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ON SPATIAL DISCRETIZATION OF

EVOLUTIONARY DIFFERENTIAL EQUATIONS

ON THE PERIODIC DOMAIN WITH A MIXED DERIVATIVE

SHUN SATO AND TAKAYASU MATSUO

Abstract. Recently, various evolutionary partial differential equations (PDEs) with a mixed deriva-
tive have been emerged and drawn much attention. However, their theoretical and numerical studies
are still in their early stage. In this paper, we mainly focus on numerical treatment, and as a first step
to construct a unified framework for such PDEs, we propose a procedure that transform the PDEs
with a mixed derivative into a standard form that suits some analysis. Then, based on the procedure,

we classify and discuss the spatial discretizations. As a result, we show the average-difference method
is suitable for the discretization of the mixed derivative, and furthermore newly introduce its higher

order extensions that opens a new door for accurate computations of such PDEs.

1. Introduction

In this paper, we consider numerical methods for the initial value problem for the evolutionary
partial differential equations (PDEs) in the form

(1.1)

{
(ut + g(u, ux, uxx, . . . ))x = f(u, ux, uxx, . . . ) (t ∈ [0, T ], x ∈ S),
u(0, x) = u0(x) (x ∈ S),

on the periodic domain S = R/2πZ. Here, u : [0, T ] × S → R is a dependent variable, t and x
are temporal and spatial independent variables, subscripts t and x denote the partial derivative with
respect to t and x, and u0 is an initial condition. Various equations in the form (1.1) have been
recently emerged and lively studied (see, Section 3 for examples and related results on them). However,
theoretical and numerical treatments of them are more difficult than usual evolutionary equations due
to the presence of the spatial differential operator ∂x := ∂/∂x operating on ut. We call the resulting
term utx mixed derivative hereafter.

The spatial differential operator ∂x in the mixed derivative is not invertible under the standard
setting of the space of periodic functions such as the Sobolev spaces (the precise meaning will be
explained in Section 2). Therefore, some problems in the form (1.1) are underdetermined while the
others are well-posed. In this paper, we focus on the latter case. Moreover, we restrict ourselves to the
spatial discretization (see, Remark 1.3), because the biggest issue is how to treat the spatial differential
operator operating on ut. In view of this, we mean the operator on ut when we merely say “the spatial
differential operator,” although other spatial differential operators can appear in the problem (1.1) in
the functions g and f .
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Before stating our challenge in this paper, we first note that there are existing works for similar
initial value problems on the whole real line with the vanishing boundary conditions. Since the spatial
differential operator ∂x is invertible when regarded as a linear operator between some appropriate
function spaces (see, e.g., Iório–Nunes [23] and references therein), the initial value problem can be
equivalently transformed into that for the integro-differential equation in the form

ut + g(u, ux, uxx, . . . ) = ∂−1
x f(u, ux, uxx, . . . )

(see, e.g., [29, 30, 7] for examples). Here, the operator

∂−1
x v(x) =

1

2

(∫ x

−∞
v(y)dy −

∫ ∞

x

v(y)dy

)
is the inverse of the spatial differential operator (the inverse operator ∂−1

x is sometimes called as the
antiderivative). We call the original differential equation differential form, and the induced integro-
differential equation integral form. Their integral forms have often been utilized rather than differential
forms (see, e.g., [28, 7]) in order to prove the well-posedness of the equations with a mixed derivative
on the whole real line. It should be noted that the situation is similar if one deal with a finite interval
with the Dirichlet boundary condition, where again ∂x is (in some sense) invertible.

However, due to the lack of the invertibility of ∂x, the derivation of the integral form is challenging
when we deal with the periodic domain. One usually hope to impose the periodic boundary conditions
on a finite interval in order to conduct some numerical experiments, because the class of PDEs with a
mixed derivative involves a lot of equations modeling the propagation of various waves.

Though there is certainly no unified approach so far to derive the integral form on the periodic
domain, there are some simple exceptions. For example, the reduced Ostrovsky equation

(1.2)

(
ut −

(
1

2
u2

)
x

)
x

= γu.

