
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Successive Lagrangian Relaxation Algorithm
for Nonconvex Quadratic Optimization

Shinji YAMADA and Akiko TAKEDA

METR 2017–08 March 2017

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Successive Lagrangian Relaxation Algorithm for

Nonconvex Quadratic Optimization

Shinji Yamada ∗ Akiko Takeda †

March 31th, 2017

Abstract

Optimization problems whose objective function and constraints
are quadratic polynomials are called quadratically constrained quadratic
programs (QCQPs). QCQPs are NP-hard in general and are important
in optimization theory and practice. There have been many studies on
solving QCQPs approximately. Among them, semi-definite program
(SDP) relaxation is a well-known convex relaxation method. In recent
years, many researchers have tried to find better relaxed solutions by
adding linear constraints as valid inequalities. On the other hand, SDP
relaxation requires a long computation time, and it has high space com-
plexity for large-scale problems in practice; therefore, SDP relaxation
may not be useful for such problems.

In this paper, we propose a new convex relaxation method that
is weaker but faster than SDP relaxation methods. The proposed
method transforms a QCQP into a Lagrangian dual optimization prob-
lem and successively solves subproblems while updating the Lagrange
multipliers. The subproblem in our method is a QCQP with only one
constraint for which we propose an efficient algorithm. Numerical ex-
periments confirm that our method can quickly find a relaxed solution
with an appropriate termination condition.

1 Introduction

We consider the following quadratically constrained quadratic program (QCQP):

minimize
x∈Rn

x⊤Q0x+ 2q⊤0 x+ γ0

subject to x⊤Qix+ 2q⊤i x+ γi ≤ 0, i = 1, · · · ,m, (1)
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where each Qi is an n × n symmetric matrix. Qi = O means a linear
function. We call a QCQP with m constraints m-QCQP. In the case Qi ⪰
O for every i = 0, · · · ,m, (1) is a convex program. However, in general,
positive semidefiniteness is not assumed, and (1) is NP-hard [23]. QCQPs
are important in optimization theory and in practice.

QCQPs are fundamental nonlinear programming problems that appear
in many applications such as max-cut problems [24] and binary quadratic
optimizations. Some relaxation methods exist for finding a global solution of
(1). A standard approach is the branch-and-bound (or cut) method, where a
simple relaxation, e.g., a linear programming (LP) relaxation problem [2], is
solved in each iteration. Audet, Hansen, Jaumard and Savard [5] proposed
to introduce additional constraints, constructed using the reformulation lin-
earization technique (RLT), to the relaxation problem. Lagrangian bounds,
i.e., bounds computed by Lagrangian relaxation, have also been used in
branch-and-bound methods in order to reduce the duality gap [22, 27, 29].
The branch-and-bound (or cut) algorithm yields a global solution by solving
many relaxation subproblems, which restricts the size of QCQPs.

Another avenue of research has investigated tight relaxation problems for
QCQPs. Among the many convex relaxation methods, semidefinite program
(SDP) relaxation is well known and have been extensively studied [11, 19,
28]. It is known that an SDP relaxation can be viewed as a Lagrangian
dual problem of the original QCQP. SDP relaxation has been applied to
various QCQPs that appear in combinatorial optimization problems [12, 13]
as well as in signal processing and communications [19]. SDP relaxation is
powerful, and it gives the exact optimal value particularly when there is only
one constraint on the trust region subproblem (TRS). Furthermore, recent
studies such as [3] have proposed to add new valid inequalities (e.g., linear
constraints for matrix variables using the original upper and lower bound
constraints) to SDP relaxation problems. In particular, Zheng, Sun, and
Li [30, 31] proposed a decomposition-approximation scheme that generates
an SDP relaxation at least as tight as the ordinary one. Jiang and Li [16]
proposed second order cone constraints as valid inequalities for the ordinary
SDP relaxation. Such methods aim at obtaining a better relaxed solution
even if they take more time to solve than the original SDP relaxation.

However, SDP relaxation including additional valid inequalities increases
the problem size, which leads to a longer computation time and often mem-
ory shortage errors for large-scale problems. Here, Kim and Kojima [17]
proposed a second-order cone programming relaxation (SOCP relaxation),
where valid second-order cone constraints derived from the positive semidef-
inite inequality are added to the LP relaxation. Burer, Kim, and Kojima
[9] proposed a “weaker but faster” method than SDP relaxation that uses a
block matrix decomposition. Such faster relaxation methods are useful for
large-scale problems, and they can be repeatedly solved in, e.g., a branch-
and-bound method.
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In this paper, we propose a faster convex relaxation method that is not
stronger than SDP relaxation if valid constraints are not considered. Our
method solves the Lagrangian dual problem of the original QCQP by us-
ing a subgradient method, though the dual problem can be reformulated as
an SDP and is solvable with the interior point method. Indeed, there are
various studies that propose to solve the Lagrangian dual problems for non-
convex problems, but most of them transform the dual problem into an SDP
problem [6] or a more general cone problem [18]. Here, to resort to more
easily solved problems, we divide the minimization of the objective func-
tion in the Lagrangian dual problem into two stages and iteratively solve
the inner problem as a 1-QCQP, which can be solved exactly and quickly.
There are mainly two approaches to solving a 1-QCQP: one is based on
eigenvalue computation, the other on SDP relaxation. In particular, Moré
and Sorensen [20] proposed to iteratively solve a symmetric positive-definite
linear system for TRS, while Adachi, Iwata, Nakatsukasa, and Takeda [1]
proposed an accurate and efficient method that solves only one generalized
eigenvalue problem. In this paper, we propose a new relaxation method that
can solve a 1-QCQP exactly and quickly as a convex quadratic optimiza-
tion problem. Furthermore, we prove that the convex quadratic problem
constructs the convex hull of the feasible region of a 1-QCQP. Numerical
experiments confirm that our convex quadratic relaxation method for solv-
ing 1-QCQPs is faster than SDP relaxation and eigenvalue methods. They
also show that our method can quickly find a relaxed solution of an m-
QCQP by iteratively solving a 1-QCQP with updated Lagrange multipliers.
By adding valid constraints to our formulation, our method can sometimes
find a better relaxed solution in a shorter computation time compared with
the ordinary SDP relaxation. The relaxation technique can be embedded
within a branch-and-bound framework to determine a global optimum to
the original m-QCQP.

The remainder of this paper is organized as follows. We introduce SDP
relaxation and other related studies in Section 2. We describe our method
and its some properties in Section 3 and 4. We present computational results
in Section 5. We conclude the paper in Section 6. The Appendix contains
our proofs of the presented theorems.

Throughout the paper, we denote matrices by using uppercase letters
such as “Q”, vectors by using bold lowercase such as “q” and scalars by
using normal lower case such as “γ”. The notation A ≻ B or A ⪰ B implies
that the matrix A−B is positive definite or semidefinite. emeans the all-one
vector.
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2 Existing SDP relaxation methods for m-QCQP

2.1 SDP relaxation

An SDP relaxation can be expressed as a Lagrangian dual problem of the
original problem (1) as follows:

max
ξ≥0

ϕ(ξ). (2)

Here, ϕ(ξ) is an optimal value function defined by

ϕ(ξ) := min
x

 x⊤

(
Q0 +

m∑
i=1

ξiQi

)
x+ 2

(
q0 +

m∑
i=1

ξiqi

)⊤

x+ γ0 +

m∑
i=1

ξiγi

 ,
(3)

=

{
−q(ξ)⊤Q(ξ)†q(ξ) + γ(ξ), (if Q(ξ) ⪰ O),

−∞, (otherwise),
(4)

whereQ(ξ) := Q0+
∑m

i=1 ξiQi, q(ξ) := q0+
∑m

i=1 ξiqi, γ(ξ) := γ0+
∑m

i=1 ξiγi
and “†” means the pseudo-inverse. Note that from (4), (2) is equivalent to

max
ξ≥0

ϕ(ξ)

s.t. Q0 +

m∑
i=1

ξiQi ⪰ O. (5)

By considering−q(ξ)⊤Q(ξ)†q(ξ)+γ(ξ) as a Schur complement of

(
Q(ξ) q(ξ)
q(ξ)⊤ γ(ξ)

)
,

we can equivalently rewrite the dual problem (5) as a semidefinite program
(SDP)

max
ξ≥0,τ

τ

s.t.

