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Abstract

Parameter estimation using the maximum likelihood method is often difficult
since normalizing constants do not have explicit forms. We propose a new class of
strictly proper scoring rules for statistical models on spheres that does not require
the calculation of normalizing constants. The construction of the proposed class is
based on divergence functions. We investigate orthogonally-invariant scoring rules
in the proposed class. We show through numerical experiments that the proposed
scoring rules work well.

1 Introduction

We consider statistical inference for parametric models on an n-dimensional unit sphere

X :=
{
x = (x1, . . . , xn+1)⊤ ∈ Rn+1 : (x1)2 + · · ·+ (xn+1)2 = 1

}
.

Let M be a parametric statistical model on X . We assume that each element in M has
a strictly positive and twice continuously differentiable probability density p with respect
to the uniform measure µ.

Statistical inference on spheres has gathered much attention not only in directional
statistics [13] but also in machine learning. For example, see [7] for context analysis, [14]
for visual learning, [11] for genomic analysis, and [17] for morphometrics.

Using the maximum likelihood method to estimate parameters of statistical models
on spheres is often difficult. Suppose that M is parametrized as {p(·; θ) = p̃(·; θ)/c(θ) :
θ ∈ Θ} with Θ ⊂ Rd and d ∈ N. The normalizing constant c(θ) of p(·; θ) often does
not have an explicit form. A typical example of a distribution on X whose normalizing
constant is difficult to represent explicitly is the Fisher–Bingham distribution [13]. To
obtain maximum likelihood estimates for the Fisher–Bingham model, the saddle-point
approximation [12] and the holonomic gradient method [15] have been proposed.

Instead of using the maximum likelihood method, we consider parameter estimation
based on proper, 2-local, and homogeneous scoring rules. A scoring rule S is a loss
function S(x,Q) : X × M → R ∪ {∞} that measures the quality of a distribution Q
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as an estimate of the distribution of a random variable X on X when the realized value
of X is x. It is said to be proper if the expected score

∫
S(x,Q)dP (x) is minimized at

Q = P for arbitrary P ∈ M and is said to be strictly proper if the minimizer is unique.
If M is parametrized by θ, based on samples x1, x2, . . . , xT and a proper scoring rule S,
we estimate θ by

θ̂(x1, . . . , xT ) ∈ argmin
θ∈Θ

T∑
t=1

S(xt, Qθ).

A 2-local scoring rule S is a scoring rule represented by

S(x,Q) = s(x, q(x),∇q̃(x),∇2q̃(x))

with s : X × R+ × Rn+1 × R(n+1)×(n+1) → R ∪ {∞} for all x ∈ X and all Q ∈ M, where
q(x) is a probability density of Q ∈ M with respect to the uniform probability measure

µ, q̃ is an extension of q to a function on Rn+1 \ {0} such that q̃(z) := q(z/
√
z⊤z) for any

z ∈ Rn+1\{0}, ∇ is the gradient operator on Rn+1, and ∇2q̃ = ∇(∇q̃)⊤. A 2-local scoring
rule is said to be homogeneous if s(x, q(x),∇q̃(x),∇2q̃(x)) = s(x, λq(x), λ∇q̃(x), λ∇2q̃(x))
for an arbitrary positive constant λ. To evaluate a 2-local and homogeneous scoring rule,
we do not need the normalizing constant. This definition of a 2-local and homogeneous
scoring rule is based on [9] and [16].

For construction of proper homogeneous scoring rules on the Euclidean space, Hyvärinen
[10] proposed the Hyvärinen scoring rule, a strictly proper, 2-local and homogeneous scor-
ing rule on the Euclidean space. Ehm and Gneiting [9] and Parry et al. [16] proposed a
wide class of proper and homogeneous scoring rules on the Euclidean space.

In this paper, we introduce a useful class of strictly proper, 2-local and homogeneous
scoring rules for parametric models on spheres. Focusing on the relationship between
strictly proper scoring rules and divergence functions, we define divergence functions be-
tween probability distributions on X and construct the class including a scoring rule corre-
sponding to the Hyvärinen scoring rule for models on the Euclidean space. Furthermore,
we propose scoring rules that are invariant with respect to orthogonal transformations.

The rest of the paper is organized as follows. In Section 2, we prepare notations
and the relationship between strictly proper scoring rules and divergence functions. In
Section 3, we propose a class of strictly proper, 2-local and homogeneous scoring rules for
parametric models on spheres. In Section 4, we investigate orthogonally-invariant scoring
rules. In Section 5, we provide numerical experiments. In Section 6, we conclude the
paper.

