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Abstract

Matsuda and Komaki (2015) developed a singular value shrinkage prior
for the mean matrix parameter in the matrix-variate normal distribution. This
prior is superharmonic and therefore the generalized Bayes estimator and Bayesian
predictive density based on this prior are minimax. In this study, we develop
two types of priors that asymptotically dominate the singular value shrinkage
prior in both estimation and prediction. The first type, which is motivated
from the estimator of Efron and Morris (1976), adds scalar shrinkage whereas
the second type adds column-wise shrinkage. When applied to multivariate
linear regression, the second type accomplishes response selection or predictor
selection. In addition to the singular value shrinkage prior, we show that the
block-wise Stein prior is improved asymptotically in a similar way. Numerical
results imply that these improvements hold even in finite samples.

1 Introduction

Suppose that we have a matrix observation Y ∈ Rn×m whose entries are independent
normal random variables Yij ∼ N(Mij , 1), where M ∈ Rn×m is an unknown mean
matrix. In the notation of matrix-variate normal distributions by Dawid (1981), it
is expressed as Y ∼ Nn,m(M, In, Im), where Ik denotes the k-dimensional identity
matrix. We assume n − m − 1 > 0. We consider the estimation of M under the
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Frobenius loss

l(M, M̂) = ∥M̂ −M∥2F =

n∑
i=1

m∑
j=1

(M̂ij −Mij)
2.

Efron and Morris (1972) proposed

M̂EM = Y
(
Im − (n−m− 1)(Y ⊤Y )−1

)
(1)

as an empirical Bayes estimator. They proved that M̂EM is minimax and dominates
the maximum likelihood estimator M̂ = Y . Let Y = UΛV ⊤, U ∈ Rn×m, V ∈
Rm×m, Λ = diag(σ1(Y ), . . . , σm(Y )) be the singular value decomposition of Y ,
where U⊤U = V ⊤V = Im and σ1(Y ) ≥ · · · ≥ σm(Y ) ≥ 0 are the singular values of
Y . Stein (1974) pointed out that M̂EM shrinks the singular values of Y to zero:

M̂EM = U Λ̂V ⊤, Λ̂ = diag(σ1(M̂EM), . . . , σm(M̂EM)),

where

σi(M̂EM) =

(
1− n−m− 1

σi(Y )2

)
σi(Y ) (i = 1, . . . ,m).

Namely, M̂EM shrinks the singular values for each. Later, Efron and Morris (1976)
proved that the modified estimator

M̂MEM = Y

(
Im − (n−m− 1)(Y ⊤Y )−1 − m2 +m− 2

tr(Y ⊤Y )
Im

)
(2)

dominates M̂EM. The modified estimator M̂MEM shrinks the singular values of Y
stronger than the original estimator M̂EM:

σi(M̂MEM) =

(
1− n−m− 1

σi(Y )2
− m2 +m− 2∑m

j=1 σj(Y )2

)
σi(Y ) (i = 1, . . . ,m). (3)

In other words, M̂MEM adds scalar shrinkage to M̂EM. Tsukuma (2008) provided a
general method for improving matrix mean estimators by adding scalar shrinkage.
We note that M̂EM and M̂MEM are not generalized Bayes estimators.

Recently, Matsuda and Komaki (2015) developed a singular value shrinkage
prior

πSVS(M) = det(M⊤M)−(n−m−1)/2 (4)

and proved that it is superharmonic. This prior is a natural generalization of the
Stein prior (Stein, 1974). The generalized Bayes estimator with respect to πSVS is
minimax and has similar properties to M̂EM. This is an extension of the relation-
ship between the James–Stein estimator and the Stein prior. Matsuda and Komaki
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(2015) also discussed the application of the singular value shrinkage prior to multi-
variate linear regression. In multivariate linear regression, the regression coefficient
matrix often has low rank and it is called the reduced-rank regression (Reinsel and
Velu, 1998). Since the rank of a matrix is equal to the number of nonzero singular
values, singular value shrinkage priors work effectively in such reduced-rank case.