(
Q(ξ) q(ξ)
q(ξ)⊤ γ(ξ)− τ

)
⪰ O, (6)

which can be solved by using an interior point method. It should be noted
that the dual of (6) is

min
x,X

Q0 ·X + 2q⊤0 x+ γ0

s.t. Qi ·X + 2q⊤i x+ γi ≤ 0, i = 1, · · · ,m, (7)

X ⪰ xx⊤

and (6) and (7) are equivalent under the Primal/Dual Slater condition.
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SDP relaxation is a popular approach to dealing with (1). Sturm and
Zhang [26] proved that when there is one constraint (i.e. a 1-QCQP),
SDP relaxation can always obtain the exact optimal value. Goemans and
Williamson showed an approximation bound of SDP relaxation for max-cut
problems [13], and Goemans [12] applied SDP relaxation to various combina-
torial problems. Their numerical experiments show that SDP relaxation can
find a very tight relaxed solution for many kinds of problems. However, SDP
relaxation has disadvantages in both computation time and space complex-
ity because of the matrix variable; it cannot deal with large-scale problems
because of shortage of memory. Although polynomial time algorithms, such
as an interior point method, have been established, they often take a long
time to solve an SDP relaxation problem in practice.

2.2 Stronger SDP relaxation using RLT

For further strengthening the SDP relaxation, Anstreicher [3] proposed the
reformulation linearization technique (RLT). Moreover, [3] added new con-
straints and restricted the range of the new variables Xij , ∀i, j. Here, one
assumes the original problem (1) has box constraints, i.e., lower and upper
bounds on each variable xj (lj and uj , respectively). Note as well that even
if there are no box constraints, we may be able to compute lj and uj by us-
ing the original constraints if the feasible region is bounded. The inequality
lj ≤ xj ≤ uj (as a vector expression, l ≤ x ≤ u) leads to

(xi − ui)(xj − uj) ≥ 0 ⇐⇒ xixj − uixj − ujxi + uiuj ≥ 0, (8)

(xi − ui)(xj − lj) ≤ 0 ⇐⇒ xixj − uixj − ljxi + uilj ≤ 0, (9)

(xi − li)(xj − lj) ≥ 0 ⇐⇒ xixj − lixj − ljxi + lilj ≥ 0, (10)

for i, j = 1, · · · , n. By replacing xixj with Xij , we get

Xij − uixj − ujxi + uiuj ≥ 0, (11)

Xij − uixj − ljxi + uilj ≤ 0, (12)

Xij − lixj − ljxi + lilj ≥ 0. (13)

(11)∼(13) are linear inequalities that include matrix variables Xij . There-
fore, by adding these constraints, we can get a stronger relaxation. The
disadvantage of RLT is that it increases computation time because of the
increased variables Xij and additional constraints (11)∼(13).

Many studies have aimed at strengthening the relaxation by adding valid
inequalities other than (11)∼(13) [16, 25, 30, 31]. Their methods give very
tight bounds, but they entail large amounts of computation time.

2.3 Weaker SDP relaxation method by block decomposition

Burer, Kim, and Kojima [9] aims to solve a relaxed problem faster than
SDP relaxation can, although it is a weaker relaxation; as such, it shares
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a similar motivation as ours. First, [9] assumes that the original problem
has [0,1] box constraints (i.e. ∀i; 0 ≤ xi ≤ 1) in order to avoid a situation
in which the optimal value diverges. Then, [9] proves that we can compute
a block diagonal matrix Di which satisfies Qi +Di ⪰ O for the matrix Qi
appearing in the objective function or the constraints. By using Di, we can
transform a quadratic polynomial,

x⊤Qix+ 2q⊤i x+ γi = −x⊤Dix+ x⊤(Qi +Di)x+ 2q⊤i x+ γi

and relax x⊤Dix to Di ·X and X ⪰ O as in SDP relaxation. As a whole,
a relaxation problem is as follows.

min
x,X

−D0 ·X + x⊤(Q0 +D0)x+ 2q⊤0 x+ γ0

s.t. −Di ·X + x⊤(Qi +Di)x+ 2q⊤i x+ γi ≤ 0, i = 1, · · · ,m,
Xk ⪰ xkx

⊤
k , k = 1, · · · , r,

where r denotes the number of blocks of Di and Xk or xk denotes a partial
matrix or vector in X or x corresponding to each block of Di. Note that
in a similar way as (12), we get new constraints Xii ≤ xi, i = 1, · · · ,m
for the matrix variable X from the box constraints. Since we relax only
the quadratic form for each block part, the matrix X only has block part
components. Therefore, we can consider the positive semidefinite constraint
only for the block parts: Xk ⪰ xkx

⊤
k . The number of variables related to the

positive semidefinite constraint is reduced, and that is why we can obtain
the optimal value so quickly. We call this method Block-SDP and use it
in the numerical experiments in Section 5.

In [9], it is proposed to divide Di as evenly as possible, that is, by making
the difference between the largest block size and the smallest block size at
most one for a given r.

3 Proposed Method

3.1 Assumptions

Before we explain our method, we will impose the following three assump-
tions.

Assumption 1. (a) The feasible region of (1) has some interior points.

(b) There exists at least one matrix Qi (i = 0, · · · ,m) such that Qi ≻ O.

(c) When Q0 ⪰ O, any optimal solution x̄ := −Q†
0q0 of the following un-

constrained optimization problem

min
x

x⊤Q0x+ 2q⊤0 x+ γ0. (14)

is not feasible for the original QCQP (1).
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Assumption 1 (a) is the primal Slater condition, and (b) is a sufficient
condition of the Dual Slater condition of the original QCQP. Assumption 1
(c) is not a strong one because if x̄ is feasible for (1), it is a global optimal
solution and we can check it easily.

3.2 The Whole Algorithm

We further transform the Lagrangian dual problem (2) into

max
λ∈Λs

max
µ≥0

ϕ(µλ), (15)

where Λs := {λ ≥ 0 | e⊤λ = 1} is a simplex. Now we define ψ(λ) as the
optimal value of the inner optimization problem of (15) for a given λ ∈ Λs:

ψ(λ) := max
µ≥0

ϕ(µλ). (16)

Note that (16) is the Lagrangian dual problem for the following 1-QCQP:

ψ(λ) = min
x

x⊤Q0x+ 2q⊤0 x+ γ0

s.t. x⊤

(
m∑
i=1

λiQi

)
x+ 2

(
m∑
i=1

λiqi

)⊤

x+

m∑
i=1

λiγi ≤ 0. (17)

There is no duality gap between (16) and its Lagrangian dual (17), since
[26] proves that the SDP formulation of (16) has the same optimal value as
the 1-QCQP (17). We will show how to solve the 1-QCQP (17) exactly and
quickly in Section 4.1. The SDP relaxation problem (2) can be written as

max
λ∈Λs

ψ(λ). (18)

Here, we propose an algorithm which iteratively solves (17) with updated
λ ∈ Λs for finding an optimal solution of the SDP relaxation problem. Λs

is a convex set, and ψ(λ) is a quasi-concave function, as shown in Section
3.3. Therefore, we will apply the standard gradient descent method to (18)
for updating λ. The speed of convergence of gradient methods is slow in
general especially near optimal solutions, and therefore, we will obtain a
relaxed solution by using an appropriate termination criterion. Algorithm
1 summarizes the proposed method.

We divide the “max” for the Lagrange function into two parts and it-
eratively solve the 1-QCQPs. Note that our method solves the 1-QCQPs
ψ(λ) successively, so it is not stronger than SDP relaxation. We explain
our method (especially, the relationship between (Pk) and (27) or (28)) in
Section 4.
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Algorithm 1 Successive Lagrangian Relaxation (SLR)

Given Q0, · · · , Qm (∃i; Qi ≻ O), q0, · · · , qm, γ0, · · · , γm，tolerance ϵ and
sufficiently small value ψ(λ−1),

Step 1: Set k = 0, and define an initial point λ(0).