It models water waves on a very shallow rotating fluid, and is also referred as the short wave equa-
tion [22], Ostrovsky–Hunter equation [4], Vakhnenko equation [45], and Ostrovsky–Vakhnenko equa-
tion [5].

For this equation, Hunter [22] derived the integral form

(1.3) ut −
(
1

2
u2

)
x

= γ

(∫ x

0

u(t, y)dy − 1

2π

∫
S

∫ z

0

u(t, y)dydz

)
.

As the present authors understand, the transformation above can be described as follows (there is no
explicit explanation on it in Hunter [22]). Let u ∈ C([0, T ];H2(S)) ∩ C1([0, T ];H1(S)) be a solution
of the differential form (1.2) (see, [30, Lemma 1]), where Hs(S) denotes the sth Sobolev space with
the standard inner product (u(t) denotes a function satisfying (u(t))(x) = u(t, x) for any x ∈ S, and
we use similar notation hereafter). Here, the spatial differential operator operating on ut − (u2/2)x
can be regarded as a linear operator whose domain is H1(S), and is not invertible as is. Therefore,
we consider a restriction of its domain into an appropriate linear subspace A ⊆ H1(S) such that (a)
ut − (u2/2)x ∈ A holds and (b) the restricted operator ∂x|A is invertible. Fortunately, for the reduced
Ostrovsky equation, the set Ȟ1(S) of zero-mean functions, i.e., Ȟ1(S) = {v ∈ H1(S) |

∫
S v(x)dx = 0},

satisfies these two conditions. The latter condition (b) can be easily verified. For (a), we first note that
the integral of the both sides of (1.2) over x yields

∫
S u(t, x)dx = 0, which implies

∫
S ut(t, x)dx = 0. In

other words, ut(t) ∈ Ȟ1(S) holds for any t ∈ [0, T ] (this can also be regarded as the consequence of the
solution u(t) being an orbit on the linear subspace Ȟ1(S)). Since (u2/2)x ∈ Ȟ1(S) also holds due to
the periodicity, the former condition (a) is also satisfied. From the observation above, ∂x operating on
ut− (u2/2)x can be regarded as the restricted operator ∂̌x := ∂x|Ȟ1(S), and the differential form (1.2)
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can be rewritten as

∂̌x

(
ut −

(
1

2
u2

)
x

)
= γu.

Since ∂̌x is invertible, by operating with ∂̌−1
x concretely defined as

(1.4) ∂̌−1
x v(x) =

∫ x

0

v(y)dy − 1

2π

∫
S

∫ z

0

v(y)dydz,

we obtain

ut −
(
1

2
u2

)
x

= γ∂̌−1
x u,

which coincides with the integral form (1.3).
It should be noted that though the operator ∂̌−1

x (more precisely its concrete form (1.4)) had been
employed in the literature for deriving the integral forms of various equations in addition to the reduced
Ostrovsky equation above, no one has clarified the class of equations to which this strategy can be
applicable (this issue will be discussed later). Another note should go to the fact that this operator
is often denoted by ∂−1

x (see, e.g., [46, 31, 30]). However, we prefer to employ the somewhat unusual
notation ∂̌−1

x in order to clarify in which sense this operator is the inverse of the spatial differential
operator. Related to this, though ∂̌−1

x is sometimes called as an “antiderivative,” we do not use this
terminology that allows the ambiguity.

Based on the integral form derived by Hunter [22], various studies on the reduced Ostrovsky equation
have been conducted. Hunter [22] himself conducted numerical experiments based on the integral form
(however, the discrete counterpart of the operator ∂̌−1

x is not written). Liu–Pelinovsky–Sakovich [30]
conducted numerical experiments by the pseudospectral method. Coclite–Ridder–Risebro [8] devised a
numerical scheme based on the integral form (1.3) by using the trapezoidal rule for the discretization of
the operator ∂̌−1

x . Liu–Pelinovsky–Sakovich [30] showed the local well-posedness and the condition of
the finite-time wave breaking. Coclite–Ridder–Risebro [8] showed the unique existence of the entropy
solution. Moreover, they also proved that the numerical solution obtained by their method converges
to the unique entropy solution.