Since M̂EM is dominated by M̂MEM, it is expected that some generalized Bayes
estimators have similar properties to M̂MEM and dominate the generalized Bayes
estimator with respect to πSVS. We show that the generalized Bayes estimator with
respect to the prior

πMSVS1(M) = πSVS(M)∥M∥−γ
F

asymptotically dominates that with respect to πSVS if 0 < γ < 2(m2 + m − 2)
(Theorem 1). Since πMSVS1 is a product of the singular value shrinkage prior and
a prior shrinking to the zero matrix, the generalized Bayes estimator with respect
to πMSVS1 adds scalar shrinkage to that with respect to πSVS. In other words, the
generalized Bayes estimator with respect to πMSVS1 not only shrinks singular values
for each but also shrinks singular values overall like M̂MEM. We also show that the
generalized Bayes estimator with respect to the prior

πMSVS2(M) = πSVS(M)
m∏
j=1

∥M·j∥−γj

asymptotically dominates that with respect to πSVS if 0 < γj < 2m − 2 (j =
1, · · · ,m) (Theorem 2). Here, ∥M·j∥ denotes the norm of the j-th column vector
of M . Since πMSVS2 is a product of the singular value shrinkage prior and a prior
shrinking each column, the generalized Bayes estimator with respect to πMSVS2

adds column-wise shrinkage to that with respect to πSVS. In particular, πMSVS2

attains response selection or predictor selection (Chen et al., 2012) when applied to
multivariate linear regression.

In addition to the singular value shrinkage prior, we show that the block-wise
Stein prior (Brown and Zhao, 2009) is also improved by additional shrinkage. Con-
sider the problem of estimating θ ∈ Rd from the observation Y ∼ Nd(θ, Id). In
many cases, the d-dimensional mean vector θ of a multivariate normal distribution
is naturally split into several blocks: θ = (θ(1), · · · , θ(B)) where the dimension of
θ(b) is db and d =

∑B
b=1 db. For example, when wavelet regression is reduced to the

multivariate normal model, the mean vector has a block structure corresponding
to the resolution of the wavelet basis (Clyde, Parmigiani and Vidakovic, 1998). In
such case, the block-wise Stein prior is defined as

πBS(θ) =

B∏
b=1

∥θ(b)∥Rb , Rb = −(db − 2)+.
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This prior puts the Stein prior on each block. The generalized Bayes estimator with
respect to πBS is minimax. Brown and Zhao (2009) proved that the generalized
Bayes estimator θ̂πBS with respect to πBS is dominated by estimators with additional
shrinkage such as

θ̂(y) = θ̂πBS(y)−
R# + d− 2

∥y∥2
y,

where R# =
∑

bRb > 2 − d. Namely, they added the James–Stein type shrinkage
on the whole vector. However, their improved estimators are not generalized Bayes
estimators. In Remark 3.2 of Brown and Zhao (2009), they conjectured that the
block-wise Stein priors can be improved by multiplying Stein-type shrinkage priors.
We show that their conjecture is true at least asymptotically. Namely, we prove
that the generalized Bayes estimator with respect to the prior

πMBS(θ) = πBS(θ)∥θ∥−γ

asymptotically dominates that with respect to πBS if 0 < γ < 2(R# + d − 2)
(Theorem 3).

Recently, an interesting parallel has been found (George, Liang and Xu, 2012)
between the point estimation of θ from y ∼ Nd(θ, Id) under the quadratic loss and
the predictive density estimation of ỹ ∼ Nd(θ, Id) based on y ∼ Nd(θ, Id) under the
Kullback–Leibler loss

D(p̃(· | θ), p̂(· | y)) =
∫

p̃(ỹ | θ) log p̃(ỹ | θ)
p̂(ỹ | y)

dỹ.

The Bayesian predictive density based on a prior π(θ) is defined as

p̂π(ỹ | y) =
∫

p̃(ỹ | θ)π(θ | y)dθ,

where π(θ | y) is the posterior distribution on θ given y. Komaki (2001) showed that
the Bayesian predictive density based on the Stein prior π(θ) = ∥θ∥−(d−2) dominates
that based on the uniform prior, which is minimax. George, Liang and Xu (2006)
extended this result and proved that Bayesian predictive densities based on super-
harmonic priors dominate those based on the uniform prior. Since matrix-variate
normal distributions are special cases of vector-variate normal distributions, these
results hold also in matrix-variate normal distributions. In particular, Bayesian pre-
dictive densities based on the singular value shrinkage priors dominate those based
on the uniform prior (Matsuda and Komaki, 2015). We show that the proposed
priors in this paper provide asymptotic improvement even in prediction. Here,
asymptotic expansion of the Kullback–Leibler risk given by Komaki (2006) and
Komaki (2015) is employed.
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In section 2, formulas of the asymptotic expansion of risk in estimation and
prediction are prepared. In section 3, priors that asymptotically dominate the
singular value shrinkage prior are developed. Application to multivariate linear
regression is also discussed. In section 4, priors that asymptotically dominate the
block-wise Stein prior are developed.

