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Abstract

Some discrete inequalities such as the Sobolev inequality gives use-
ful a priori estimates for numerical schemes. Although they had been
known for the simplest forward difference operator, those for central
difference type opereators had been left open until quite recently in
Kojima–Matsuo–Furihata (2016) a unified way to discuss them was
found. Still, due to some technical reasons, the result was limited to a
narrow range of central difference operators. In this letter, we provide a
new proof that gives a complete answer regarding the discrete Sobolev
inequality and the discrete Gagliardo–Nirenberg inequality with the
nonlinear Schrödinger equation index.

1 Introduction

The aim of this letter is to give a new proof of certain discrete inequalities,
which solves an open problem left in the recent study Kojima–Matsuo–
Furihata [1].

The background of this goal is as follows. We consider discrete ver-
sions of some inequalities involving the Sobolev norms, such as the Sobolev
inequality

∥u∥∞ ≤ c1∥u∥W 1,2(S), (1)

or the Gagliardo–Nirenberg inequality

∥u∥Lp(S) ≤ c2∥u∥σW 1,r(S)∥u∥
1−σ
Lq(S), (2)
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where 1 ≤ p, q, r ≤ ∞ and 0 ≤ σ ≤ 1 are constants satisfying

1

p
= σ

(
1

r
− 1

)
+ (1− σ)

1

q
,

and constants c1, c2 are independent of u. The space W
1,r(S) is the standard

Sobolev space, Lp(S) is the Lebesgue space, and ∥ · ∥∞ and ∥ · ∥W 1,r(S) are
the norms of L∞(S) and W 1,r(S) respectively. We also use similar standard
notation. In this letter, we consider only one dimensional, circle setting S
to avoid cumbersome discussions around boundaries.

Such inequalities are useful to establish some a priori estimates regarding
solutions of partial differential equations. For example, the cubic nonlinear
Schrödinger equation (NLS) iut = uxx + |u|2u has the invariants ∥u∥22 =
const. and ∥ux∥22 − ∥u∥44/2 = const., which then yield an a priori estimate
∥u(t, ·)∥∞ < +∞ from the Sobolev inequality and the Gagliardo–Nirenberg
inequality with p = 4, q = 2, r = 2, σ = 1/4 (we call it the “NLS-index”
below.)

This is also the case for some numerical schemes that are carefully con-
structed so that such important invariants are (in some sense) preserved.
Akrivis et al. [2] considered such a Galerkin scheme for NLS and proved
that the numerical solution enjoys the same sup-norm stability following
the continuous discussion above. In this case, we use the continuous version
of the above inequalities.

When we consider finite difference schemes, the situation turns a bit
sour, since there the continuous inequalities no longer work and we have to
construct their discrete versions, which are not clear from the continuous
versions. Matsuo et al. [3] (see also [4]) considered an invariants preserving
finite difference scheme for NLS (which is essentially the same scheme as
those in [2, 5]), and by establishing a discrete version of Sobolev inequality
on the circle:

∥U∥∞ ≤ c∥U∥
W 1,2

d (δ+)
, (3)

and similarly a discrete Gagliardo–Nirenberg inequality (with the NLS-
index; we omit the concrete form here), they proved the finite difference
solutions keep the sup-norm stability. SN is the discretized circle

SN = {(Uk ∈ C) | Uk = Uk mod N},

and U ∈ SN is an approximate solution on it (it actually depends on time,
but since it is not important in the present letter, we drop the time index.)
The discrete Sobolev norm employed in [3] is given by

∥U∥
W 1,2

d (δ+)
=

(
N−1∑
k=0

(|Uk|2 + |δ+Uk|2)∆x

)1/2

.
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Notice that it depends on the definition of the finite difference operator δ+,
which is the forward difference operator here.

Later on, the finite difference scheme was extended to arbitrary spatial
order in [6]. The main idea there was to replace the simplest forward differ-
ence δ+ with the 2s-order central finite differences δ⟨1⟩,2s (the precise defi-
nition will be given below.) Although this study itself was a success in that
the resulting schemes work very well, its theoretical analysis was left open
since the associated discrete inequalities (i.e., those where δ+ is replaced by
δ⟨1⟩,2s) remained open. Even for the simplest case in this class, i.e., s = 1
(which corresponds to the standard central difference operator δ⟨1⟩,2), this is
a tough task, despite the apparent simpleness of the problem. This can be,
for example, understood in the following way. Since δ⟨1⟩,2 = (δ+ + δ−)/2,
and the sums of the forward and backward finite differences coincide on the
discrete circle, we have

∥Dδ⟨1⟩,2U∥22 ≤ ∥Dδ+U∥22.