Let us turn our attention to existing works on other equations with a mixed derivative (note that,
we focus on the results on the periodic domain unless otherwise stated). Although there are sporadic
studies for some specific cases of (1.1), including (1.2) we have already seen, the discussion on this class
of PDEs from a unified viewpoint is still missing. First of all, note that, in view of the history of the
studies on the reduced Ostrovsky equation, we think that studies on each specific case of (1.1) should
be done in the following order: (i) find a transformation into a integral form, (ii) construct numerical
schemes based on the integral form, (iii) prove the well-posedness of the initial value problem, and (iv)
conduct some mathematical analyses on the numerical schemes. In this sense, PDEs in (1.1) can be
classified into the following four classes, based on to which extent they are investigated (see, Table 1):

(I): The case with g = hx(u) and f(u) = u, i.e.,

(1.5) (ut + hx(u))x = u.

(II): The case with g = hx(u, ux, . . . ) and f(u) = u, i.e.,

(1.6) (ut + hx(u, ux, . . . ))x = u.

(III): The case with g: general, f(u) = u, i.e.,

(1.7) (ut + g(u, ux, . . . ))x = u.

(IV): The general case, i.e.,

(1.8) (ut + g(u, ux, . . . ))x = f(u, ux, . . . ).
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Table 1. Existing results on the initial value problem (1.1). (A) and (B) indicate
results newly obtained in this paper. The blank cell implies that there are no results
even for a specific case.

Class (I) (II) (III) (IV)

Implicit constraint Linear Nonlinear

(i) Integral form [22] [46],[32],... [31] (A)

(ii) Discretization [29, 30],[8],... [46],[32],... (B) (B)

(iii) Well-posedness [29, 30],[8]

(iv)
Mathematical analysis

of discretization
[8]

Section 3 is devoted to list the examples of each class and existing works on them.
It should be noted that, equations in the class (IV) have the implicit constraint F(u(t)) = 0, where

(1.9) F(v) =

∫
S
f(v, vx, . . . )dx.

Recall that, the linear implicit constraint
∫
S u(t, x)dx = 0 is satisfied for any solutions of the reduced

Ostrovsky equation (1.2), included in the class (I). Actually, equations in the class (I), (II), and (III)
have the same linear implicit constraint, and thus share similar features to a certain extent. However,
due to the possible nonlinearity of the implicit constraint, the treatment of the class (IV) is far more
difficult. As a consequence of this difficulty, there are no related works on this class as shown in
Table 1.

Still, there is a well-known example as a PDE in the class (IV), the (nonlinear) Klein–Gordon (KG)
equation in light-cone coordinates

(1.10) utx = f(u).

It is also called “the characteristic form of KG”, or “KG in null coordinates.” Note that, although there
are certainly many studies on the Klein–Gordon equation in Euclidean coordinates uττ − uss = f(u)
(see, e.g., Debnath [10] and references therein), and these two representations are related by the simple
transformation τ = t + x, s = t − x of the independent variables, the results on the Euclidean case
do not give much useful information for the light-cone case. In fact, if we consider the initial value
problem (1.1) for the KG equation in light-cone coordinates, the corresponding problem in Euclidean
coordinates is the problem where the “initial data” is given along the line τ = −s, which seems to be
aberrant.

Remark 1.1. The nonlinear KG equation in light-cone coordinates has been intensively studied under
other boundary conditions. Tuckwell [44] discussed a finite difference scheme under the initial and
boundary conditions

u(0, x) = α(x) (x ∈ [0, L]), u(t, 0) = β(t) (t ∈ [0, T ]),

which is introduced by Fokas [13] for the linear KG equation utx = u and the sine-Gordon equation

(1.11) utx = sinu.

Recall that, thanks to the presence of the Dirichlet boundary condition, such a case is similar to the
case on the whole real line as we described before. Pelloni [35] showed the well-posedness of the sine-
Gordon equation with the initial and boundary conditions above. Pellinovsky–Sakovich [34] showed
the global well-posedness of the sine-Gordon equation on the whole real line. But, to the best of the
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present authors’ knowledge, the well-posedness of the sine-Gordon equation (and any other nonlinear
KG equation) on the periodic domain has not been developed.