2 Asymptotic expansion of risk

In this section, we prepare formulas of the asymptotic expansion of risk in estimation
and prediction for vector-variate normal distributions. Although we consider vector-
variate normal distributions for simplicity, the results in this section hold also in
matrix-variate normal distributions.

2.1 Estimation

Consider the problem of estimating θ from the observation Y (N) ∼ Nd

(
θ,N−1Id

)
under the quadratic loss l(θ, θ̂) = ∥θ̂−θ∥2. The generalized Bayes estimator θ̂π with
respect to a prior π(θ) is expressed as

θ̂π(y(N)) = y(N) +
1

N
∇ logmπ(y

(N)),

where

mπ(y
(N)) =

∫
p(y(N) | θ)π(θ)dθ.

The difference of the quadratic risk between two generalized Bayes estimators is
obtained as follows.

Lemma 1. The difference of the quadratic risk between two generalized Bayes es-
timators θ̂π1 and θ̂π1π2 is expanded as

Eθ[∥θ̂π1 − θ∥2]− Eθ[∥θ̂π1π2 − θ∥2]

=− 1

N2

(
2(∇ log π1(θ))

⊤(∇ log π2(θ)) + ∥∇ log π2(θ)∥2 + 2∆ log π2(θ)
)
+ o(N−2)

(5)

Proof. From Stein’s lemma, the quadratic risk is

Eθ[∥θ̂π(y(N))− θ∥2]
=Eθ[∥y(N) − θ∥2] + 2Eθ[(y

(N) − θ)⊤∇ logmπ(y
(N))] + Eθ[∥∇ logmπ(y

(N))∥2]

=
d

N
+

1

N2
Eθ

[
∥∇ logmπ(y

(N))∥2 + 2∆ logmπ(y
(N))

]
=

d

N
+

1

N2

(
∥∇ log π(θ)∥2 + 2∆ log π(θ)

)
+ o(N−2). (6)

Substituting π = π1 and π = π1π2 into (6) and taking difference, we obtain (5).
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2.2 Prediction

Consider the problem of predicting Ỹ ∼ Nd(θ, Σ̃) based on Y (N) ∼ Nd(θ,N
−1Σ) by

a predictive density p̂(ỹ | y(N)). The Bayesian predictive density based on a prior
π(θ) is defined as

p̂π(ỹ | y(N)) =

∫
p̃(ỹ | θ)π(θ | y(N))dθ,

where π(θ | y(N)) is the posterior distribution on θ given y(N).

2.2.1 Proportional covariance case

First, suppose that Σ̃ is proportional to Σ (Komaki, 2001; George, Liang and
Xu, 2006). Without loss of generality, we assume Σ = Σ̃ = Id. From the re-
sults of Komaki (2006) on the asymptotic expansion of the Kullback-Leibler risk of
Bayesian predictive densities, the difference of the Kullback–Leibler risk between
two Bayesian predictive densities is obtained as follows.

Lemma 2. The difference of the Kullback–Leibler risk between two Bayesian pre-
dictive densities pπ1(ỹ | y(N)) and pπ1π2(ỹ | y(N)) is expanded as

Eθ[D(p(ỹ | θ), pπ1(ỹ | y(N)))]− Eθ[D(p(ỹ | θ), pπ1π2(ỹ | y(N)))]

=− 1

2N2

(
2(∇ log π1(θ))

⊤(∇ log π2(θ)) + ∥∇ log π2(θ)∥2 + 2∆ log π2(θ)
)
+ o(N−2).

(7)

Proof. For the normal model with known covariance, the information geometrical
quantities (Amari, 1985) are

gij = gij = δij , Γk
ij = 0, Tijk = 0.

Also, the Jeffreys prior coincides with the uniform prior πJ(θ) ≡ 1. Therefore, from
equation (3) of Komaki (2006), the Kullback–Leibler risk of the Bayesian predictive
density pπ(ỹ | y(N)) based on a prior π(θ) is

Eθ[D(p(ỹ | θ), pπ(ỹ | y(N)))]

=
d

2N
+

1

2N2
∥∇ log π(θ)∥2 + 1

N2
∆ log π(θ) + g(θ) + o(N−2), (8)

where g(θ) is a function independent of π(θ). Substituting π = π1 and π = π1π2
into (8) and taking difference, we obtain (7).
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Since the second-order term in (7) is exactly half of the second-order term in
(5), asymptotic improvement in estimation

lim
N→∞

N2
(
Eθ[∥θ̂π1π2 − θ∥2]− Eθ[∥θ̂π1 − θ∥2]

)
≤ 0

immediately implies asymptotic improvement in prediction

lim
N→∞

N2
(
Eθ[D(p(ỹ | θ), pπ1π2(ỹ | y(N)))]− Eθ[D(p(ỹ | θ), pπ1(ỹ | y(N)))]

)
≤ 0

for every θ.

