

with each (i, i) entry being spi . Then the polynomial matrix U(s) = diag(s; p) · U · diag(s;−p)
is unimodular.

Since A(s) can be expressed as

A(s) = diag(s; p) ·

(
A# +

1

s

(
A(0)[R1, C]

O

))
,

it holds that

U(s)A(s) = diag(s; p) · U ·

(
A# +

1

s

(
∗
O

))
= diag(s; p) ·

(
UA# +

1

s

(
∗ ∗
O ∗

)(
∗
O

))

= diag(s; p) ·

(
UA# +

1

s

(
∗
O

))
= diag(s; p) · UA# +

(
∗
O

)
,

where ∗ denotes a constant matrix. Hence U(s)A(s) remains to be a matrix pencil. Since the

lth row vector of UA# is zero, U(s)A(s) does not contain s in the lth row. Hence we can

10

decrease pl = 1 by one. By setting

Â(s) := U(s)A(s), p̂i :=

{
0 (i = l),

pi (i ̸= l),
q̂ := q,

we obtain another matrix pencil Â(s) and its feasible solution (p̂, q̂).

Lemma 3.6. The number of iterations in Phase 2 is at most n.

Proof. At each iteration, the number of rows with pi = 0 increases by one.

At the end of the index reduction algorithm, we obtain a matrix pencil with index at most

one.

Theorem 3.7. The algorithm finds a matrix pencil with the Kronecker index at most one in

O(n4) time.

Proof. When the algorithm terminates, we obtain Ā(s) and its optimal solution (p̄, q̄) satisfying

(11) and (12) by Lemmas 3.3 and 3.5. Let m denote the number of rows with pi = 1. Then we

have (15) for (p̄, q̄). Hence the Kronecker index ν(Ā) is given by

ν(Ā) = δn−1(Ā)− δn(Ā) + 1 = ∆n−1(p̄, q̄)−∆n(p̄, q̄) + 1 =

{
1 (m < n),

0 (m = n).

Thus the index of the obtained matrix pencil is at most one.

In Step 1, we solve a maximum-weighted perfect matching problem. This can be performed

in O(n3) time by the Hungarian method [10, 13, 20]. Steps 3 and 5 require the Gaussian

elimination, which costs O(n3) time at each iteration. Since the number of iterations of Steps 3

and 5 is O(n) by Lemmas 3.3 and 3.6, the total time complexity is O(n4).

4 Examples

We give two examples below. The first one is a famous example for which Pantelides’ algorithm

does not work:

z1 − ż1 + 2z2 + 3z3 = 0,

z1 + z2 + z3 + 1 = 0,

2z1 + z2 + z3 = 0.

The corresponding matrix pencil A(s) is expressed as

A(s) =

−s+ 1 2 3

1 1 1

2 1 1

 .

By δ2(A) = 1 and δ3(A) = 0, the index ν(A) is equal to 2. However, when we apply Pantelides’

algorithm [16] to A(s), the algorithm terminates without detecting equations to be differenti-

ated. Pantelides’ algorithm is adopted in the MATLAB function called reduceDAEIndex. In

fact, this function does not work for the DAE.

11

Let us apply our algorithm to A(s). In Step 1, we find an optimal solution p =
(
1 1 1

)
and q =

(
0 1 1

)
of D(A). In Step 3, we obtain another solution p =

(
1 0 0

)
and q =(

0 0 0
)
without changing A(s). Then we go to Step 4 by q = 0. The tight coefficient matrix

A# =

−1 0 0

1 1 1

2 1 1

 is singular. In Step 5, we have u =
(
1 −1 1

)
and U(s) =

1 −s s

0 1 0

0 0 1

.

The matrix pencil A(s) is transformed into U(s)A(s) =

1 2 3

1 1 1

2 1 1

 with p =
(
0 0 0

)
and

q =
(
0 0 0

)
. Then we obtain ν(UA) = 1.

Next, consider another matrix pencil

A(s) =

0 1 s 0

0 0 1 s

1 1 0 1

1 1 1 s

 .

It follows from δ3(A) = 2 and δ4(A) = 0 that ν(A) = 3. We apply the algorithm described in

Section 3 to A(s).

In Step 1, we find an optimal solution p =
(
1 1 1 1

)
and q =

(
1 1 0 0

)
of D(A).

Then we go to Step 3 by q ̸= 0. In Step 3, we delete s in the last row by row transformations

and obtain a feasible dual solution p′ =
(
1 1 0 0

)
and q′ =

(
0 0 0 0

)
as follows:

A(s) =

C1 C0

R1

0 1 s 0

0 0 1 s

1 1 0 1

1 1 1 s

 −→ A′(s) = U◦(s)A(s) =

C0

R1
0 1 s 0

0 0 1 s

R0
1 1 0 1

1 1 0 0

,

where U◦(s) =

1 0 0 0

0 1 0 0

0 0 1 0

0 −1 0 1

. We return to Step 2 and then go to Step 4 by q′ ̸= 0. The tight

coefficient matrix A# =

0 0 1 0

0 0 0 1

1 1 0 1

1 1 0 0

 is singular in Step 4, and we have u′ =
(
0 1 −1 1

)

12

and U ′(s) =

1 0 0 0

0 1 −s s

0 0 1 0

0 0 0 1

 in Step 5. The matrix pencil A′(s) is transformed into

A′′(s) = U ′(s)A′(s) =

C0

R1 0 1 s 0

R0

0 0 1 0

1 1 0 1

1 1 0 0

with p′′ =

(
1 0 0 0

)
and q′′ =

(
0 0 0 0

)
.