Thus, for the Sobolev inequality, the desired inequality

∥U∥2∞ ≤ c∥U∥
W 1,2

d (δ⟨1⟩,2) = c(∥Dδ⟨1⟩,2U∥22 + ∥U∥22)

is purely stronger than the known version (3), if it holds. The same applies
to the Gagliardo–Nirenberg inequality.

This difficulty has been solved only quite recently in Kojima–Matsuo–
Furihata [1] (after more than a decade since [6].) They succeeded in settling
the problem in the case of δ⟨1⟩,2. Furthermore, they introduced a clever trick
to “reduce” the general case δ⟨1⟩,2s (s ≥ 2) to δ⟨1⟩,2, so that a unified proof
can be simultaneously given for them avoiding cumbersome discussions for
each (complicated) difference operator. Still, there remained a limitation
that their proof was valid only for s ≤ 7 and s = ∞ (the spectral difference
operator). This limitation essentially came from their technical strategy
based on linear algebra. The inequality is, however, expected to hold for
every s, since we already have its lowest and highest limits (s = 1 and ∞);
actually the authors of [1] raised this as a conjecture in its last part and
said that “Preliminary numerical tests by the present authors support this
view.”

The present letter is to prove this conjecture. Below, in Section 2, we
briefly review [1]. Then in Section 3 we give the new proof. Section 4 is
devoted to other remarks. Throughout this letter we mainly focus on the
Sobolev inequality, which is sufficient to illustrate how the new proof works.
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2 Original ideas of analyzing central-difference type
operators

In this section, we explain the outline of [1]. We define the standard central-
difference type operators in the following form.

Definition 1. An operator δ⟨1⟩,2s is a standard central-difference type op-
erator if it is in the form

δ⟨1⟩,2sUk =

s∑
j=1

β
(s)
j

Uk+j − Uk−j

2j∆x
, (4)

and δ⟨1⟩,2s is an approximation of ∂x of O(∆x2s).

The statement on the accuracy can be explicitly written for small ∆x as

d

dx
f(a) =

s∑
j=1

β
(s)
j

f(a+ j∆x)− f(a− j∆x)

2j∆x
+O(∆x2s), (5)

which is useful in the argument in the next section. The coefficients β
(s)
j are

uniquely determined to gain the accuracy (see, for example, [7]). The local
expression (4) can be represented in matrix form

Dδ⟨1⟩,2s =

s∑
j=1

β
(s)
j

Rj − Lj

2j∆x
(6)

where

L =


0 1
1 0

1 0
. . .

. . .

1 0

 , R = L−1.

Kojima et al. [1] tried to prove (3) for δ⟨1⟩,2s (s = 1, 2, . . . ,∞). Their
strategy is as follows.

1. Prove (3) for δ⟨1⟩,2, i.e., the lowest order version.

2. Then try to “reduce” other operators δ⟨1⟩,2s (s ≥ 2) to δ⟨1⟩,2 so that (3)
is established also for them.

The step 1 has been successfully shown.

Proposition 1 ([1, Lemma 2.8]). The discrete Sobolev inequality (3) holds
for δ⟨1⟩,2 (i.e., δ+ replaced with δ⟨1⟩,2.)
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The key in the proof is to find a useful continuous function that connects
discrete and continuous. Then the authors has succeeded in translating the
discrete problem to the continuous inequality, which is readily known. Al-
though similar techniques can be found in the literature for simpler difference
operators (for example, [8]), finding such a nice function is not an obvious
task in the case of central difference type operators.

Next, let us consider the step 2. Let us define a matrix SN associated
with δ⟨1⟩,2s by

SN =

s∑
j=1

β
(s)
j

j
(Lj−1 + Lj−3 + · · ·+Rj−1).

This matrix relates Dδ⟨1⟩,2s to Dδ⟨1⟩,2 :

Dδ⟨1⟩,2s = SNDδ⟨1⟩,2 .

(See [1, Lemma 2.3].) The next concept describes how “safe” this relation
is.

Definition 2 (p-reducibility). An standard central-difference type operator
δ⟨1⟩,2s is p-reducible to δ⟨1⟩,2 if there exists a constant C independent of N
such that ∥SN

−1∥p < C holds.