2.2.2 General covariance case

Next, we consider the general setting where Σ and Σ̃ are not necessarily proportional
(Kobayashi and Komaki, 2008; George and Xu, 2008). Komaki (2015) obtained the
asymptotic expansion of the Kullback-Leibler risk of Bayesian predictive densities
when the observation and target to be predicted have different distributions with
common parameters. He introduced a new metric on the manifold of parametric
models, which is called the predictive metric. For the present problem, the co-
efficients of the predictive metric g◦ do not depend on θ and g◦ = N2Σ−1Σ̃Σ−1

(Example 1 in Komaki (2015)). The nabla operator ∇◦ and the Laplacian form
∆◦ are defined with respect to the predictive metric g◦ based on the usual frame-
work of Riemannian geometry. Using these geometrical quantities, the difference of
the Kullback–Leibler risk between two Bayesian predictive densities is obtained as
follows.

Lemma 3. The difference of the Kullback–Leibler risk between two Bayesian pre-
dictive densities pπ1(ỹ | y(N)) and pπ1π2(ỹ | y(N)) is expanded as

Eθ[D(p(ỹ | θ), pπ1(ỹ | y(N)))]− Eθ[D(p(ỹ | θ), pπ1π2(ỹ | y(N)))]

=− 1

2N2

(
2(∇◦ log π1(θ))

⊤(∇◦ log π2(θ)) + ∥∇◦ log π2(θ)∥2 + 2∆◦ log π2(θ)
)
+ o(N−2).

Proof. See Theorem 1 in Komaki (2015).

3 Improving on singular value shrinkage priors

In this section, we develop priors that asymptotically dominate the singular value
shrinkage prior (4) in estimation and prediction. Two types of priors are proposed
by introducing additional shrinkage: scalar shrinkage and column-wise shrinkage.
In section 3.1 and section 3.2, we consider the estimation of M and prediction of
Ỹ ∼ Nn,m(M, In, Im) based on Y (N) ∼ Nn,m(M,N−1In, Im). In section 3.3, we
consider the general setting of multivariate linear regression: estimation of B and
prediction of Ỹ ∼ Nm,q(X̃B, Im,Σ) based on Y ∼ Nn,q(XB, In,Σ).
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3.1 Addition of scalar shrinkage

The generalized Bayes estimator with respect to the singular value shrinkage prior
πSVS in (4) has similar properties to the Efron–Morris estimator M̂EM in (1). How-
ever, the estimator M̂EM is dominated by the estimator M̂MEM in (2). Therefore, we
can reasonably expect that some generalized Bayes estimators have similar proper-
ties to M̂MEM and dominate the generalized Bayes estimator with respect to πSVS.
From the singular value decomposition form of M̂MEM in (3), we construct priors
by adding scalar shrinkage to πSVS:

πMSVS1(M) = πSVS(M)∥M∥−γ
F . (9)

The following Theorem proves that πMSVS1 asymptotically dominates πSVS in esti-
mation and prediction.

Theorem 1. (i) If 0 < γ < 2(m2+m−2), then the generalized Bayes estimator with
respect to πMSVS1 in (9) asymptotically dominates the generalized Bayes estimator
with respect to πSVS under the quadratic risk.

(ii) If 0 < γ < 2(m2 + m − 2), then the Bayesian predictive density based on
πMSVS1 in (9) asymptotically dominates the Bayesian predictive density based on
πSVS under the Kullback–Leibler risk.

Proof. Let K = M⊤M . From

∂Kbc

∂Mia
= δacMib + δabMic (10)

and
∂

∂Kab
detK = Kab detK,

we have

∂

∂Mia
detK =

∑
b,c

∂Kbc

∂Mia

∂

∂Kbc
detK = 2

∑
b

MibK
ab detK,

where Kab is the (a, b)th entry of the inverse matrix of K−1. Therefore,

∂

∂Mia
log πSVS(M) = −(n−m− 1)

∑
b

MibK
ab. (11)

Let
πS(M) = ∥M∥−γ

F = (trK)−γ/2.

From (10),
∂

∂Mia
trK = 2Mia.
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Therefore,
∂

∂Mia
log πS(M) = −γMia(trK)−1, (12)

∂2

∂M2
ia

log πS(M) = −γ(trK − 2M2
ia)(trK)−2. (13)

From (11), (12), and (13), we obtain

(∇ log πSVS(M))⊤(∇ log πS(M)) = γm(n−m− 1)(trK)−1,

(∇ log πS(M))⊤(∇ log πS(M)) = γ2(trK)−1,

∆log πS(M) = −γ(nm− 2)(trK)−1.