2 Preparation

2.1 Unit spheres as Riemannian manifolds

The metric tensor on a unit sphere X with respect to a local coordinate (u1, . . . , un) is
given by

gab(x) =
n+1∑
k=1

∂xk(u)

∂ua
∂xk(u)

∂ub
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for a, b ∈ {1, . . . , n} and for x ∈ X , In this paper, we use a system of local coordinates
{(Uu, uu), (Ud, ud)} defined by Uu = X \ {(0, . . . , 0,−1)⊤} and

uu = (u1u, . . . , u
n
u)

⊤ =

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)⊤

,

and Ud = X \ {(0, . . . , 0, 1)⊤} and

ud = (u1d, . . . , u
n
d)

⊤ =

(
x1

−1 + xn+1
, . . . ,

xn

−1 + xn+1

)⊤

,

respectively. We use the partition {Hu, Hd} of X defined by Hu := {x ∈ X : xn+1 > 0}
and Hd := {x ∈ X : xn+1 ≤ 0}.

Throughout the paper, we use the Einstein summation convention: if the same index
appears in an upper position and in a lower position, a summation over the index is
implied.

For a scalar function h : X → R, the function h̃ : Rn+1\{0} → R denotes an extension

of h such that h̃(z) := h(z/
√
z⊤z) for z ∈ Rn+1 \ {0}. Then, we have

∇h̃(x) = ∂h(x)

∂ua
gab

∂x

∂ub
∈ Rn+1, (1)

where gab = gab(x) is the (i, j)-component of the inverse matrix G−1 of the matrix G =
(gab). We use this representation in the proof of Theorem 1.

2.2 Scoring rules and divergence functions

First, we give the definition of divergence functions.

Definition 1 (divergence function; see for example pp. 97–98 in [1]). A function d :
M × M → R ∪ {∞} is said to be a divergence function if for P,Q ∈ M, d(P,Q) ≥ 0
with the equality if and only if P = Q.

For a scoring rule S, we define

dS(P,Q) :=

∫
S(x,Q)dP (x)−

∫
S(x, P )dP (x). (2)

Lemma 1 (See for example [5]). If a scoring rule S is strictly proper, then dS is a
divergence function. If S is a scoring rule and dS is a divergence function, then S is
strictly proper.

We provide two examples of strictly proper scoring rules and the corresponding diver-
gence functions.

Example 1 (The Bregman scoring rule; see for example [6, 16]). The Bregman scoring
rule for a distribution Q on X is defined by

S(x,Q) = ϕ′ (q(x)) +

∫
(ϕ (q(y))− q(y)ϕ′ (q(y))) dµ(y),
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where ϕ : R+ → R is strictly concave and differentiable and ϕ′ denotes the derivative.
Since

dS(P,Q) =

∫
{ϕ (q(x))− ϕ (p(x)) + (p(x)− q(x))ϕ′ (q(x))} dµ(x) (3)

and ϕ is strictly concave, dS is a divergence. Thus, by Lemma 1, the Bregman scoring
rule is strictly proper. The function dS is known as the separable Bregman divergence
[4, 6, 8, 16]. However, it is neither 2-local nor homogeneous.

The following is an example of a scoring rule for parametric models on Rn+1.

Example 2 (The Hyvärinen scoring rule; see [10]). The Hyvärinen scoring rule S for a
distribution Q on Rn+1 is defined by

S(x,Q) =
1

2
∥∇ log q(x)∥2 +∆ log q(x),

where ∥ · ∥ is the Euclidean norm, ∇ is the gradient operator on the Euclidean space, ∆
is the Laplacian on the Euclidean space, and q is a density with respect to the Lebesgue
measure on Rn+1. Since by the integration by parts, dS is represented as

dS(P,Q) =
1

2

∫
p(x) ∥∇ log q(x)−∇ log p(x)∥2 dx, (4)

dS is a divergence. Thus, by Lemma 1, the Hyvärinen scoring rule is strictly proper. This
divergence is known as the Hyvärinen divergence function [10]. The scoring rule is 2-local
and homogeneous.

3 Proposed scoring rules on unit spheres

In this section, we introduce a useful class of strictly proper, 2-local, and homogeneous
scoring rules for parametric models on an n-dimensional unit sphere X .

Let f be a function X × Rn+1 → R such that for each x ∈ X , z 7→ f(x, z) is strictly
concave and differentiable. We define

df (P,Q) =

∫
X
p(x)

{
f (x,∇ log q̃(x))− f (x,∇ log p̃(x))

−
⟨
∇ log

q̃(x)

p̃(x)
, (∇2f) (x,∇ log q̃(x))

⟩}
dµ(x)

(5)

for P,Q ∈ M, where ⟨·, ·⟩ is the standard inner product in Rn+1, p̃ and q̃ are the extensions
of p and q, respectively, and

(∇2f)(x, z) :=

(
∂

∂z1
f(x, z), . . . ,

∂

∂zn+1
f(x, z)

)⊤

.