If δ⟨1⟩,2s is 2-reducible to δ⟨1⟩,2,

∥U∥2∞ ≤ c∥U∥2
W 1,2

d (δ⟨1⟩,2)

= c
(
∥U∥22 + ∥Dδ⟨1⟩,2U∥22

)
= c

(
∥U∥22 + ∥SN

−1Dδ⟨1⟩,2sU∥22
)

≤ c
(
∥U∥22 + (∥SN

−1∥2∥Dδ⟨1⟩,2sU∥2)2
)

≤ max{c, cC}∥U∥2
W 1,2

d (δ⟨1⟩,2s)

holds, and this proves the discrete Sobolev inequality for δ⟨1⟩,2s. Note that p-
reducibility demands ∥SN

−1∥2 is bounded from above for all N ; otherwise,
the right hand side of the above will blows up in the limit of N → ∞
and (although it is mathematically correct for every fixed N) the discrete
inequality loses practical meaning.

The discussion above reveals the fact that the 2-reducibility of δ⟨1⟩,2s is
essential in establishing the discrete Sobolev inequality. The authors of [1]
employed an linear algebra approach to prove this; SN is diagonally domi-
nant if s ≤ 7.

Proposition 2 ([1, Lemma 2.7]). If SN is diagonally dominant, δ⟨1⟩,2s is
1-reducible to δ⟨1⟩,2.
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Proposition 3 ([1, Lemma 2.6]). If δ⟨1⟩,2s is 1-reducible to δ⟨1⟩,2, then it is
p-reducible to δ⟨1⟩,2 for all p ≥ 1.

Combining these propositions we see for s ≤ 7 the central difference type
operators are 2-reducible to δ⟨1⟩,2, which completes the desired proof for the
discrete Sobolev inequality.

Note that in this approach we have a stronger property than necessary,
the 1-reducibility. An advantage of this is that it is also possible to establish
a discrete version of the Gagliardo–Nirenberg inequality for general index
(see [1, Theorem 3.2]). The approach is, however, not applicable for s ≥ 8,
since there SN is no longer diagonally dominant. The only result obtained
in [1] for s ≥ 8 is that for the case s = ∞, which is summarized as follows.

Proposition 4 ([1, Theorem 3.6]). The discrete Sobolev inequality and the
discrete Gagliardo–Nirenberg inequality with the NLS-index hold for s = ∞.

In the next section, we seek a completely different, an analytic approach
to cover 8 ≤ s < ∞.

3 New proof

In this section, we give a new proof that holds for every s. The key is
to directly evaluate the eigenvalues of SN , which gives a sharp estimate
∥SN

−1∥2 = 1.
With ωN = exp(2πi/N), the eigenvalues of R can be represented as

ωN
k (k = 0, · · · , N − 1). Therefore, the eigenvalues of SN are, for k =

0, . . . , N − 1,

s∑
j=1

β
(s)
j

j

(
ωN

(j−1)k + ωN
(j−3)k + · · ·+ ωN

−(j−1)k
)

=

{
1 (k = 0),∑s

j=1

β
(s)
j

j
sin(2πkj/N)
sin(2πk/N) (k = 1, · · · , N − 1).

Note that SN always has an eigenvalue equal to 1.
If we introduce an interpolating function

fs(x) =
s∑

j=1

β
(s)
j

j

sin jx

sinx
(0 ≤ x < 2π), (7)

it suffices to show fs(x) ≥ 1. We first note an interesting fact that sin jx/sinx
can be expanded by (1 − cosx)k (0 ≤ k ≤ j − 1), which can be proved by
induction. Thus, let us write

fs(x) =

s−1∑
k=0

c
(s)
k (1− cosx)k (0 ≤ x < 2π). (8)

6



The situation is, however, much more favorable; if we compute the concrete
forms of the first three, we find

f1(x) = 1,

f2(x) = 1 +
1

3
(1− cosx),

f3(x) = 1 +
1

3
(1− cosx) +

2

15
(1− cosx)2.

This gives rise to a stronger conjecture that (i) c
(s)
k does not depend on s,

i.e., there is only one series {ck}∞k=0, and (ii) all ck’s are positive. Obviously
this proves fs(x) ≥ 1. Below we prove this conjecture.

We first prove (i). To this end, let us first show the following lemma that
describes the behavior of fs(x) around x = 0.

Lemma 1. For any small positive x we have

fs(x) =
x

sinx
+O(x2s).

Proof. By using (5) with f(x) = sinx and a = 0, we see

1 =
s∑

j=1

β
(s)
j

sin j∆x

j∆x
+O(∆x2s)

=
sin∆x

∆x
fs(∆x) +O(∆x2s).

Since (5) is valid for any ∆x satisfying 0 < ∆x < 1, we have the claim.