Step 2: Find an optimal solution x(k) and the optimal value ψ(λ(k)) of
(Pk):

ψ(λ(k)) = min
x

x⊤Q0x+ 2q⊤0 x+ γ0

s.t. x⊤

(
m∑
i=1

λ
(k)
i Qi

)
x+ 2

(
m∑
i=1

λ
(k)
i qi

)⊤

x+

m∑
i=1

λ
(k)
i γi ≤ 0

(Pk)

by solving the convex problem (27) or (28).

Step 3: If

∣∣∣∣ψ(λk
)−ψ(λk−1

)

ψ(λk−1
)

∣∣∣∣ < ϵ, then stop the algorithm. Otherwise, up-

date λ(k) by Algorithm 2 shown in Section 4.2 and k ← k + 1. Go to
Step 2.

3.3 Quasi-Concavity of ψ(λ)

Objective functions of Lagrangian dual problems are concave for Lagrange
multipliers (e.g. [7]). The function ϕ(µλ) for fixed λ is hence concave for
µ, but ψ(λ) is not necessarily concave for λ. However, we can prove that
ψ(λ) is a quasi-concave function and has some of the desirable properties
that concave functions have.

Before we prove the quasi-concavity of ψ(λ), we have to define the set
Λ+,

Λ+ = {λ ∈ Λs | ψ(λ) > ϕ(0)}, (19)

in order to explain the properties of ψ(λ). Note that ϕ(0) is the optimal
value of the unconstrained problem (14) and ψ(λ) ≥ ϕ(0) holds for all λ.
We can also see that Λ+ is nonempty if and only if the SDP relaxation value
is larger than ϕ(0), i.e., OPTSDP > ϕ(0) holds. The above statement is
obvious from OPTSDP = max{ψ(λ) | λ ∈ Λs} (see (18)) and (19). In other
words, OPTSDP = ϕ(0) means that for all λ ∈ Λs, there exists an optimal
solution of (14) which is feasible for (17).

From the definition of Λ+, we can see that for λ ∈ Λ+, an optimal
solution of (16), µ̄λ, is a positive value. When λ /∈ Λ+ (i.e. ψ(λ) = ϕ(0)),
we can set µ̄λ to zero without changing the optimal value and solution. By
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using such µ̄λ, we will identify (19) and

Λ+ = {λ ∈ Λs | µ̄λ > 0}. (20)

Now let us prove the quasi-concavity of ψ(λ) and some other properties..

Theorem 1. Let ψ(λ) be the optimal value of (16) and (x̄λ, µ̄λ) be its op-
timal solution. Then, the following (i)∼(iv) hold.

(i) The vector

(g̃λ)i = µ̄λ

(
x̄⊤

λ Qix̄λ + 2q⊤i x̄λ + γi

)
(21)

is a subgradient, which is defined as a vector in the quasi-subdifferential
(see e.g., [14, 15]):

∂ψ(λ) := {s | s⊤(ν − λ) ≥ 0, ∀ν; ψ(ν) > ψ(λ)} (22)

of ψ at λ.

(ii) ψ(λ) is a quasi-concave function for λ ∈ Λs.

(iii) Λ+ is a convex set.

(iv) If ψ(λ) has stationary points in Λ+, all of them are global optimal
solutions in Λs.

The proof is in the Appendix.
Note that the set of global solutions of ψ is convex because of the quasi-

concavity of ψ(λ). (iv) is similar to the property that concave functions have.
Therefore, a simple subgradient method such as SLR, which searches for
stationary points, works well. SLR is an algorithm for finding a stationary
point in Λ+, which Theorem 1 (iv) proves to be a global optimal solution in
Λs.

Figures 1 and 2 are images of ψ(λ) for m = 2, where λ ∈ Λs is expressed
by one variable α ∈ [0, 1] as λ = (α, 1− α)⊤. The vertical axis shows ψ(λ),
and the horizontal one shows α for a randomly generated 2-QCQP. We can
make sure that ψ(λ) is a quasi-concave function from these figures.

There are subgradient methods for maximizing a quasi-concave function.
If the objective function satisfies some assumptions, the convergence of the
algorithms is guaranteed. However, this may not be the case for the problem
setting of (18). For example, in [15], ψ(λ) must satisfy the Hölder condition
of order p > 0 with modulus µ > 0, that is,

ψ(λ)− ψ∗ ≤ µ(dist(λ,Λ∗))p, ∀λ ∈ Rm,

where ψ∗ is the optimal value, Λ∗ is the set of optimal solutions and dist(y, Y )
denotes the Euclidean distance from a vector y to a set Y . It is hard to check
whether ψ(λ) satisfies the Hölder condition. Ensuring the convergence of
SLR seems difficult, but numerical experiments imply that SLR works well
and often obtains the optimal value same as SDP relaxation can.
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4 Details of the Algorithm

4.1 1-QCQP as a Subproblem

SLR needs to solve 1-QCQP (Pk). Here, we describe a fast and exact solution
method for a general 1-QCQP. First, we transform the original 1-QCQP by
using a new variable t into the form:

min
x,t

t

s.t. x⊤Q0x+ 2q⊤0 x+ γ0 ≤ t, (23)

x⊤Qλx+ 2q⊤λ x+ γλ ≤ 0,

where

Qλ =

m∑
i=1

λ
(k)
i Qi, qλ =

m∑
i=1

λ
(k)
i qi, γλ =

m∑
i=1

λ
(k)
i γi,

in the SLR algorithm. Here, we assume that (23) satisfies the following
Primal and Dual Slater conditions:

(Primal Slater condition) ∃x ∈ Rn s.t. x⊤Qλx+ 2q⊤λ x+ γλ < 0

(Dual Slater condition) ∃σ ≥ 0 s.t. Q0 + σQλ ≻ O

Note that (Pk) satisfies the Primal Slater condition because of Assumption
1 (a), and it also satisfies the Dual Slater condition because either Q0 or
Qλ is positive definite by the updating rule of λ(k) explained in the next
subsection. Here, we define

S : = {σ ≥ 0 | Q0 + σQλ ⪰ O},

10



which is a convex set of one dimension, that is, an interval. The Dual Slater
condition implies that S is not a point, and therefore, σ < σ̄ holds for

σ̄ := sup
σ∈S

σ, (24)

σ := inf
σ∈S

σ. (25)

We set σ̄ = +∞ when Qλ ≻ O and σ = 0 when Q0 ⪰ O. For (23), we make
the following relaxation problem using σ̄ and σ:

min
x,t

t

s.t. x⊤(Q0 + σQλ)x+ 2(q0 + σqλ)
⊤x+ γ0 + σγλ ≤ t, (26)

x⊤(Q0 + σ̄Qλ)x+ 2(q0 + σ̄qλ)
⊤x+ γ0 + σ̄γλ ≤ t.

Note that in the SLR algorithm, we keep either Q0 or Qλ positive semidefi-
nite. When σ = 0, (26) is equivalent to the following relaxed problem:

min
x,t

t

s.t. x⊤Q0x+ 2q⊤0 x+ γ0 ≤ t, (27)

x⊤(σ̂Q0 +Qλ)x+ 2(σ̂q0 + qλ)
⊤x+ (σ̂γ0 + γλ) ≤ σ̂t,

where σ̂ = 1/σ̄, and σ̂ can be easily calculated. On the other hand, when
σ̄ = +∞, (26) is equivalent to

min
x,t

t

s.t. x⊤(Q0 + σQλ)x+ 2(q0 + σqλ)
⊤x+ γ0 + σγλ ≤ t, (28)

x⊤Qλx+ 2q⊤λ x+ γλ ≤ 0.

(28) can be viewed as dividing the second constraint of (26) by σ̄ and σ̄ →∞.
The following theorem shows the equivalence of the proposed relaxation

problem (26) and the original problem (23).