We show that the function df in (5) is a divergence function. Since for any x ∈ X ,
z 7→ f(x, z) is strictly concave, we have f(x, z1) − f(x, z2) > ⟨z1 − z2, (∇2f)(x, z1)⟩ for
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any x ∈ X and for any two distinct points z1, z2 ∈ Rn+1; see p.70 in [3]. Thus, for all
P,Q ∈ M, df (P,Q) ≥ 0 with the equality if and only if P = Q.

Let f be a function X × Rn+1 → R such that for each x ∈ M, z 7→ f(x, z) is
twice continuously differentiable and such that for each z2 ∈ Rn+1, z1 7→ ∇2f̃(z1, z2) is
differentiable at any z1 ∈ Rn+1 \ {0}. We define Sf : X × Rn+1 → R by

Sf (x,Q) =f (x,∇ log q̃(x))− (∇ log q̃(x))⊤ (∇2f) (x,∇ log q̃(x))

− (∇1 · ∇2f̃) (x,∇ log q̃(x))

− tr
(
(∇2

2f) (x,∇ log q̃(x))∇2 log q̃(x)
)

+ nx⊤(∇2f) (x,∇ log q̃(x)) , (6)

where

(∇1 · ∇2f̃)(x, z) := tr{∇(∇2f̃(x, z))
⊤}.

Here tr is the trace of an (n+ 1)× (n+ 1) matrix.
The following theorem provides a class of strictly proper, 2-local, and homogeneous

scoring rules on unit spheres.

Theorem 1. Assume that f : X × Rn+1 → R is a function such that for each x ∈ X ,
z 7→ f(x, z) is strictly concave and twice continuously differentiable and such that for each
z2 ∈ Rn+1, z1 7→ ∇2f̃(z1, z2) is differentiable at every z1 ∈ Rn+1 \ {0}. Then, the scoring
rule Sf defined by (6) is strictly proper, 2-local, and homogeneous. The corresponding
divergence function dSf

defined by (2) and (6) is equal to df defined by (5).

Proof. By definition, Sf is 2-local and homogeneous. To prove that Sf is strictly proper,
it suffices to show that dSf

= df since df is a divergence and Lemma 1 holds.
First, we show that df = dSf

, by assuming the equality∫
X
p(x)⟨∇ log p̃(x), (∇2f)(x,∇ log q̃(x))⟩dµ(x)

=−
∑

α∈{u,d}

∫
Hα

p(x)
∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
× du1α ∧ · · · ∧ dunα (7)

with {Hu, Hd} and {uu, ud} defined in Section 2, where for α ∈ {u, d}, gα is the metric
tensor with respect to (Uα, uα) and Gα is the matrix representation of gα. The equality
(7) will be proved later. From (5), we have

df (P,Q) =

∫
X
p(x)

{
f (x,∇ log q̃(x))− ⟨∇ log q̃(x), (∇2f) (x,∇ log q̃(x))⟩

+ ⟨∇ log p̃(x), (∇2f) (x,∇ log q̃(x))⟩
}
dµ(x)− C(P ), (8)
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where C(P ) represents terms dependent only on P . From the assumption that equality
(7) holds, we have

df (P,Q) =
∑

α∈{u,d}

∫
Hα

p(x)

{
f (x,∇ log q̃(x))− ⟨∇ log q̃(x), (∇2f) (x,∇ log q̃(x))⟩

− 1√
|Gα|

∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)}
× du1α ∧ . . . ∧ dunα − C(P ). (9)

By Appendix A.2, for α ∈ {u, d}, for x ∈ Hα,

Sf (x,Q) =f (x,∇ log q̃(x))−
⟨
∇ log q̃(x), (∇2f) (x,∇ log q̃(x))

⟩
− 1√

|Gα|
∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
. (10)

Combining (10) with (9) yields

df (P,Q) =

∫
X
p(x)Sf (x,Q)dµ(x)− C(P ).

Since df (P, P ) = 0, we have

C(P ) =

∫
X
p(x)Sf (x, P )dµ(x).

Thus, we obtain df = dSf
under the assumption that equality (7) holds.

In the rest of the proof, we show that equality (7) holds. Let

η(x) :=
n∑

a=1

(−1)a−1p(x)gab(x)

⟨
∂x(u)

∂ub
, (∇2f)(x,∇ log q̃(x))

⟩
×
√

|G(x)|du1(x) ∧ · · · ∧ dua−1(x) ∧ dua+1(x) ∧ · · · ∧ dun(x),

which is a differential (n − 1)-form. As shown in Appendix A.3, η is independent of the
choice of a coordinate u and is C1. From Stoke’s theorem (e.g.,[18]), we have

∫
X dξ = 0

for any differential (n− 1)-form ξ on X . Thus,

0 =

∫
X
dη

=
∑

α∈{u,d}

∫
Hα

∂

∂uaα

(
p(x)gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
× du1α ∧ · · · ∧ dunα

=
∑

α∈{u,d}

∫
Hα

(
∂

∂uaα
p(x)