In addition to the above, as we will list in Section 3, various new equations with a mixed derivative
have been emerged recently. Therefore, their theoretical and numerical studies are indispensable, and
a unified approach to obtain the corresponding integral form that may become their basis is strongly
hoped now. However, this has been left open so far, as mentioned before, which might be attributed
to the fact that this becomes surprisingly difficult when we proceed from the PDEs in the class (I)
toward (IV).

Next, let us illustrate this in more detail. To this end, we discuss to which class Hunter’s strategy
described before for obtaining the integral form can be applied. First, equations in the class (II)
(including (I)) can be transformed into the corresponding integral form in a manner similar to that
described before for the reduced Ostrovsky equation.

On the other hand, when one deals with the class (III), the situation is a little bit complicated.
In this case, g(u, ux, . . . ) is not a zero-mean function in general, as opposed to the class (II) where
g(u, ux, . . . ) = hx(u, ux, . . . ) is always zero-mean. Thus, the spatial differential operator ∂x operating
on ut + g(u, ux, . . . ) cannot be regarded as the restricted spatial differential operator ∂̌x (this requires
the precise definition including the appropriate regularity of the solution, but here we omit it, and show
the rough picture of the difficulty). Still, ut(t) itself is a zero-mean function so that the equations (1.7)
in the class (III) can be rewritten in the separated form

∂̌xut + ∂xg(u, ux, . . . ) = u.

Then we follow the same procedure as in the reduced Ostrovsky equation case, except that here we
consider the condition that “(a) ut ∈ A holds” instead of “(a) ut + g ∈ A holds” employed before.
Then by using the inverse ∂̌−1

x , we obtain the integral form

ut + ∂̌−1
x ∂xg(u, ux, . . . ) = ∂̌−1

x u.

This form has been already pointed out by Miyatake–Yaguchi–Matsuo [31] for the potential Ostrovsky
equation (3.6). Although the transformation itself is successful, there remains unusual operator ∂̌−1

x ∂x
which does not coincide with the identity operator in general.

Moreover, when it comes to the class (IV), the situation becomes far more challenging. Recall that
Hunter’s strategy is to “find an exquisite linear subspace A such that (a) ut ∈ A holds and (b) ∂x|A is
invertible.” Therefore, if we stick to define an inverse of ∂x for equations in the class (IV), we should
consider a (sufficiently small) linear subspace to which ut belongs. Unfortunately, however, since the
solution u(t) is the orbit on Hs

f (S) := {v ∈ Hs(S) | F(v) = 0}, which is a Banach manifold (see, e.g.,

[1] for its definition and details) rather than a linear subspace, such a linear subspace should be the
tangent space to Hs

f (S) at u(t). Although this can be done for some cases (see, [40]), it involves highly
complicated mathematical treatment, and thus we believe it is not a good way to achieve our aim here.

Below, we address our contributions in the present paper. In order to circumvent the difficulty
described above, we give up to follow Hunter’s strategy, and propose a novel procedure to derive the
integral form. There, we employ the Tseng generalized inverse operator ∂g

x (Definition 2.3) of the
differential operator ∂x, which is a standard concept of the generalized inverse for linear operators
between Hilbert spaces (see, e.g., [3]). Moreover, we show the equivalence of the differential and
integral forms (Theorem 4.9, which corresponds to (A) in Table 1), which has not been explicitly
confirmed in the literature. Proposed procedure can be summarized as follows:

(1) Using the property (Lemma 2.7) of generalized inverse operators, we obtain ut = g(u, ux, . . . )+
∂g
xf(u, ux, . . . ) + c, where c does not depend on x.
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(2) Under some assumptions, by using the implicit constraint F(u) = 0, we determine the value
of c by (4.3), and obtain the integral form.

There, the key is that we avoid determining an exquisite linear subspace A in advance. In other words,
we give up to directly define an inverse of ∂x operating on ut. Instead, we use the Tseng generalized
inverse in order to tentatively derive the integral form allowing the unknown constant c, which is then
separately determined by using the implicit constraint F(u) = 0.