Around x = 0, the term x/ sinx can be expanded as follows.

x

sinx
=

∞∑
k=0

ck(1− cosx)k (|x| < π). (9)

Introducing z = sin(x/2), we can rewrite it as

sin−1 z

z
√
1− z2

=
∞∑
k=0

2kckz
2k (|z| < 1). (10)

This is valid for |z| < 1 and justifies the expansion (9). Using this, we have
the claim (i).

Lemma 2. For any s ≥ 1, we have c
(s)
k = ck (k = 0, . . . , s− 1).

Proof. Using the expansion (9) in Lemma 1, together with (8), we see

s−1∑
k=0

c
(s)
k (1− cosx)k =

∞∑
k=0

ck(1− cosx)k +O(x2s)
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for all 0 ≤ x < 1. Again setting z = sin(x/2), this equation can be repre-
sented by z as

s−1∑
k=0

2kc
(s)
k z2k =

∞∑
k=0

2kckz
2k +O(z2s) (11)

for small positive z. This equation proves the lemma.

Note that the expansion (9) is only valid for |x| < π, while fs(x) is defined

on [0, 2π) in (8). But this is enough to identify the unknown coefficients c
(s)
k .

Now let us turn our attension to the claim (ii).

Lemma 3. The coefficients ck’s in (10) (and accordingly (9)) are all positive.

Proof. By combining the expansions

sin−1 z =

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
z2n+1,

1

z
√
1− z2

=
∞∑
n=0

(2n)!

4n(n!)2
z2n−1

for |z| < 1, we see

2kck =
k∑

l=0

(2l)!

4l(l!)2(2l + 1)

(2(k − l))!

4k−l((k − l)!)2
> 0.

Collecting all the above lemmas, we finally have the desired theorem.

Theorem 1. For any positive integer s, we have ∥SN
−1∥2 = 1. That is,

δ⟨1⟩,2s is 2-reducible to δ⟨1⟩,2 for every s < ∞.

Proof. Taking the limit x → 0 in (9), we see c0 = 1 (which can be also
observed in the concrete examples above.) Thus all the eigenvalues of SN

is equal to or greater than 1, while SN actually has an eigenvalue equal to
1.

Since the case s = ∞ has been already settled in [1], we can summarize
the results as follows.

Corollary 1 (Discrete Sobolev inequality for δ⟨1⟩,2s). For any s = 1, 2, . . . ,∞,
we have

∥U∥2∞ ≤ c∥U∥
W 1,2

d (δ⟨1⟩,2s),

where c is a constant independent of U and N .
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By a similar discussion, we can also establish the discrete Gagliardo–
Nirenberg inequality of the NLS-index (we omit the proof.)

Corollary 2 (Discrete Gagliardo–Nirenberg inequality for δ⟨1⟩,2s). For any
s = 1, 2, . . . ,∞, we have

∥U∥4L4
d
≤ c∥U∥

W 1,2
d (δ⟨1⟩,2s)∥U∥3L2

d
,

where c is a constant independent of U and N .

4 Concluding remarks

In this letter, we gave a new proof of some discrete inequalities regarding
central difference type operators. This gives a positive answer to the con-
jecture raised in the previous study Kojima–Matsuo–Furihata [1]. The key
there is to directly evaluate the eigenvalues of the reduction matrices (SN )
in an analytic manner. This also supports the view proposed in [1] that the
idea of “reducing” operators is promising in handling complicated difference
operators. Note that in the present approach, we never uses the concrete

values of the coefficients β
(s)
j , which is extremely advantageous when we

have to deal with higher-order operators.
Some concluding comments are in order. First, there still remains an

unsolved problem that whether the discrete Gagliardo–Nirenberg inequality
with general index holds or not for s ≥ 8 (including s = ∞). It is not
even clear if it is likely to hold. Possibly some careful numerical tests are
needed to identify this point. Unfortunately the techniques employed in this
paper do not seem to extend to this general case (at least naturally), since
the evaluation of the eigenvalues essentially fully utilizes the property of L2

norm.
Second, two or three dimensional cases should be considered. It seems

the discussion in the present paper (and in [1]) basically carries to such cases
as far as the domain is rectangular and we consider only uniform grids (in
each spatial direction.)

Finally, in order to adapt to more practical situations, we need to gen-
eralize the result to more general boundary conditions and (non-uniform)
grids. Under such general situations, however, the definition of finite differ-
ence method itself becomes a challenge, and it seems some breakthrough is
necessary to obtain a unified perspective there.
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