Then, the difference of the quadratic risk (5) between two generalized Bayes esti-
mators with respect to πSVS and πMSVS1 is

EM [∥M̂πSVS −M∥2F]− EM [∥M̂πMSVS1 −M∥2F]

=− 1

N2
γ(γ − 2(m2 +m− 2)) + o(N−2). (14)

Also, the second-oder term in the difference of the Kullback–Leibler risk (7) between
two Bayesian predictive densities with respect to πSVS and πMSVS1 is exactly half
of that in (14). Since (14) is positive when 0 < γ < 2(m2 +m − 2), we obtain the
Theorem.

From (14), the choice γ = m2 +m − 2 is optimal. This choice corresponds to
M̂MEM. Fig. 1 presents the Kullback–Leibler risk functions of Bayesian predictive
densities when m = 3, n = 5, σ1 = 10, σ3 = 0 and N = 1. Fig. 2 presents the
Kullback–Leibler risk functions of Bayesian predictive densities whenm = 3, n = 10,
σ2 = σ3 = 0 and N = 1. Here, the Stein prior is the prior π(M) = ∥M∥2−mn

F . These
figures imply that πMSVS1 with γ = m2+m−2 dominates πSVS even in finite samples.

3.2 Addition of column-wise shrinkage

In Theorem 1, we added scalar shrinkage to πSVS. We can also construct priors by
adding column-wise shrinkage to πSVS:

πMSVS2(M) = πSVS(M)
m∏
j=1

∥M·j∥−γj , (15)

where ∥M·j∥ denotes the norm of the j-th column vector of M . The following
Theorem proves that πMSVS2 also asymptotically dominates πSVS in estimation and
prediction.
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Figure 1: Risk functions of Bayesian predictive densities when m = 3, n = 5,
σ1 = 10, σ3 = 0, and N = 1. black: uniform prior, blue: the Stein prior, green: the
singular value shrinkage prior πSVS, red: the prior πMSVS1 with γ = m2 +m− 2.
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Figure 2: Risk functions of Bayesian predictive densities when m = 3, n = 10,
σ2 = σ3 = 0, and N = 1. black: uniform prior, blue: the Stein prior, green: the
singular value shrinkage prior πSVS, red: the prior πMSVS1 with γ = m2 +m− 2.
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Theorem 2. (i) If 0 < γj < 2m − 2 (j = 1, · · · ,m), then the generalized Bayes
estimator with respect to πMSVS2 in (15) asymptotically dominates the generalized
Bayes estimator with respect to πSVS under the quadratic risk.

(ii) If 0 < γj < 2m − 2 (j = 1, · · · ,m), then the Bayesian predictive density
based on πMSVS2 in (15) asymptotically dominates the Bayesian predictive density
based on πSVS under the Kullback–Leibler risk.

Proof. Let

πCS(M) =
m∏
j=1

∥M·j∥−γj .

Then,
∂

∂Mia
log πCS(M) = −γaMia∥M·a∥−2, (16)

∂2

∂M2
ia

log πCS(M) = −γa
(
∥M·a∥2 − 2M2

ia

)
∥M·a∥−4. (17)

From (11), (16), and (17), we obtain

(∇ log πSVS(M))⊤(∇ log πCS(M)) = (n−m− 1)
∑
a

γa∥M·a∥−2,

(∇ log πCS(M))⊤(∇ log πCS(M)) =
∑
a

γ2a∥M·a∥−2,

∆log πCS(M) = −(n− 2)
∑
a

γa∥M·a∥−2.

Then, the difference of the quadratic risk (5) between two generalized Bayes esti-
mators with respect to πSVS and πMSVS2 is

EM [∥M̂πSVS −M∥2F]− EM [∥M̂πMSVS2 −M∥2F]

=− 1

N2

∑
a

γa(γa − 2(m− 1))∥M·a∥−2 + o(N−2). (18)

Also, the second-order term in the difference of the Kullback–Leibler risk (7) be-
tween two Bayesian predictive densities with respect to πSVS and πMSVS2 is exactly
half of that in (18). Since (18) is positive when 0 < γa < 2m − 2 (a = 1, · · · ,m),
we obtain the Theorem.