)
gabα

⟨
∂x

∂ubα
, (∇2f) (x,∇ log q̃(x))

⟩√
|Gα|

× du1α ∧ · · · ∧ dunα

+
∑

α∈{u,d}

∫
Hα

p(x)
∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
× du1α ∧ · · · ∧ dunα. (11)
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Hence combining (1) with (11) yields∫
X
⟨∇ log p̃(x), (∇2f)(x,∇ log q̃(x))⟩dµ(x)

=
∑

α∈{u,d}

∫
Hα

(
∂p(x)

∂uaα

)
gabα

⟨
∂x

∂ubα
, (∇2f) (x,∇ log q̃(x))

⟩√
|Gα|du1α ∧ · · · ∧ dunα

=−
∑

α∈{u,d}

∫
Hα

p(x)
∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
du1α ∧ · · · ∧ dunα

=−
∫
X
p(x)

1√
|G|

∂

∂uaα

(
gabα

⟨
∂x

∂ubα
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gα|

)
dµ(x),

which shows that equality (7) holds. 2

Example 3. Let fk(x, z) := −(||z||2)k for k ≥ 1. The scoring rule Sfk is

Sfk(x,Q) = (2k − 1)∥∇ log q̃(x)∥2k + 2k∥∇ log q̃(x)∥2(k−1)tr
(
∇2 log q̃(x)

)
+ 4k(k − 1)∥∇ log q̃(x)∥2(k−2) (∇ log q̃(x))⊤∇2 log q̃(x)∇ log q̃(x),

where ∥ · ∥ is the standard norm in Rn+1. Since for all x ∈ X , fk(x, ·) is strictly concave,
Sfk is strictly proper.

When k = 1, Sf1 is given by

Sf1(s,Q) = ∥∇ log q̃(x)∥2 + 2tr(∇2 log q̃(x)).

The corresponding divergence function dSf1
in (5) is

dSf1
(P,Q) =

∫
p(x) ∥∇ log q̃(x)−∇ log p̃(x)∥2 dµ(x).

Here, Sf1 and dSf1
for probability densities on the sphere correspond to the Hyvärinen

scoring rule and the Hyvärinen divergence for probability densities on the Euclidean space,
respectively.

4 Orthogonally-invariant scoring rules on unit spheres

In this section, we investigate orthogonally invariant scoring rules. We denote an orthog-
onal transformation with an orthogonal matrix V as V (x) = V x.

In the following, suppose that a parametric modelM on the sphere satisfies Q◦V ∈ M
for any Q ∈ M and any orthogonal transformation V , where Q ◦ V is the distribution
given by Q ◦ V (A) = Q(V −1(A)) for any measurable set A. A scoring rule S on X is said
to be orthogonally-invariant if

S(V x,Q ◦ V −1) = S(x,Q).

The following lemma gives a sufficient condition for Sf in (6) to be orthogonally-
invariant.
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Lemma 2. The scoring rule Sf defined by (6) is orthogonally-invariant if f has the form

f(x, z) = g(∥z∥2),

where g : R+ → R is twice continuously differentiable and ∥ · ∥ is the standard norm in
Rn+1.

Proof. Let H(x) := ∇2 log q̃(x) ∈ R(n+1)×(n+1) and let ψ(x) := ∇ log q̃(x) ∈ Rn+1.
Since V ⊤V = In+1 with the (n+1)× (n+1) identity matrix In+1 and since for x ∈ X

and for z ∈ Rn+1,

f(V x, V z) = g(∥V z∥2) = g(∥z∥2),
(∇2f)(V x, V z) = 2g′(∥z∥2)V z,
(∇2

2f)(V x, V z) = 2g′(∥z∥2)In + 4g′′(∥z∥2)V zz⊤V ⊤,

we obtain

Sf (V x,Q ◦ V −1)

=f (V x, V ψ(x))− (ψ(x))⊤ V ⊤(∇2f) (V x, V ψ(x))

− (∇1 · ∇2f) (V x, V ψ(x))− tr
(
(∇2

2f) (V x, V ψ(x))H(x)
)

+ nx⊤V ⊤(∇2f) (V x, V ψ(x))

=g
(
∥ψ(x)∥2

)
− 2g′

(
∥ψ(x)∥2

) {
∥ψ(x)∥2 + tr (H(x))

}
− 4g′′

(
∥ψ(x)∥2

)
(ψ(x))⊤H(x)ψ(x)

=Sf (x,Q).

2

Combining Lemma 2 with Theorem 1 yields the following theorem.

Theorem 2. Suppose that a twice continuously differentiable function g : R+ → R satis-
fies

lim
w→+0

g′(w)
√
w = 0, (12)

lim
w→+0

g′′(w)w = 0, (13)

g′(w) < 0 for w ∈ R+, (14)

and

g′(w) + 2g′′(w)w < 0 for w ∈ R+. (15)

Then, the scoring rule Sf defined by (6) with f(x, z) = g(∥z∥2) is strictly proper, 2-local,
homogeneous, and orthogonally-invariant.