It should be noted that, the operator ∂̌−1
x can be regarded as a special case of the Tseng generalized

inverse, so that the reformulation method by Hunter and its followers can be viewed as the special
case of our procedure. There, the class of equations such that “Hunter’s strategy has been successfully
used” can be interpreted as those such that “c(t) = 0 thanks to its structure” (see, Example 4.1).
Moreover, new procedure gives a more natural way for the class (III) than by the direct use of ∂̌−1

x

mentioned above (see, Example 4.2).

Remark 1.2. Note that, since the spatial differential operator ∂x is not invertible, the target equa-
tions turn out to be infinite-dimensional DAEs (differential-algebraic equations), whereas the standard
evolutionary PDEs are often regarded as infinite-dimensional ODEs (ordinary differential equations).
Roughly speaking, proposed procedure can be regarded as an infinite-dimensional extension of the
geometric reduction [36] for finite-dimensional DAEs (see, Section 4.2). Since the geometric reduc-
tion for DAEs is a basis of unique existence theory for nonlinear DAEs, and all the well-posedness
results for equations in the class (I) are based on their integral form, our contribution may be used for
PDE-theoretic studies of the PDEs with a mixed derivative. This will be discussed in Section 4.2.

Thanks to the equivalence theorem of the differential and integral forms, there are two ways to
devise spatial discretization, i.e., discretizing the differential form or the integral form. It should be
noted that the equivalence of the two forms is only valid in continuous case; the discretization of the
two forms are essentially different. Section 5 is devoted to discuss this issue (a part of the contents in
Section 5 corresponds to (B) in Table 1).

Briefly speaking, the discretization of the integral form becomes an ODE, while the direct spatial
discretization of the differential form is an implicit DAE. For such a DAE, in order to derive a corre-
sponding ODE which can be regarded as a discretization of the integral form, the discrete analogue of
the proposed procedure above can be used. There, Tseng generalized inverse of the difference operator
can be expressed by a generalized matrix of the (matrix expression of) difference operator.

Remark 1.3. The spatial discretization of the differential form can be written in the simple form
Dż = ϕ(z), where D is a singular matrix representing a difference operator and ż = dz/dt. Its
temporal discretization is already discussed in the literature (see, e.g., Hairer–Wanner [18]). Moreover,
the obtained DAE often has index one (see, e.g., Ascher–Petzold [2] for details on index of DAEs), and
thus, known to be numerically tractable. Therefore, in this paper, we focus on the spatial discretization,
and do not step into the temporal discretization.

Though most existing numerical methods have been based on the integral form (see Remark 3.1 for
the only known exception), we recommend the differential form in practical computation because it

(1) usually has index one;
(2) is free from nonlocal operators (unless g and/or f includes one).

On the other hand, discretization of the integral form has a virtue that it is fit for some analysis.
Finally, we explore the best spatial discretization that should be employed for the mixed derivative

(Section 6). There, instead of directly analyzing the difference operator itself, we investigate its
generalized inverse as an approximation of the indefinite integral (recall that ∂̌−1

x can be regarded
as a generalized inverse of ∂x, which is an indefinite integral). In other words, we compare several
discretizations of the differential forms by using their integral forms, which gives an example of the use
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of the discretization of the integral form. In the present paper, we take this approach, since it seems,
at this moment, there is no systematic way of evaluating discretization errors when PDE involves the
mixed derivative.

As a result of this exploration, the average-difference method, which has been recently introduced
by the team including present authors [16], turns out to be superior to other standard methods.
This fact agrees very well with the numerical observation by Sato–Oguma–Matsuo–Feng [41] for the
sine-Gordon equation. Summing up the findings above, we tentatively conclude that, for PDEs with
a mixed derivative, the discretization of the differential form with the average-difference method is
recommended.

Unfortunately, however, since the average-difference method has been quite recently proposed, it
is still less developed. In particular, there are no higher order extensions of the average-difference
method, and one may feel that it is not preferable when higher order extensions such as the spectral
difference are demanded.

In view of this, as the last contribution of this paper, in order to ease the concern even if only
partially, we devise some higher order extensions of the average-difference method and confirm that
they surely inherit the good property of the original average-difference method.

The rest of the paper is organized as follows. In Section 2, we show some preliminaries such as
function space, variational derivatives, and Tseng generalized inverses. The contents in Sections 3–6
are already described above. Then, the paper is concluded in Section 7.