Theorem 2. Under the Primal and Dual Slater conditions, the feasible
region ∆rel of the proposed relaxation problem (26) is the convex hull of the
feasible region ∆ of the original problem (23), i.e., ∆rel = conv(∆).

The proof is in the Appendix.
Theorem 2 implies that (26) gives an exact optimal solution of 1-QCQP

(23) since the objective function is linear. The outline of the proof is as
follows (see Figure 3). We choose an arbitrary point (x∗, t∗) in ∆rel and
show that there exists two points P and Q in ∆ which express (x∗, t∗) as a
convex combination of P and Q. We show in the Appendix how to obtain P
and Q for an arbitrary point in ∆rel. Using this technique, we can find an

11
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Figure 3: Image of ∆ and ∆rel

optimal solution of 1-QCQP (23). By comparison, SDP relaxation can not
always find a feasible solution for the 1-QCQP (though it can obtain the
optimal value).

(26) is a convex quadratic problem equivalent to 1-QCQP, which we will
call CQ1. Note that CQ1 has only two constraints, and we can solve it
very quickly. CQ1 can be constructed for general 1-QCQPs, including the
Trust Region Subproblem (TRS). The numerical experiments in Section 5
imply that CQ1 can be solved by a convex quadratic optimization solver
faster than by an efficient method for solving a TRS and hence that CQ1
can speed up SLR.

Now let us explain how to calculate σ̂ or σ especially when either Q0

or Qλ is positive definite. We explain how to convexify a matrix which has
some negative eigenvalues by using a positive definite matrix, i.e., for both
cases when Q0 ≻ O in (27) and Qλ ≻ O in (28). First, we calculate σ̂ in

(27) when Q0 ≻ O. Let Q
1
2
0 be the square root of the matrix Q0 and Q

− 1
2

0

be its inverse. Then,

σQ0 +Qλ ⪰ O ⇐⇒ Q
− 1

2
0 (σQ0 +Qλ)Q

− 1
2

0 ⪰ O

⇐⇒ σI +Q
− 1

2
0 QλQ

− 1
2

0 ⪰ O

holds. Therefore, σ̂ can be calculated as

σ̂ = |min{σmin(Q
− 1

2
0 QλQ

− 1
2

0 ), 0}|,

where σmin(X) is the minimum eigenvalue of X. Similarly, we can calculate
σ in (28) as

σ = |min{σmin(Q
− 1

2
λ Q0Q

− 1
2

λ ), 0}|,

when Qλ ≻ O.
It is true that (26) gives us the exact optimal value of (23). When both

Q0 and Qλ have zero (or even negative) eigenvalues, σ̂ and σ can not be
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computed, but such cases can be ignored because an 1-QCQP (23) with
such Q0 and Qλ does not give an optimal solution of (18). Therefore, in the
Algorithm 1, we keep either Q0 or

∑m
i=1 σiQi positive definite.

4.2 Update Rule of λ

Now let us explain the update rule of λ, which is shown in Step 2 of
Algorithm 1. The update rule is constructed in a similar way to the
gradient projection method for solving (18). Step 4 is needed only when

Q0 ⊁ O and
∑m

i=1 λ
(k+1)
i Qi ⊁ O hold. We update the Lagrange multipliers

corresponding to convex constraints, whose index set is defined as C := {i |
1 ≤ i ≤ m, Qi ≻ O}. When Q0 ⊁ O, Assumption 1 (b) assures that C is
non-empty.

Algorithm 2 Update rule of λ

Given a sufficiently small positive scalar δ,

Step 1: Calculate the gradient vector g(k) as g
(k)
i = x(k)⊤Qix

(k) +
2q⊤i x

(k) + γi.

Step 2: Normalize g(k) as g(k) ← g(k)

|e⊤λ|
and set the step size h. Update

λ(k+1) as

λ(k+1) = projΛs
(λ(k) + hg(k)), (29)

where projΛs
(a) := arg min

b∈Λs

∥a− b∥2 is the projection onto Λs.

Step 3: If Q0 ≻ O or
∑m

i=1 λ
(k+1)
i Qi ≻ O, terminate and return λ(k+1).

Step 4: Otherwise, find a minimum positive scalar α such that

α
∑

i∈C Qi +
∑m

i=1 λ
(k+1)
i Qi ⪰ O and update λ

(k+1)
i ← λ

(k+1)
i + α + δ

for i ∈ C. After computing

λ(k+1) ← 1∑m
i=1 λ

(k+1)
i

λ(k+1),

terminate and return λ(k+1).

Theorem 1 (i) shows that a subgradient vector of ψ(λ) at λ(k) is

g̃λ(k) = µ̄λ(k)g
(k),

where g
(k)
i = x(k)⊤Qix

(k) + 2q⊤i x
(k) + γi, ∀i. To find a larger function

value of ψ(λ) at the kth iteration, we use g(k) as the subgradient vector

13



of ψ(λ) rather than g̃λ(k) for the following reasons. When µ̄λ(k) > 0, we
can use g(k) as a subgradient vector of ψ(λ) at λ(k). When µ̄λ(k) = 0 (i.e.
λ(k) /∈ Λ+), Q0 should be positive semidefinite because of the constraint
Q0 + µ

∑m
i=1 λiQi ⪰ O, and the optimal value of (17) equals that of (14)

(= ϕ(0)). In this case, ϕ(0) is the smallest possible value, but it is not
the optimal one of the original problem (1) because an optimal solution
of the unconstrained problem (14), x̄, is not in the feasible region of (1),
from Assumption 1 (c). Therefore, when µ̄λ(k) = 0, the algorithm needs
to move λ(k) toward Λ+; precisely, λ

(k) is moved in the direction of g(k),
although g̃λ(k) is the zero vector. It can be easily confirmed that by moving
λ(k) sufficiently far in this direction, the left side of the constraint of (Pk)
becomes positive and x̄ moves out of the feasible region of (Pk).

The whole algorithm updates λ(k) and x(k) , k = 1, 2, . . .. In order for
(Pk) to have an optimal solution x(k), λ(k) needs to be set appropriately so

as to satisfy Q0 +µ
∑m

i=1 λ
(k)
i Qi ⪰ O for some µ ≥ 0. If the input Q0 of the

given problem satisfies Q0 ⪰ O, then Q0 + µ
∑m

i=1 λ
(k)
i Qi ⪰ O holds with

µ = 0, which makes (Pk) bounded.
On the other hand, in the case of Q0 ⪰̸ O, the optimal value of (Pk),

ψ(λ(k)), possibly becomes −∞, and we can not find an optimal solution. In
such case, we can not calculate g(k) and the algorithm stops. To prevent
this from happening, we define a subset of Λs so that the optimal value does
not become −∞. When Q0 ⪰̸ O, Λ+ can be rewritten as

Λ+ = {λ ≥ 0 | e⊤λ = 1, ∃µ ≥ 0; Q0 + µ

m∑
i=1

λiQi ⪰ O}.

Λ+ is the set of λ for which ψ(λ) > −∞. However, the above description
of Λ+ is complicated because of the positive semidefinite constraint. Fur-
thermore, CQ1 requires that either Q0 or

∑m
i=1 λiQi be positive definite.

Therefore, when Q0 ⊁ O, we approximate Λ+ as

Λ′
+ := {λ ≥ 0 | e⊤λ = 1,

m∑
i=1

λiQi ≻ O},

and keep λ(k) in Λ′
+ by Step 4. It can be easily confirmed that Λ′

+ is a
convex set. By replacing the feasible region Λs of (18) by Λ′

+ (⊆ Λ+), the
relaxation can be weaker and the optimal value is not necessarily equal to
the SDP relaxation value. Thus, when Q0 ⊁ O, SLR may be worse than it
is when Q0 ≻ O.