The first assumption (12) and the second assumption (13) ensure that f(x, z) in (5) and
(6) is twice continuously differentiable with respect to z at z = 0. The third assumption
(14) and the fourth assumption (15) ensure that for each x ∈ X , f(x, ·) is strictly concave.
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5 Numerical experiments

In this section, we give several numerical experiments of parameter estimation using
the proposed scoring rules. We consider the Fisher–Bingham distribution with density
function

p(x; a,A) =
1

c(a,A)
exp(a⊤x+ x⊤Ax),

where a ∈ Rn+1 and A ∈ R(n+1)×(n+1) satisfying A⊤ = A and tr(A) = 0.
Suppose that the dimension n of X is 3 and the true values of (a,A) are a = (0, 0, 0, 0)⊤

and A = diag(4, 2,−2,−4), where diag(d1, . . . , dk) is the diagonal matrix of which the
(i, i)-component is di.

Consider the estimation of A when a is known. We generate samples x1, . . . , xT and
calculate the estimates Âg(x1, . . . , xT ) based on the scoring rule in Theorem 2 with g :

R+ → R. We denote the scoring rule in Theorem 2 with g by Sg. We obtain Âg using
the gradient descent method where the initial value is the zero matrix, and evaluate the
squared error ∥Âg−A∗∥2F where ∥·∥F is the Frobenius norm. We repeat the process above
N times and obtain the average squared error.

We consider two classes of scoring rules. First, we consider g1,k(w) = −wk with
k ≥ 1/2. Figure 1 shows the average squared error with respect to the sample size T
when k = 1 and N = 100. Figures 2 and 3 show the average squared error with respect
to k when N = 1000 and T = 100 and T = 500, respectively.

From Figure 1, we observe that Âg1,1 is consistent. From Figures 2 and 3, we see that

average of ∥Âg1,k − A∗∥2F is minimized at about k = 1.
Second, we consider g2,k(w) = −(1 + kw) log(1 + kw) with k > 0. Figure 4 shows the

average squared error with respect to the sample size T when k = 1000 and N = 100.
Figure 5 and 6 show the average squared error with respect to k when N = 1000 and
T = 100 and T = 500, respectively.

From Figure 4, we see that Âg2,1000 is consistent. From Figures 5 and 6, we see that

the average of ∥Âg2,k − A∗∥2F decreases as k gets larger.

Here, we compare the average squared errors of Âg1,k and Âg2,k to the expected squared

error of the maximum likelihood estimator ÂMLE of A. Since we cannot calculate ÂMLE

directly, we calculate the Fisher information I(θ) of

θ = (a11, a22, . . . , ann, a12, a13, . . . , a1n+1, a23, . . . , ann+1)
⊤

by the Monte Carlo method.
From Figure 3, we see that when T = 500, the minimal value of the average squared

error of Âg1,k is about 0.705: this is 113.3% of that of ÂMLE. From Figure 6, we see that

when T = 500, the minimal value of the average squared error of Âg2,k is about 0.652:

this is 104.8% of that of ÂMLE.
These results show that the parameter estimation in the Fisher–Bingham distribution

based on our scoring rules is comparable to the maximum likelihood estimation and show
that the class {Sg2,k} work better than {Sg1,k} in this example.
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Figure 1. Average of ∥Âg1,1 −A∗∥2F with respect to T .

Figure 2. Average of ∥Âg1,k −A∗∥2F
with respect to k when T = 100.

Figure 3. Average of ∥Âg1,k −A∗∥2F
with respect to k when T = 500.

Figure 4. Average ∥Âg2,1000 −A∗∥2F with respect to T .

Figure 5. Average ∥Âg2,k −A∗∥2F
with respect to k when T = 100.

Figure 6. Average ∥Âg2,k −A∗∥2F
with respect to k when T = 500.

6 Conclusion

We have proposed a class of strictly proper scoring rules to estimate the parameters of
statistical models on spheres. We have defined new divergence functions on probabil-
ity distributions on spheres. To evaluate these scoring rules, we do not need normaliz-

10



ing constants because they are 2-local and homogeneous. Moreover, we have considered
orthogonally-invariant scoring rules. The proposed scoring rules work well and the per-
formance for parameter estimation is comparable to the maximum likelihood estimator
with respect to the squared error throughout numerical experiments.
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Appendix A

In this appendix, we provide the calculations used in Theorem 1.

A.1 Calculations over two local coordinates (Uu, uu) and (Ud, ud)

We summarize calculations over (Uu, uu) and (Ud, ud) used in Appendices A.2 and A.3.
Let H(x) := ∇2 log q̃(x) ∈ R(n+1)×(n+1) and let ψ(x) := ∇ log q̃(x) ∈ Rn+1.