From (18), the choice γ1 = · · · = γm = m − 1 is optimal. Fig. 3 presents the
Kullback–Leibler risk functions of Bayesian predictive densities when m = 3, n = 5,

11
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Figure 3: Risk functions of Bayesian predictive densities for mean matrices of the
form (19) when N = 1. black: uniform prior, blue: the Stein prior, green: the
singular value shrinkage prior πSVS, red: the prior πMSVS1 with γ = m2 + m − 2,
magenta: the prior πMSVS2 with γ1 = · · · = γm = m− 1.

and N = 1. Here, we consider mean matrices of the form

M =


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0
0 0 0

 , (19)

where σ2 = σ3 = 0. Although πMSVS1 is better than πSVS when σ1 is small, the risk
of πMSVS1 becomes almost the same as that of πSVS as σ1 increases. On the other
hand, πMSVS2 performs better than πSVS regardless of the value of σ1. In particular,
πMSVS2 provides larger risk reduction than πMSVS1 when σ1 is large. This is because
πMSVS2 shrinks each column vector separately while πMSVS1 shrinks all the column
vectors as a whole. Fig. 3 implies that πMSVS2 with γ1 = · · · = γm = m − 1
dominates πSVS even in finite samples.

3.3 Application to multivariate linear regression

Now, we consider the general setting of multivariate linear regression. We use
notations from Gupta and Nagar (2000). The size of a matrix A ∈ Rp×q is indicated
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by writing A(p× q). The vectorization of A(p× q) is the pq × 1 vector defined by

vec(A) = (a11, . . . , ap1, a12, . . . , ap2, . . . , a1q, . . . , apq)
⊤,

and the Kronecker productA⊗B of two matricesA(p×q) = (aij) andB(r×s) = (bij)
is the pr × qs matrix

A⊗B =


a11B a12B · · · a1qB
a21B a22B · · · a2qB
...

...
. . .

...
ap1B ap2B · · · apqB

 .

3.3.1 Estimation

Consider the estimation of B from

Y ∼ Nn,q(XB, In,Σ),

where X(n×p) is a matrix of explanatory variables, Y (n×q) is a matrix of response
variables, B(p × q) is a regression coefficient matrix, and Σ is a known covariance
matrix. We assume n ≥ p. By sufficiency reduction, the above model is reduced to

(X⊤X)−1X⊤Y ∼ Np,q(B, (X⊤X)−1,Σ).

We adopt the invariant loss l(B, B̂) = tr(B̂ −B)Σ−1(B̂ −B)⊤(X⊤X).
Assume p−q−1 > 0. From invariance, the generalized Bayes estimator with re-

spect to π0(B) = πSVS((X
⊤X)1/2BΣ−1/2) ∝ πSVS((X

⊤X)1/2B) is minimax. Also,
the generalized Bayes estimator with respect to π1(B) = πMSVS1((X

⊤X)1/2BΣ−1/2)
and π2(B) = πMSVS2((X

⊤X)1/2BΣ−1/2) asymptotically dominate that with respect
to π0(B). Here, asymptotics refer to the situation Σ⊗(X⊤X)−1 → 0. If the error is
independent among q response variables, then we have Σ = diag(σ2

1, · · · , σ2
q ) where

σ2
1, · · · , σ2

q are known variances. In this case,

((X⊤X)1/2BΣ−1/2)ij = ((X⊤X)1/2B)ijσ
−1
j .

Thus,

π2(B) ∝ πSVS((X
⊤X)1/2B)

q∏
j=1

∥(X⊤X)1/2B·j∥−γj .

Therefore, π2(B) accomplishes column-wise shrinkage. In the context of multivari-
ate linear regression, column-wise shrinkage on B corresponds to response selection
(Chen et al., 2012). Namely, response variables that are not related to any explana-
tory variables are ignored by shrinking the corresponding regression coefficients.
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Assume q−p−1 > 0. In this case, the generalized Bayes estimator with respect
to π0(B) = πSVS(Σ

−1/2B⊤(X⊤X)1/2) ∝ πSVS(Σ
−1/2B⊤) is minimax and the gen-

eralized Bayes estimator with respect to π1(B) = πMSVS1(Σ
−1/2B⊤(X⊤X)1/2) and

π2(B) = πMSVS2(Σ
−1/2B⊤(X⊤X)1/2) asymptotically dominate that with respect

to π0(B). If X⊤X is diagonal, then π2(B) accomplishes row-wise shrinkage. In
the context of multivariate linear regression, row-wise shrinkage on B corresponds
to predictor selection (Chen et al., 2012). Namely, explanatory variables that are
not related to any response variables are ignored by shrinking the corresponding
regression coefficients.