Now let us explain how to choose the step size h. Gradient methods have
various rules to determine an appropriate step size. Simple ones include a
constant step size h = c or a diminishing step size (e.g. h = c/

√
k), where

k is the number of iterations (e.g., see [8]). A more complicated one is the
backtracking line search (e.g., see [4, 21]). Although the backtracking line
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search has been shown to perform well in many cases, we use a diminishing
step size h = c/

√
k to save the computation time of SLR. The point of SLR

is to obtain a relaxed solution quickly, so we should choose the simpler way.
In Step 2, we compute λ(k+1) by using g(k) and h by using (29). We

can easily compute the projection onto Λs by using the method proposed by
Chen and Ye [10]. Here, the condition: ∃µ ≥ 0; Q0 + µ

∑m
i=1 λiQi ≻ O in

Λ+ is ignored in the projection operation, but when Q0 ≻ O, the resulting
projected point λ(k+1) is in Λ+. On the other hand, whenQ0 ⊁ O, the vector
λ(k+1) is not necessarily in Λ+ or Λ′

+. In such case, λ(k+1) is modified in
Step 4 so as to belong to Λ′

+. Step 4 is a heuristic step; it is needed to
keep λ ∈ Λ′

+ when Q0 ⊁ O.

4.3 Setting the Initial Point

The number of iterations of SLR depends on how we choose the initial point.
In this section, we propose two strategies for choosing it. Note that at an
optimal solution λ, all elements λi corresponding to convex constraints with
Qi ≻ O, i ∈ C, are expected to have positive weights. Hence, we will give
positive weights only for λi, i ∈ C (if it exists).

Here, we assume that (Qi, qi, γi) in each constraint is appropriately
scaled by a positive scalar as follows. When the matrix Qi has positive
eigenvalues, (Qi, qi, γi) is scaled so that the minimum positive eigenvalue of
Qi is equal to one. If Qi has no positive eigenvalues, it is scaled such that
the maximum negative eigenvalue is equal to −1.

The first approach is “equal” weights. It gives equal weights to λ
(0)
i s.t.

Qi ≻ O or if there are no Qi ≻ O (which implies that Q0 ≻ O), it gives

equal weights to all λ
(0)
i as follows:

Equal weights rule If the index set of convex constraints C is nonempty,
we define λ(0) as

λ
(0)
i =

{
1
|C| , if Qi ≻ O,
0, otherwise.

(30)

If C = ∅, we define λ(0) as

λ
(0)
i =

1

m
, i = 1, . . . ,m. (31)

The second approach uses the idea of the Schur complement. Note that
this rule only applies when there are some i (≥ 1) such that Qi ≻ O. For
the constraint with Qi ≻ O, we have

x⊤Qix+ 2q⊤i x+ γi ≤ 0

⇐⇒ (x+Q−1
i q)⊤Qi(x+Q−1

i qi) ≤ q⊤i Q
−1qi − γi.
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The right-hand side ηi := q⊤i Q
−1qi−γi can be considered the volume of the

ellipsoid. From Assumption 1 (a), the ellipsoid has positive volume and we
have ηi > 0. A numerical experiment shows that constraints having small
positive ηi tend to become active in SDP relaxation. Therefore, it seems
reasonable to give large weights to constraints whose ηi (> 0) is small. On
the other hand, since we treat the constraint as(

1
x

)⊤(
γi q⊤i
qi Qi

)(
1
x

)
≤ 0,

the value −ηi can be viewed as the Schur complement of

(
γi q⊤i
qi Qi

)
. It

is known that when Qi ≻ O,

(
γi q⊤i
qi Qi

)
⪰ O is equivalent to −ηi ≥ 0.

However, in this case,

(
γi q⊤i
qi Qi

)
⪰ O does not hold since ηi > 0. But we

consider this value to be an indicator of convexity. We give large weights for
the constraints whose Schur complement −ηi is large. Then, since ηi > 0,
we give large weights for the constraints whose −ηi (< 0) are close to zero;
that is, 1

|ηi| are large. Here, we consider the following rule:

Schur complement rule For i ∈ C, calculate si := 1/|ηi|. We define λ(0)

as

λ
(0)
i =

{
si∑m
i=1 si

if Qi ≻ O,
0, otherwise.

(32)

Although the Schur complement rule also has no theoretical guarantee,
numerical experiments show their usefulness especially when Q0 ⊁ O.

4.4 RQT Constraints

We may be able to find a better optimal value of the SDP relaxation problem
(2) by adding a redundant convex quadratic constraint constructed similarly
to RLT (this is discussed in Section 2.2) to (1) when there are box constraints
and by applying SLR to the resulting QCQP. Since (9) holds for 1 ≤ i =
j ≤ n, we have

x2i − (ui + li)xi + uili ≤ 0, i = 1, · · · , n. (33)

The summation of (33) for i = 1, · · · , n leads to

x⊤x− (u+ l)⊤x+ u⊤l ≤ 0. (34)

We call this method the reformulation quadraticization technique (RQT).
Since (34) is a convex quadratic constraint, it may be effective for the SLR
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relaxation tighter. The numerical experiments in Section 5 show that by
adding (34), we could get a tighter optimal value in some cases than SDP
relaxations.

There are other ways of making new convex quadratic constraints. Fur-
thermore, even nonconvex constraints (like (8) or (10)) are possibly effective
for tightening SLR. However, in this study, we only considered (34) to save
computation time.

5 Numerical Experiments

We implemented SLR, SDP relaxation, and Block-SDP (in Section 2.3) and
compared their results. In [9], there are no rules to decide the number of
blocks r of Block-SDP. In our experiments, we tried several values of r and
chose r := 0.05× n, which seemed to work well.

We used MATLAB Ver. 8.4.0 (R2014b) for all the numerical experi-
ments. We solved the SDP relaxation and Block-SDP by using SeDuMi 1.3
[32]. To solve the convex quadratic optimization problems, 1-QCQP (27)
and (28) in the SLR algorithm, we used CPLEX Ver. 12.5. We used a
computer with a 2.4 GHz CPU and 16GB RAM.

5.1 Random m-QCQP

First, we checked the performance of SLR for randomm-QCQP generated in
the way that Zheng Sun and Li [31] did. In Sections 5.1.1∼5.1.4, we consider
problems without box constraints; we compare SLR (or CQ1) and SDP
relaxation. In Section 5.1.5, we consider problems including box constraints;
we compare SLR, SDP relaxation, and Block-SDP.

5.1.1 Tolerance ϵ and Computation Time

We now investigate the computation times of SLR for given tolerance values
ϵ. We randomly generated 30 instances of a 10-QCQP, whose problem sizes
were n = 30 and m = 10. Among the m = 10 constraints, there were five
convex ones. The objective functions of all instances were strictly convex,
i.e., Q0 ≻ O.

The relationship between the tolerance ϵ and the computation time is
shown in Figure 4. The smaller ϵ becomes, the longer the computation takes.
In this setting, SLR can solve the 10-QCQP faster than SDP relaxation can
when ϵ > 10−4. Hence, we set ϵ = 10−4 in what follows.

5.1.2 Effect of Initial Points

We compared the two strategies for choosing the initial points (30) (or (31))
and (32) and checked the results for Q0 ≻ O and Q0 ⊁ O. We only show
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Figure 4: Average Computation Time versus Tolerance ϵ

results for Q0 ⊁ O because both initial point rules gave almost the same
results when Q0 ≻ O. We randomly generated 30 instances for each setting,
where n = 100 and m = 10, and varied the number of convex constraints
from |C| = 1 to 9.

Note that SLR is not stronger than SDP relaxation and we do not know
the exact optimal value of each random m-QCQP. Therefore, we checked
the performance of SLR by comparing its value with the optimal value of
SDP relaxation. Here, we used the error ratio defined as

Ratio :=

∣∣∣∣ OPTSLR

OPTSDPrelax

∣∣∣∣ .
This indicator was used in all of the experiments described below. It is
greater than or equal to one since SLR is not stronger than SDP relaxation.
The performance of SLR is said to be good when the ratio is close to one.