Returning to Step 4, the tight coefficient matrix A# =

0 0 1 0

0 0 1 0

1 1 0 1

1 1 0 0

 is also singular. In

Step 5, we have u′′ =
(
1 −1 0 0

)
and U ′′(s) =

1 −s 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. The matrix pencil A′′(s)

is transformed into

Ā(s) = U ′′(s)A′′(s) =

0 1 0 0

0 0 1 0

1 1 0 1

1 1 0 0

with p̄ =

(
0 0 0 0

)
and q̄ =

(
0 0 0 0

)
. Returning to Step 4, the tight coefficient matrix

A# = Ā(s) is nonsingular and hence we terminate the algorithm.

As a result, we obtain a unimodular matrix U(s) and a matrix pencil Ā(s) with ν(Ā) = 1

expressed as

U(s) = U ′′(s)U ′(s)U◦(s) =

1 s2 − s s2 −s2

0 −s+ 1 −s s

0 0 1 0

0 −1 0 1

 , Ā(s) =

0 1 0 0

0 0 1 0

1 1 0 1

1 1 0 0

 .

5 Conclusion

We have presented a new index reduction algorithm of matrix pencils which makes use of

unimodular transformations. The algorithm is based on the framework of combinatorial relax-

ation, which combines graph-algorithmic techniques and matrix computation. Our algorithm

can be used as an index reduction method for linear DAEs. It works correctly for any linear

DAEs including those for which Pantelides’ algorithm is known to fail. An extension of our

algorithm to index reduction of nonlinear DAEs is left for future investigation.

13

References

[1] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[2] T. Beelen and P. Van Dooren, An improved algorithm for the computation of Kro-

necker’s canonical form of a singular pencil, Linear Algebra Appl., 105 (1988), pp. 9–65.

[3] K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 2nd edition,

1996.

[4] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary

pencil A-λB: Robust software with error bounds and applications. Part I: Theory and

algorithms, ACM Trans. Math. Softw., 19 (1993), pp. 160–174.

[5] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary

pencil A-λB: Robust software with error bounds and applications. Part II: Software and

applications, ACM Trans. Math. Softw., 19 (1993), pp. 175–201.

[6] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag,

Berlin, 2nd edition, 1996.

[7] S. Iwata, Computing the maximum degree of minors in matrix pencils via combinatorial

relaxation, Algorithmica, 36 (2003), pp. 331–341.

[8] S. Iwata, K. Murota, and I. Sakuta, Primal-dual combinatorial relaxation algorithms

for the maximum degree of subdeterminants, SIAM J. Sci. Comput., 17 (1996), pp. 993–

1012.

[9] B. Kågström, RGSVD—an algorithm for computing the Kronecker structure and re-

ducing subspaces of singular A − λB pencils, SIAM J. Sci. Statist. Comput., 7 (1986),

pp. 185–211.

[10] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logis-

tics Quarterly, 2 (1955), pp. 83–97.

[11] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numer-

ical Solutions, European Mathematical Society, Zürich, 2006.

[12] S. E. Mattsson and G. Söderlind, Index reduction in differential-algebraic equations

using dummy derivatives, SIAM J. Sci. Comput., 14 (1993), pp. 677–692.

[13] J. Munkres Algorithms for the assignment and transportation problems, J. SIAM, 5

(1957), pp. 32–38.

[14] K. Murota, Combinatorial relaxation algorithm for the maximum degree of subdetermi-

nants: Computing Smith-McMillan form at infinity and structural indices in Kronecker

form, Appl. Algebra Engrg. Comm. Comput., 6 (1995), pp. 251–273.

14

[15] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.

[16] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM

J. Sci. Stat. Comput., 9 (1988), pp. 213–231.

[17] J. D. Pryce, A Simple Structural Analysis Method for DAEs, BIT, 41 (2001), pp. 364–

394.

[18] R. Riaza, Differential-Algebraic Systems: Analytical Aspects and Circuit Applications,

World Scientific Publishing Company, Singapore, 2008.

[19] S. Sato, Combinatorial relaxation algorithm for the entire sequence of the maximum

degree of minors, Algorithmica, 77 (2017), pp. 815–835.

[20] N. Tomizawa, On some techniques useful for solution of transportation network problems,

Networks, 1 (1971), pp. 173–194.

[21] P. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil,

Linear Algebra Appl., 27 (1979), pp. 103–140.

15