3.3.2 Prediction

Consider the prediction of

Ỹ ∼ Nm,q(X̃B, Im,Σ)

based on
Y ∼ Nn,q(XB, In,Σ)

by a predictive density p̂(Ỹ | Y ), where X(n × p) and X̃(m × p) are explanatory
variables, Y (n× q) and Ỹ (m× q) are response variables, B(p× q) is a regression co-
efficient matrix, and Σ is a known covariance matrix. We assume n ≥ p. Kobayashi
and Komaki (2008) and George and Xu (2008) considered the same setting with
q = 1. By sufficiency reduction, this problem is reduced to the prediction of

(X̃⊤X̃)†X̃⊤Ỹ ∼ Np,q(B, (X̃⊤X̃)†,Σ) (20)

based on
(X⊤X)−1X⊤Y ∼ Np,q(B, (X⊤X)−1,Σ), (21)

where A† is the Moore-Penrose pseudo-inverse matrix of A.
Matsuda and Komaki (2015) investigated the prediction of Ỹ ∼ Nn,m(M, C̃, Q̃)

based on Y ∼ Nn,m(M,C,Q) where n−m− 1 > 0. Let

Q1 =
{
(Q⊗ C)−1 + (Q̃⊗ C̃)−1

}−1
, Q2 = Q⊗ C

and write the diagonalization of Q
1/2
1 Q−1

2 Q
1/2
1 as Q

1/2
1 Q−1

2 Q
1/2
1 = U⊤ΛU , where U

is an orthogonal matrix and Λ is a diagonal matrix. Let A∗ = Q
1/2
1 U⊤(Λ−1−Im)1/2.

Lemma 4. (Matsuda and Komaki, 2015) If π
[
vec−1 {A∗vec(M)}

]
is superhar-

monic as a function of M , the Bayesian predictive density based on π(M) dominates
that based on the uniform prior.
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For example, the prior

π(M) = πSVS

[
vec−1

{
(A∗)−1vec(M)

}]
(22)

satisfies the condition of Lemma 4.
Now, our present problem (20) and (21) with p− q− 1 > 0 corresponds to C =

(X⊤X)−1, C̃ = (X̃⊤X̃)−1 and Q = Q̃ = Σ. Since Q = Q̃, we have Q1 = Q⊗(C−1+

C̃−1)−1 and therefore Q
1/2
1 Q−1

2 Q
1/2
1 = Iq ⊗ (C−1 + C̃−1)−1/2C−1(C−1 + C̃−1)−1/2.

Thus, letting (C−1+C̃−1)−1/2C−1(C−1+C̃−1)−1/2 = V ⊤KV be the diagonalization,
we obtain U = Iq⊗V , Λ = Iq⊗K, and A∗ = Q1/2⊗(C−1+C̃−1)−1/2V ⊤(K−1−Ip)

1/2.
Here, we used (A⊗B)(C⊗D) = AC⊗BD, (A⊗B)⊤ = A⊤⊗B⊤, and (A⊗B)−1 =
A−1 ⊗B−1 (Gupta and Nagar, 2000). Therefore, the prior (4) becomes

π0(B) = πSVS((K
−1 − Ip)

−1/2V (X⊤X + X̃⊤X̃)1/2BΣ−1/2)

∝ πSVS((K
−1 − Ip)

−1/2V (X⊤X + X̃⊤X̃)1/2B).

From Lemma 4, the Bayesian predictive density based on π0(B) is minimax. By
introducing additional shrinkage, we construct two priors:

π1(B) = πMSVS1((K
−1 − Ip)

−1/2V (X⊤X + X̃⊤X̃)1/2BΣ−1/2)

and

π2(B) = πMSVS2((K
−1 − Ip)

−1/2V (X⊤X + X̃⊤X̃)1/2BΣ−1/2).

From similar arguments to Theorem 1 and Theorem 2, the Bayesian predictive den-
sities based on π1(B) and π2(B) asymptotically dominate that based on π0(B).
Here, asymptotics refer to the situation Σ ⊗ (X⊤X)−1 → 0. If the error is in-
dependent among q response variables, then we have Σ = diag(σ2

1, · · · , σ2
q ) where

σ2
1, · · · , σ2

q are known variances. In this case, the prior π2(B) is simplified as

π2(B) ∝ πSVS((K
−1 − Ip)

−1/2V (X⊤X + X̃⊤X̃)1/2B)

×
q∏

j=1

∥((K−1 − Ip)
−1/2V (X⊤X + X̃⊤X̃)1/2B)·j∥−γj .

Therefore, the prior π2(B) accomplishes column-wise shrinkage, which corresponds
to response selection.