Figures 5 and 6 plot the number of iterations and the error ratio versus
the number of convex constraints. When there is only one convex constraint,
an optimal solution λ for ψ(λ) usually has only one positive element corre-
sponding to the convex constraint and all the other elements are zero. In
this case, SLR needs only few iterations. When Q0 ⊁ O, the Schur comple-
ment rule works well in terms of computation time and the error ratio as the
number of convex constraints increases. This may be because an optimal
solution of SDP relaxation has many non-zero components and the equal
weights rule can not represent each weight appropriately. On the basis of
the above considerations, we decided to use the Schur complement rule in
the remaining experiments.
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Figure 6: Average Error Ratio (Q0 ⊁
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5.1.3 Effect of the Number of Variables n on the Computation
Time and Error

We checked the computation time of SLR by changing the number of vari-
ables n. Note that SLR works better when Q0 ≻ O than when Q0 ⊁ O
because we have to approximate the feasible region Λ+ when Q0 ⊁ O. In
this experiment, n was varied from 25 to 5000, and we set m = 15, of which
8 constraints were convex. We generated 30 instances when n ≤ 250, ten
instances when 250 < n ≤ 1000, and one instance when n ≥ 2500. In this
experiment, we set ϵ = 1.0−3 because large problems take a very long time
to solve.

Case 1. Q0 ≻ O. SLR performed well when Q0 ≻ O (Figures 7 and 8).
The computation time was almost one order of magnitude smaller than that
of SDP relaxation, and the error ratio was less than 1.06. There were many
instances which SLR can obtain the optimal value same as SDP relaxation
can. Furthermore, SLR was able to solve problems that SDP relaxation
could not because it ran out of memory.

Case 2. Q0 ⊁ O. We replaced the objective function of each instance
used in Case 1 by a nonconvex quadratic function and conducted the same
experiments in each case. Figures 9 and 10 show the results for Q0 ⊁
O. The performance of SLR deteriorated, but it was still faster than SDP
relaxation and the error ratio was about 1.1. Note that we conducted only
one experiment on n = 2500, 5000 to shorten the time of the experiment.
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5.1.4 Effect of the Number of Constraints m on the Computation
Time and Error

We checked the computation time of SLR by varying the number of con-
straints m. For n = 100, the number of constraints m was varied from 2 to
50. Half of the constraints (i.e. ceil(m/2)) were convex. We generated 30
instances for each setting.

Case 1. Q0 ≻ O. Figures 11 and 12 show the results. As a whole, the error
ratios were less than 1.0015, and the computation time was about one order
of magnitude smaller than that of SDP relaxation.

Case 2. Q0 ⊁ O. Figures 13 and 14 show the results. SLR took longer
than in Case 1, and the error ratio was about 1.06. SLR performed worse
when Q0 ⊁ O because we approximated the feasible region.

5.1.5 RQT Constraints

We randomly generated problems with box constraints and added the RQT
constraint proposed in Section 4.4 to the problems. n was varied from 30
to 500, and we set m = 0.3n, including ceil(m/2) convex constraints. We
generated 30 instances when n ≤ 100 and 10 instances when n > 100. We
added box constraints ∀i; −1 ≤ xi ≤ 1 to all the instances. The following
results are only for the case in which the objective function is nonconvex.
When Q0 ≻ O, the RQT constraint did not affect the performance of our
method by much.

The results are shown in Figures 15 and 16. In Figure 16, the ratio is
less than one. This implies that SLR can get better optimal values than
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SDP relaxation can by adding RQT constraints. SLR is thus “stronger and
faster” than SDP relaxation. In this sense, Block-SDP is similar to SLR.
The performance of Block-SDP depends on the number of blocks r, but in
this setting, SLR is faster than Block-SDP, although its error ratio is worse
than that of Block-SDP.

5.2 1-QCQP

We checked the performance of CQ1 in solving the 1-QCQP of (Pk). We
compared CQ1, SDP relaxation, and an eigen-computation-based method
for random 1-QCQPs. For a 1-QCQP with Q1 ≻ O, Adachi, Iwata, Nakat-
sukasa and Takeda [1] proposed an accurate and efficient method that solves
a generalized eigenvalue problem only once. They called this method “GEP”.
We ran their MATLAB code for solving a 1-QCQP with Q1 ≻ O. Note that
all of the methods obtained the exact optimal value of 1-QCQP. The compu-
tation time was plotted versus n. As described in Section 5.1, we generated
the 1-QCQP in the way [31] did. Figures 17 and 18 are double logarithmic
charts of n and the average computation time of 30 instances. Figure 17
shows that CQ1 is about one order of magnitude faster than SDP relaxation
for all n. Figure 18 shows that CQ1 is faster than GEP when n is large.
CQ1 or SLR is intended to be a “weaker, but faster” method than SDP
relaxation, and such methods are useful for large-scale problems.

5.3 Max-Cut Problems

Max-cut problems [24] can be viewed as an application of 1-QCQP. A graph
Laplacian matrix L can be obtained from a given undirected and weighted
graph G. For the max-cut value for G, we solve the following nonconvex
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{1,−1} integer program:

min
x

x⊤Lx

s.t. x2i = 1, i = 1, · · · , n. (35)

We relax (35) into

min
x

x⊤Lx

s.t. − 1 ≤ xi ≤ 1 i = 1, · · · , n,

and then apply SDP relaxation and Block-SDP. For CQ1, we further relax
the box constraints as follows:

∀i; −1 ≤ xi ≤ 1 =⇒ x⊤x ≤ n,

because CQ1 needs at least one convex constraint. The resulting 1-QCQP
is

min
x

x⊤Lx

s.t. x⊤x ≤ n. (36)

Note that (36) can be regarded as a simple minimum eigenvalue problem. An
optimal solution is an eigenvector corresponding to the minimum eigenvalue.
However, our purpose is to check the computational result, and we use CQ1
for (36).

We solved max-cut instances from [24]. Many randomly generated in-
stances are shown in [24], and the optimal values are known. The results
are in Table 1. In this table, the “error” is defined as

Error :=

∣∣∣∣OPTmethod −OPT

OPT

∣∣∣∣ ,
where OPTmethod is the optimal value of each method and OPT is the exact
optimal value. In [24], the names of the instances indicate how they were
generated as well as the number of variables. For example, “g05 80”, “80”
means the number of variables, and “g05” means the density of edges and
whether the weights of graph are all positive or include negative values.
The details are given in [24] and there are ten instances for each kind of
problem. In Table 1, “Time(s)” means the average time for ten instances,
and the best methods among SDP relaxation, Block-SDP, and CQ1 in terms
of either average computation time or average error are listed in bold.

Table 1 shows that CQ1 is “weaker” but “faster” than SDP relaxation.
Block-SDP is weaker and even slower than SDP relaxation in these problem
settings. CQ1 is much faster than SDP relaxation, so we can solve CQ1
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Table 1: Time and Error for Max-cut

Method SDP relaxation Block-SDP CQ1 Multiple CQ1

Instance Error Time(s) Error Time(s) Error Time(s) Error Time(s)

g05 80 0.02 0.363 0.15 0.472 0.15 0.022 0.02 0.075
g05 100 0.02 0.504 0.13 0.545 0.14 0.014 0.01 0.093
pm1d 80 0.17 0.341 0.53 0.419 1.10 0.012 0.10 0.093
pm1d 100 0.17 0.487 0.52 0.504 1.01 0.020 0.09 0.114
pm1s 80 0.15 0.324 0.54 0.392 1.14 0.013 0.10 0.086
pm1s 100 0.14 0.490 0.50 0.491 1.08 0.016 0.12 0.107
pw01 100 0.05 0.478 0.19 0.550 0.62 0.015 0.04 0.099
pw05 100 0.03 0.509 0.13 0.579 0.17 0.015 0.02 0.096
pw09 100 0.02 0.498 0.14 0.611 0.09 0.017 0.01 0.103
w01 100 0.13 0.494 0.53 0.544 1.28 0.013 0.10 0.113
w05 100 0.17 0.482 0.51 0.556 0.92 0.020 0.10 0.114
w09 100 0.17 0.485 0.51 0.562 0.94 0.015 0.12 0.123

many times in the same period of time it takes to solve the SDP relaxation
once. Accordingly, we tried to strengthen CQ1 by iterating it with a certain
rounding rule as follows. An optimal solution of CQ1, x̄, satisfies x̄⊤x̄ = n
because the objective function is nonconvex. Consequently, there exists a
component of x̄ whose absolute value is more than one (otherwise, all the
components are ±1, and x̄ is an exact optimal solution for (35)). Then, we
fix such a component as ±1 and solve a small problem recursively. Note
that if the objective function becomes positive (semi)definite by fixing some
of the components and there exists no xi whose absolute value is more
than one, we set the component which has the maximum absolute value
of all the components to 1 or −1. We perform this rounding until all the
components are ±1. Therefore, we have a feasible solution of the original
problem (35) and obtain an upper bound of the original optimal value,
while SDP relaxation, Block-SDP, and CQ1 find lower bounds. We call this
rounding “Multiple CQ1” and show the results in the right-most column of
Table 1. The results indicate that Multiple CQ1 is still “faster” than SDP
relaxation. Such a faster method is useful when we want to solve a problem
repeatedly.