From the definition,

xi =


2ui

u

1+
∑n

j=1(u
j
u)2
, (i = 1, . . . , n),

−1 + 2

1+
∑n

j=1(u
j
u)2
, (i = n+ 1)

(16)

for all x ∈ Uu. Therefore

∂uu
∂x

=


∂u1

u

∂x1 · · · ∂u1
u

∂xn+1

...
. . .

...
∂un

u

∂x1 · · · ∂un
u

∂xn+1


=
(

1
1+xn+1 In − 1

1+xn+1uu
)
,

∂x

∂uu
=


∂x1

∂u1
u

· · · ∂x1

∂un
u

...
. . .

...
∂xn+1

∂u1
u

· · · ∂xn+1

∂un
u


=

( 2

1+
∑n

j=1(u
j
u)2
In − 4

{1+
∑n

j=1(u
j
u)2}2

uuu
⊤
u

− 4

{1+
∑n

j=1(u
j
u)2}2

u⊤u

)

=

(
(1 + xn+1)In − (1 + xn+1)2uuu

⊤
u

−(1 + xn+1)2u⊤u

)
. (17)
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Hence the representation of the metric tensor on (Uu, uu) denoted by Gu is

Gu =

(
∂x

∂uu

)⊤
∂x

∂uu

=
{
(1 + xn+1)In − (1 + xn+1)2uuu

⊤
u

}2
+ (1 + xn+1)4uuu

⊤
u

= (1 + xn+1)2In + (1 + xn+1)3
{
−1 + xn+1 + (1 + xn+1)u⊤u uu

}
uuu

⊤
u

= (1 + xn+1)2In, (18)

and

|Gu| = (1 + sn+1)2n. (19)

Here we use

u⊤u uu =
n∑

j=1

(uju)
2

=
1

(1 + xn+1)2

n∑
j=1

(xj)2

=
1

(1 + xn+1)2
(1− (xn+1)2)

=
1− xn+1

1 + xn+1
.

Similarly,

xi =

 − 2ui
d

1+
∑n

j=1(u
j
d)

2
, (i = 1, . . . , n),

1− 2

1+
∑n

j=1(u
j
d)

2
, (i = n+ 1)

(20)

for all x ∈ (Ud). Therefore

∂ud
∂x

=
(

1
−1+xn+1 In

1
1−xn+1ud

)
,

∂x

∂ud
=

(
(−1 + xn+1)In + (1− xn+1)2udu

⊤
d

(1− xn+1)2u⊤d

)
. (21)

Hence the representation of the metric tensor on (Ud, ud) denoted by Gd is

Gd =

(
∂x

∂ud

)⊤
∂x

∂ud
= (1− xn+1)2In, (22)

|Gd| = (1− xn+1)2n, (23)

where we use

u⊤d ud =
1 + xn+1

1− xn+1
.

13



A.2 Proof for equality (10)

We show that Sf is equal to the right-hand side in (10). To show this, it suffices to show
that the third term in (10) is equal to

(∇1 · ∇2f)(x, ψ(x)) + tr
(
(∇2

2f)(x, ψ(x))H(x)
)
− nx⊤(∇2f)(x, ψ(x)).

First, for α ∈ {u, d}, for x ∈ Uα the third term in (10) is expanded as

1√
|Gα|

∂

∂uaα

{
gabα

⟨
∂x

∂ubα
, (∇2f) (x,∇ log q̃(x))

⟩√
|Gα|

}
= gabα

⟨
∂x

∂ubα
,
∂

∂uaα
(∇2f) (x,∇ log q̃(x))

⟩
+

1√
|Gα|

⟨
∂

∂uaα

(√
|Gα|gabα

∂x

∂ub

)
, (∇2f) (x,∇ log q̃(x))

⟩
. (24)

The first term in the above equality (24) is

gabα

⟨
∂x

∂ubα
,
∂

∂uaα
(∇2f) (x,∇ log q̃(x))

⟩
= (∇1 · ∇2f) (x,∇ log q̃(x)) + gabα

⟨
∂x

∂ubα
, (∇2

2f) (x,∇ log q̃(x))
∂

∂uaα
∇ log q̃(x)

⟩
= (∇1 · ∇2f) (x,∇ log q̃(x)) + tr

(
(∇2

2f) (x,∇ log q̃(x))∇2 log q̃(x)
)
.