4 Improving on the block-wise Stein priors

In this section, we develop priors that asymptotically dominate the block-wise Stein
prior in estimation and prediction. We consider the estimation of θ and prediction
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of Ỹ ∼ Nd(θ, Id) based on the observation Y (N) ∼ Nd(θ,N
−1Id). Suppose that the

d-dimensional mean vector θ is naturally split into B blocks θ(1), · · · , θ(B) with size
d1, · · · , dB, where d =

∑
b db. Then, the block-wise Stein prior is defined as

πBS(θ) =

B∏
b=1

∥θ(b)∥Rb , Rb = −(db − 2)+.

and it is superharmonic. This prior puts the Stein prior on each block. The general-
ized Bayes estimator with respect to πBS is minimax. We put R# =

∑
bRb > 2−d.

Brown and Zhao (2009) studied the admissibility and quasi-admissibility prop-
erties of block-wise shrinkage estimators. They showed that the generalized Bayes
estimator θ̂πBS with respect to πBS is dominated by estimators with additional
James-Stein type shrinkage such as

θ̂(y) = θ̂πBS(y)−
R# + d− 2

∥y∥2
y.

From this result, in Remark 3.2, they conjectured that the block-wise Stein pri-
ors can be improved by multiplying Stein-type shrinkage priors. Following their
conjecture, we construct priors by adding scalar shrinkage to the block-wise Stein
priors:

πMBS(θ) = πBS(θ)∥θ∥−γ . (23)

The following Theorem proves that πMBS asymptotically dominates πBS in estima-
tion and prediction.

Theorem 3. (i) If 0 < γ < 2(R# + d − 2), then the generalized Bayes estimator
with respect to the prior πMBS in (23) asymptotically dominates the generalized
Bayes estimator with respect to the block-wise Stein prior πBS under the quadratic
risk.

(ii) If 0 < γ < 2(R#+d− 2), then the Bayesian predictive density based on the
prior πMBS in (23) asymptotically dominates the Bayesian predictive density based
on the block-wise Stein prior πBS under the Kullback–Leibler risk.

Proof. Let
πS(θ) = ∥θ∥−γ .

From the definition, we obtain

(∇ log πBS(θ))
⊤(∇ log πS(θ)) = −γR#∥θ∥−2,

(∇ log πS(θ))
⊤(∇ log πS(θ)) = γ2∥θ∥−2,

∆log πS(θ) = −γ(d− 2)∥θ∥−2.

16



Then, the difference of the quadratic risk (5) between two generalized Bayes esti-
mators with respect to πBS and πMBS is

Eθ[∥θ̂πBS − θ∥2]− Eθ[∥θ̂πMBS − θ∥2]

=− 1

N2
γ(γ − 2(R# + d− 2)) + o(N−2). (24)

Also, the second-order term in the difference of the Kullback–Leibler risk (7) be-
tween two Bayesian predictive densities with respect to πBS and πMBS is exactly
half of that in (24). Since (24) is positive when 0 < γ < 2(R# + d− 2), we obtain
the Theorem.

From (24), the choice γ = R#+ d− 2 is optimal. Fig. 4 presents the Kullback–
Leibler risk functions of Bayesian predictive densities when d = 9, d1 = d2 = d3 = 3,
and N = 1. Here, we consider mean parameters of the form θ = (t, t, · · · , t)⊤ with
0 ≤ t ≤ 3. Fig. 5 presents the Kullback–Leibler risk functions of Bayesian predictive
densities when d = 9, d1 = d2 = d3 = 3, and N = 1. Here, we consider mean
parameters of the form θ = t(0, 0, 0, 1, 1, 1, 2, 2, 2) with 0 ≤ t ≤ 3. These figures
imply that the prior πMBS with γ = R#+d−2 dominates the block-wise Stein prior
πBS even in finite samples. The risk reduction by the prior πMBS becomes larger
when the true mean is closer to the origin.
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Figure 4: Risk functions of Bayesian predictive densities at θ = (t, t, · · · , t)⊤ when
d = 9, d1 = d2 = d3 = 3, and N = 1. black: uniform prior, blue: the Stein prior,
green: the block-wise Stein prior πBS, red: the prior πMBS with γ = R# + d− 2.
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Figure 5: Risk functions of Bayesian predictive densities at θ =
t(0, 0, 0, 1, 1, 1, 2, 2, 2) when d = 9, d1 = d2 = d3 = 3, and N = 1. black: uni-
form prior, blue: the Stein prior, green: the block-wise Stein prior πBS, red: the
prior πMBS with γ = R# + d− 2.
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