6 Conclusions

In this paper, we proposed SLR, a new, fast convex relaxation for QCQP.
SLR is a method for solving the Lagrangian dual problem of a given QCQP.
There have been many studies on constructing Lagrangian dual problems
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for nonconvex problems and reformulating them as semidefinite problems
(SDPs). Instead of solving an SDP, our method divides the objective func-
tion of the Lagrangian dual problem into two parts and iteratively solves a
1-QCQP. We furthermore transform the 1-QCQP into a convex quadratic 1-
QCQP called CQ1 whose feasible region forms the convex hull of the feasible
region of the original 1-QCQP. Hence, we can obtain the exact optimal value
of the 1-QCQP by solving CQ1. SDP relaxation can also solve the 1-QCQP
exactly, but CQ1 is much faster. Numerical experiments confirmed this ad-
vantage of CQ1. CQ1 performed well for randomly generated 1-QCQP and
max-cut problems.

In SLR, we successively solve a 1-QCQP with the Lagrange multiplier
λ updated using a gradient method. We proved that the objective function
ψ(λ) is quasi-concave and has the good property that all the stationary
points in Λ+ are global optimal solutions, and thus, simple gradient methods
work well. SLR is a faster relaxation compared with the interior point
method for SDP relaxation for large n and m. Furthermore, by adding a
new valid RQT constraint, we could obtain even a better optimal value than
SDP relaxation could for some m-QCQP instances.

Our method can be regarded as a subgradient method that is applied to
a quasi-concave problem induced from the Lagrangian dual of an m-QCQP.
To ensure convergence, the quasi-concave problem must satisfy certain con-
ditions, (e.g., in [15]) but unfortunately, it is not easy to check whether
our quasi-concave problem satisfies the Hölder condition. In the future, we
would like to investigate the global convergence of our algorithm.

When the objective function is nonconvex, we need to approximate the
feasible region Λ+ of the Lagrangian dual problem, and as a result, the SLR
become worse in performance than that of solvingm-QCQP with the convex
objective function. We would like to improve the performance of SLR for
instances having nonconvex objective functions.
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A Proofs of Theorems

Proof of Theorem 1

Proof. The vector g̃λ of (21) can be found from

ψ(λ) = ϕ(µ̄λλ)

= x̄⊤
λ

(
Q0 + µ̄λ

m∑
i=1

λiQi

)
x̄λ + 2

(
q0 + µ̄λ

m∑
i=1

λiqi

)⊤

x̄λ + γ0 + µ̄λ

m∑
i=1

λiγi.

We prove that the vector g̃λ is in the quasi-subdifferential ∂ψ defined by
(22). Note that in [14, 15], the quasi-subdifferential is defined for a quasi-
convex function, but ψ is quasi-concave. Therefore (22) is modified from the
original definition of ∂ψ for a quasi-convex function. We further consider
(22) as

∂ψ(λ) = {s | ψ(ν) ≤ ψ(λ), ∀ν; s⊤(ν − λ) < 0}
= {s | ψ(ν) ≤ ψ(λ), ∀ν; s⊤ν < s⊤λ} (37)

Now we show that g̃λ is in (37). When µ̄λ = 0, g̃λ = 0 satisfies (22) and
g̃λ ∈ ∂ψ(λ) holds. When µ̄λ > 0, it is sufficient to consider the vector

gλ :=

 x̄⊤
λ Q1x̄λ + 2q⊤1 x̄λ + γ1

...
x̄⊤

λ Qmx̄λ + 2q⊤mx̄λ + γm


instead of g̃λ because ∂ψ(λ) forms a cone. Then, since x̄λ is feasible for λ,
we have

x̄⊤
λ

(
m∑
i=1

λiQi

)
x̄λ + 2

(
m∑
i=1

λiqi

)⊤

x̄λ +

m∑
i=1

λiγi ≤ 0. (38)
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From the definition of gλ, we can rewrite (38) as

gλ
⊤λ ≤ 0. (39)

Then, we have to prove that for an arbitrary vector ν which satisfies gλ
⊤ν <

gλ
⊤λ,

ψ(ν) ≤ ψ(λ)

holds. From (39), we get gλ
⊤ν ≤ 0 and it means that x̄λ is feasible for ν.

This implies that at an optimal solution x̄ν for ν, the optimal value is less
than or equal to the one at x̄λ. Therefore, we have ψ(ν) ≤ ψ(λ).

Next, we prove (ii)∼(iv). First, ϕ(λ) defined by (3) is concave for λ. It is
a general property of the objective function of the Lagrangian dual problem
(e.g. [7]). Furthermore, note that ψ(λ) is the maximum value of ϕ(µλ) with
respect to µ ≥ 0. Therefore, ψ(λ) ≥ ϕ(0) holds for all λ ∈ Λs.

We show (ii) first. Let λ1,λ2 (λ1 ̸= λ2) be arbitrary points in Λs, and
µ̄1 and µ̄2 be optimal solutions of (16) with fixed λ1 and λ2, respectively.
Without loss of generality, we can assume that ψ(λ1) ≥ ψ(λ2). Now, it is
sufficient to prove that for any fixed α ∈ [0, 1],

ψ(λα) ≥ ψ(λ2), (40)

where λα := αλ1 + (1 − α)λ2. If λ1 /∈ Λ+ or λ2 /∈ Λ+ holds, we get
ψ(λ2) = ϕ(0) and (40) holds. Therefore, we only have to consider the case
when both λ1 and λ2 are in Λ+, implying that µ̄1 and µ̄2 are positive by
(20). Since ϕ(λ) is concave for λ, we can see that for any β ∈ [0, 1],

ϕ(ξ(β)) ≥ βϕ(µ̄1λ1) + (1− β)ϕ(µ̄2λ2)

= βψ(λ1) + (1− β)ψ(λ2),

where ξ(β) := βµ̄1λ1+(1−β)µ̄2λ2. Accordingly, we can confirm that there
exists

β̄ :=
µ̄2α

µ̄1(1− α) + µ̄2α
∈ [0, 1]

which satisfies

ξ(β̄) =
µ̄1µ̄2

µ̄1(1− α) + µ̄2α
λα

For this β̄, we get

ψ(λα) = ϕ(µ̄λαλα)

≥ ϕ
(

µ̄1µ̄2
µ̄1(1− α) + µ̄2α

λα

)
= ϕ(ξ(β̄))

≥ β̄ψ(λ1) + (1− β̄)ψ(λ2)

≥ ψ(λ2), (41)
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where µ̄λα is an optimal solution for λα. Therefore, (ii) holds.
We can easily prove (iii). In the above proof of (ii), we assume λ1,λ2 is

in Λ+. Then, (41) means that ψ(λα) ≥ ψ(λ2) > ϕ(0), and we get λα ∈ Λ+

for any α ∈ [0, 1].
Lastly, we prove (iv). Let λ† be an arbitrary stationary point in Λ+,

and let µ̄λ† be an optimal solution of (16) for λ†. Moreover, x̄λ† denotes an
optimal solution of ϕ(µ̄λ†λ

†). From (21) and (20), we have

x̄⊤
λ†Qix̄λ† + 2q⊤i x̄λ† + γi = 0, i = 1, · · · ,m. (42)

On the other hand, it can be confirmed that x̄⊤
λ†
Q1x̄λ† + 2q⊤1 x̄λ† + γ1

...
x̄⊤

λ†
Qmx̄λ† + 2q⊤mx̄λ† + γm


is a subgradient vector for ϕ(ξ†), where ξ† = µ̄λ†λ

†. Hence, (42) implies that
µ̄λ†λ

† is a stationary point of ϕ. From the properties of concave functions, all
stationary points are global optimal solutions. Therefore, µ̄λ†λ

† is a global
optimal solution of ϕ and λ† is also a global optimal solution of ψ.