Second, from (17), (18) and (19), for x ∈ Uu, a part of the second term in (24) is
calculated as

∂

∂uau

(√
|Gu|gabu

∂x

∂ubu

)
=

∂

∂uu

(
(1 + xn+1)n−1In − (1 + xn+1)nuuu

⊤
u −(1 + xn+1)nuu

)
=

∂

∂uu

{(
2

1 +
∑n

j=1(u
j
u)2

)n (
1+

∑n
j=1(u

j
u)

2

2
In − uuu

⊤
u −uu

)}

= −n

(
2

1 +
∑n

j=1(u
j
u)2

)n+1(
1+

∑n
j=1(u

j
u)

2

2
In − uuu

⊤
u

−u⊤u

)
uu

+

(
2

1 +
∑n

j=1(u
j
u)2

)n(
uu − (n+ 1)uu

−n

)

=

(
2

1 +
∑n

j=1(u
j
u)2

)n(
{−n+ n(1− xn+1)− n}uu

n(1− xn+1)− n

)
= (1 + xn+1)n

(
−n(1 + xn+1)uu

−nxn+1

)
= −n

√
|Gu|x.

(25)
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From (21), (22) and (23), for x ∈ Ud, a part of the second term of (24) is calculated as

∂

∂uad

(√
|Gd|gabd

∂x

∂ubd

)
=

∂

∂ud

(
−(1− xn+1)n−1In + (1− xn+1)nudu

⊤
d (1− xn+1)nud

)
=

∂

∂ud

{(
2

1 +
∑n

j=1(u
j
d)

2

)n (
−1+

∑n
j=1(u

j
d)

2

2
In + udu

⊤
d ud

)}

= n

(
2

1 +
∑n

j=1(u
j
d)

2

)n+1(
1+

∑n
j=1(u

j
d)

2

2
In − udu

⊤
d

−u⊤d

)
ud

+

(
2

1 +
∑n

j=1(u
j
d)

2

)n(
−ud + (n+ 1)ud

n

)

=

(
2

1 +
∑n

j=1(u
j
d)

2

)n(
{n− n(1 + xn+1) + n}ud

−n(1 + xn+1) + n

)
= (1− xn+1)n

(
−n(1− xn+1)ud

−nxn+1

)
= −n

√
|Gd|x.

(26)

From (25) and (26), we obtain

1√
|G|

⟨
∂

∂ua

(√
|G|gab ∂x

∂ub

)
, (∇2f)(x,∇ log q̃(x))

⟩
= −nx⊤(∇2f)(x,∇ log q̃(x)).

Thus, the third term of (10) is equal to

(∇1 · ∇2f)(x, ψ(x)) + tr
(
(∇2

2f)(x, ψ(x))H(x)
)
− nx⊤(∇2f)(x, ψ(x)),

which completes the proof.

A.3 Proofs about η in Theorem 2

We show that η is independent of coordinates and is of class C1.
First, we show that η is independent of coordinates. We consider expressing η by

another coordinate system ũ that has the same orientation as u. We denote indices for u
by a, b, c, d ∈ {1, . . . , n} and denote indices for ũ by a′, b′, c′, d′ ∈ {1, . . . , n}, respectively.
The change of coordinates yields the following transformations:

(−1)a−1du1 ∧ · · · ∧ dua−1 ∧ dua+1 ∧ · · · ∧ dun

=
n∑

c′=1

(−1)c
′−1

∣∣∣∣∂u∂ũ
∣∣∣∣ ∂ũc′∂ua

dũ1 ∧ · · · ∧ dũc
′−1 ∧ dũc

′+1 ∧ · · · ∧ dũn,
(27)

gab = g̃a′b′
∂ũa

′

∂ua
∂ũb

′

∂ub
, (28)
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gab = g̃a
′b′ ∂u

a

∂ũa′
∂ub

∂ũb′
, (29)

|G| = |G̃|
∣∣∣∣∂ũ∂u

∣∣∣∣2 , (30)

where the metric tensor of X defined through ũ is denoted by g̃ and its matrix form is
denoted by G̃. To see that equality (27) holds, note that

dũc
′ ∧ (−1)a−1du1 ∧ · · · ∧ dua−1 ∧ dua+1 ∧ · · · ∧ dun

= dũc
′ ∧ (−1)a−1

(
∂u1

∂ũb
′
1
dũb

′
1

)
∧ · · · ∧

(
∂ua−1

∂ũb
′
a−1

dũb
′
a−1

)
∧
(
∂ua+1

∂ũb
′
a+1

dũb
′
a+1

)
∧ · · · ∧

(
∂un

∂ũb′n
dũb

′
n

)
=

(
∂u1

∂ũb
′
1
dũb

′
1

)
∧ · · · ∧

(
∂ua−1

∂ũb
′
a−1

dũb
′
a−1

)
∧ dũc

′ ∧
(
∂ua+1

∂ũb
′
a+1

dũb
′
a+1

)
∧

· · · ∧
(
∂un

∂ũb′n
dũb

′
n

)
=

∑
σ:permutation

σ(k′)=i

sgn(σ)
∂uσ(1)

∂ũ1
. . .

∂uσ(k
′−1)

∂ũk′−1

∂uσ(k
′+1)

∂ũk′+1
. . .

∂uσ(n)

∂ũn
dũ1 ∧ · · · ∧ dũn

=

∣∣∣∣∂u∂ũ
∣∣∣∣ ∂ũc′∂ua

dũ1 ∧ · · · ∧ dũn

= (−1)c
′−1

∣∣∣∣∂u∂ũ
∣∣∣∣ ∂ũc′∂ua

dũc
′ ∧ dũ1 ∧ · · · ∧ dũc

′−1 ∧ dũc
′+1 ∧ · · · ∧ dũn.

From (27), (28), (29), and (30), we have

n∑
a=1

(−1)a−1gab
∂x

∂ub

√
|G|du1 ∧ · · · ∧ dua−1 ∧ dua+1 ∧ · · · ∧ dun

=
n∑

c′=1

(−1)c
′−1

(
g̃a

′b′ ∂u
a

∂ũa′
∂ub

∂ũb′

)(
∂x

∂ũd′
∂ũd

′

∂ub

)(√
|G̃|
∣∣∣∣∂ũ∂u

∣∣∣∣)
×
∣∣∣∣∂u∂ũ

∣∣∣∣ ∂ũc′∂ua
dũ1 ∧ · · · ∧ dũc

′−1 ∧ dũc
′+1 ∧ · · · ∧ dũn

=
n∑

a′=1

(−1)a
′−1g̃a

′b′ ∂x

∂ũb′

√
|G̃|dũ1 ∧ · · · ∧ dũa

′−1 ∧ dũa
′+1 ∧ · · · ∧ dũn.

Therefore, we have

η(x) = p(x)
n∑

a′=1

(−1)a
′−1g̃a

′b′
⟨
∂x(ũ)

∂ũb′
, (∇2f)(x,∇ log q̃(x))

⟩
×
√
|G̃|dũ1 ∧ · · · ∧ dũa

′−1 ∧ dũa
′+1 ∧ · · · ∧ dũn,

which shows that η is independent of coordinates.
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Next, we show that η is C1. Since Uu ∪ Ud = X , we only need to prove that elements
in η are of class C1 over these two coordinates.

Consider (Uu, uu). From (17), (18) and (19), the element of η with respect to du1u ∧
· · · ∧ dua−1

u ∧ dua+1
u ∧ · · · ∧ dunu is given as

(−1)a−1p(x)gabu

⟨
∂x(uu)

∂ubu
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gu|

= (−1)a−1p(x)

(
2

1 +
∑n

b=1 (u
b
u)

2

)n

×

⟨(
1 +

∑n
j=1(u

j
u)

2

2
ea − uauuu,−uau

)
, (∇2f)(x,∇ log q̃(x))

⟩
(31)

where ea is a unit vector in Rn+1 whose a-th element is 1 and the other elements are 0.
To show that η is C1, it suffices to show that each element in (31) is C1. Since from (16),
(17) and (18), x and ∇ log q̃(x) are given as

xi =


2ui

u

1+
∑n

j=1(u
j
u)2
, (i = 1, . . . , n),

−1 + 2

1+
∑n

j=1(u
j
u)2
, (i = n+ 1),

∇ log q̃(x) =

(
∂x

∂uu

)
G−1

u

∂ log q(x(uu))

∂uu

=

(
1+

∑n
j=1(u

j
u)

2

2
In − uuu

⊤
u

−u⊤u

)
∂ log q(x(uu))

∂uu

and since p and q are of class C2, since p(x) ̸= 0 and q(x) ̸= 0 for all x ∈ X , and since f
is of class C2, we conclude that η is of class C1 over Uu.

Consider (Ud, ud). From (21), (22) and (23), the element of η with respect to du1d ∧
· · · ∧ dua−1

d ∧ dua+1
d ∧ · · · ∧ dund is given as

(−1)a−1p(x)gabd

⟨
∂x(ud)

∂ubd
, (∇2f)(x,∇ log q̃(x))

⟩√
|Gd|

= (−1)a−1p(x)

(
2

1 +
∑n

j=1

(
ujd
)2
)n

×

⟨(
1 +

∑n
j=1(u

j
d)

2

2
ea − uadud, u

a
d

)
, (∇2f)(x,∇ log q̃(x))

⟩
. (32)

Since from (20), (21) and (22), x and ∇ log q̃(x) are given as

xi =

 − 2ui
d

1+
∑n

j=1(u
j
d)

2
, (i = 1, . . . , n),

1− 2

1+
∑n

j=1(u
j
d)

2
, (i = n+ 1),

∇ log q̃(x) =

(
∂x(ud)

∂ud

)
G−1

d

∂ log q(x(ud))

∂ud

=

(
−1+

∑n
j=1(u

j
d)

2

2
In + udu

⊤
d

−u⊤d

)
∂ log q(x(ud))

∂ud
,
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we conclude that η is of class C1 over Ud. Thus, η is C1.
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