Proof of Theorem 2

Proof. Let ∆ be the feasible region for (x, t) of (23) and ∆rel be the feasible
region of the relaxed problem (26). Let conv(∆) be the convex hull of ∆.
We will prove that ∆rel = conv(∆). In this proof, we write “a

conv←−−− {b, c}”
if

∃s ∈ [0, 1] s.t. a = sb+ (1− s)c

holds. From the definition, it is obvious that ∆rel is convex and ∆ ⊆ ∆rel

holds. Meanwhile, the definition of the convex hull is the minimum convex
set that includes ∆, which implies conv(∆) ⊆ ∆rel is obvious. The convex
hull consists of all the points obtained as convex combinations of any points
in ∆. Therefore, if the proposition,

∀z ∈ ∆rel, ∃z1,z2 ∈ ∆; z
conv←−−− {z1, z2} (43)

holds, it leads to ∆rel ⊆ conv(∆) and we get ∆rel = conv(∆). To show (43),
let us choose an arbitrary point (x∗, t) ∈ ∆rel and let t∗ be the lower bound
of t for x∗ in ∆rel. Since (x∗, t) ∈ ∆rel holds for all t ≥ t∗, if

∀(x∗, t∗) ∈ ∆rel, ∃(x1, t1), (x2, t2) ∈ ∆; (x∗, t∗)
conv←−−− {(x1, t1), (x2, t2)}

(44)
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holds, then for any δt ≥ 0, (x∗, t∗+δt) ∈ ∆rel
conv←−−− {(x1, t1+δt), (x2, t2+δt)}.

These points are in ∆, and therefore, it is sufficient to focus on the case of
t = t∗.

To prove (44), we claim that if a point (x, t) ∈ ∆rel satisfies both inequal-
ities of (26) with equality, then the point is also in ∆. Since σ < σ̄, we can
see that x⊤Qλx+2q⊤λ x+γλ = 0 by setting the inequalities of (26) to equality
and taking their difference. Then, we can easily get x⊤Q0x+2q⊤0 x+γ0 = t.
Therefore, (x, t) is feasible for (23) and in ∆. In what follows, we focus on
when only one of the two inequalities is active.

Then, we have to prove (44) for whenQλ ⪰ O andQλ ⪰̸ O. However, due
to space limitations, we will only show the harder case, i.e., when Qλ ⪰̸ O,
implying 0 < σ̄ <∞. The proof of the other case is almost the same. In the
following explanation, we want to find two points in ∆ (i.e., points which
satisfy both inequalities of (26) with equality). Figure 3 illustrates ∆ and
∆rel. In the figure, we want to find P and Q.

The optimal solution (x∗, t∗) of the relaxation problem (26) satisfies at
least one of the two inequalities with equality. Here, we claim that the
matrix Q0 + σQλ (σ ∈ {σ̄, σ}) in the active inequality has at least one zero
eigenvalue and the kernel is not empty if (x∗, t∗) /∈ ∆ (the claim is proved
at the end of this proof). We denote the matrix in the inactive inequality as
Q0+σ

′Qλ (σ′ ∈ {σ̄, σ}). By using σ and σ′, (x∗, t∗) satisfies (26) as follows:{
x∗⊤(Q0 + σQλ)x

∗ + 2(q0 + σqλ)
⊤x∗ + γ0 + σγλ = t∗,

x∗⊤(Q0 + σ′Qλ)x
∗ + 2(q0 + σ′qλ)

⊤x∗ + γ0 + σ′γλ ≤ t∗.
(45)

Since Q0 + σQλ (⪰ O) has a zero eigenvalue, we can decompose x∗ into

x∗ = u∗ + τ∗v∗ s.t. u∗ ∈ Ker(Q0 + σQλ)
⊥,

v∗ ∈ Ker(Q0 + σQλ), ∥v∗∥2 = 1, (46)

τ∗ ∈ R.

Substituting these expressions into the constraints of (45), we get{
(u∗ + τ∗v∗)⊤(Q0 + σQλ)(u

∗ + τ∗v∗) + 2(q0 + σqλ)
⊤(u∗ + τ∗v∗) + γ0 + σγλ = t∗,

(u∗ + τ∗v∗)⊤(Q0 + σ′Qλ)(u
∗ + τ∗v∗) + 2(q0 + σ′qλ)

⊤(u∗ + τ∗v∗) + γ0 + σ′γλ ≤ t∗.
(47)

By fixing u∗ and v∗, we can see that (47) is of the form,{
A+ ατ∗ = t∗,

B + βτ∗ + γ(τ∗)2 ≤ t∗,
(48)

where (A,B, α, β, γ) are appropriate constants. Here, we regard τ∗ and t∗ in
(48) as variables (τ, t) and illustrate (48) in Figure 19. The feasible region
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Figure 19: The feasible region of (τ, t)

of (26) for fixed u∗ and v∗ is shown by the bold line. Note that the line
and the parabola have at least one intersection point (x∗, t∗). Here, both
points P(τ1, t1) and Q(τ2, t2) in Figure 19 satisfy both formulas of (48) with
equality, so these points are in ∆. Furthermore, it is obvious from Figure 19
that (τ∗, t∗)

conv←−−− {(τ1, t1), (τ2, t2)}. Therefore, (44) holds for any (x∗, t∗).
Now let us check that γ > 0 and thereby show that the second formula

of (48) actually forms a parabola. In (48), γ = v∗⊤(Q0 + σ′Qλ)v
∗ ≥ 0.

However, if γ = 0, then v∗ ∈ Ker(Q0 + σ′Qλ), so (Q0 + σ′Qλ)v
∗ = 0 holds.

Meanwhile, from the definition of v∗, we have (Q0 + σQλ)v
∗ = 0. Since

σ ̸= σ′, we get v∗ ∈ Ker(Q0)∩Ker(Qλ), and this contradicts the Dual Slater
condition.

Finally, we prove that Q0+σQλ (⪰ O) has a zero eigenvalue if (x∗, t∗) /∈
∆. From the definition of σ̄ and σ (see (24) and (25)), Q0+ σ̄Qλ or Q0+σQλ

has a zero eigenvalue if σ̄ or σ is positive. Moreover, from the Dual Slater
condition, σ̄ > 0 holds, so Q0+σ̄Qλ always has a zero eigenvalue. Therefore,
we only have to consider the case when σ = 0, i.e., Q0+σQλ = Q0, implying
Q0 ⪰ O. If Q0 does not have a zero eigenvalue (i.e. Q0 ≻ O), the claim
does not hold. However, we can confirm that in this case (x∗, t∗) is already
feasible for (23) (i.e. (x∗, t∗) ∈ ∆) and we do not need to consider this
case. We can check its feasibility for (23) by subtracting an equality with
σ (= 0) from an inequality with σ̄ and dividing the resulting inequality by
σ̄ (> 0).

Remark 1. This proof suggests that if an optimal solution x∗ of (26) is
found and x∗ is not feasible for (23), we can find an optimal feasible solution
of (23). If (x∗, t∗) is an optimal solution of (26), then in Figure 19, the slope
α of the line A+ατ∗ = t∗ is zero or (x∗, t∗) is equal to the end point P or Q
and is already feasible for (23) because t∗ is the minimum value such that
we can not obtain a t any smaller than t∗ in the bold line part in Figure
19. In the former case, we can find an optimal feasible solution of (23)
by moving x∗ in the direction of ±v∗ defined in (46). We find an optimal
feasible solution of (Pk) in this way in SLR.
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