2. Preliminaries

In this paper, Xs denotes the sth Sobolev space on the periodic domain, i.e., Xs = Hs(S) for a
nonnegative integer s, with the standard inner product. Moreover, we define the linear subspace X̌s of
Xs as X̌s :=

{
v ∈ Xs

∣∣ ∫
S v(x)dx = 0

}
. If s ≥ 2, Xs ⊆ C1(S) holds thanks to the Sobolev inequality

so that each element of Xs can be viewed as a continuously differentiable function.

Remark 2.1. We believe that our strategy described in Section 4 can be extended to other settings
by appropriately defining the function space (see, Section 7). In order to emphasize that, we here
introduce the symbol Xs.

Definition 2.2 (Variational derivatives). For a functional H : Xs → R, its variational derivative
δH/δv(v) is defined as a function such that

d

dϵ
H(v + ϵϕ)

∣∣∣∣
ϵ=0

=

⟨
δH
δv

(v), ϕ

⟩
(∀ϕ ∈ Xs)

holds, where ⟨·, ·⟩ is the standard L2 inner product.

When the funcitonal H is defined by H : v 7→
∫
S G(v, v(1), . . . , v(k))dx, its variaitonal derivative can

be calculated by

δH
δv

(v) =

k∑
i=0

(−∂x)
i ∂G

∂v(i)
(v, v(1), . . . , v(k)),

where v(i) is the ith derivative of v for i ≥ 1 and v(0) = v. We often use the abbreviation δH/δv for
simplicity.

Furthermore, we introduce the generalized inverse of a linear operator between Hilbert spaces (see,
e.g., [3]). Here, for a linear operator L : Y1 → Y2 between two Hilbert spaces Y1, Y2, dom(L) ⊆ Y1 and
range(L) ⊆ Y2 denote the domain and range of L, respectively. For a closed subspace A of a Hilbert
space Y1, PA : Y1 → Y1 denotes the orthogonal projector on A (i.e., range(PA) = A holds).
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Definition 2.3 (Tseng generalized inverses). Let L : Y1 → Y2 be a linear operator. Then a linear
operator Lg : Y2 → Y1 is a Tseng generalized inverse of L if it satisfies the following four conditions:

range(L) ⊆ dom(Lg), range(Lg) ⊆ dom(L),

LgLx = P
range(Lg)

x (x ∈ dom(L)), LLgx = P
range(L)

y (y ∈ dom(Lg)).

Moreover, we introduce the null space null(L) and the career car(L) of L, i.e., null(L) = {x ∈
dom(L) | Lx = 0}, car(L) = dom(L)∩ null(L)⊥, where A⊥ stands for the orthogonal complement of a
linear subspace A.

Lemma 2.4 ([3, Chapter 9, Lemma 3]). If Lg is a Tseng generalized inverse of L, then null(L) =
dom(L) ∩ range(Lg)⊥ and car(L) = range(Lg) hold.

We also define the maximal generalized inverse operator as follows.

Definition 2.5 (Maximal Tseng generalized inverse). Let L : Y1 → Y2 be a linear operator. Then, a
linear operator L† : Y2 → Y1 is called a maximal Tseng generalized inverse operator if it is a Tseng
generalized inverse operator satisfying dom(L†) = Y2.

Note that Lgy = L†y holds for any y ∈ range(L). This can be checked by using x ∈ dom(L) such
that y = Lx as follows: Lgy = LgLx = L†Lx = L†y. We will use this property in Section 6.

Now, let us introduce Tseng generalized inverse operators of the spatial differential operator ∂x :
Xs → Xs−1 (see, e.g., [19, Example 1]). Here, we assume s ≥ 1. Note that, the differential operator
satisfies dom(∂x) = Xs, range(∂x) = X̌s−1, car(∂x) = X̌s, and null(∂x) = {α1 ∈ Xs | α ∈ R}. Here, 1
denotes a constant function satisfying 1(x) = 1 (x ∈ S). Thus, by Definition 2.3 and Lemma 2.4, each
generalized inverse operator ∂g

x satisfies

range(∂x) ⊆ dom(∂g
x), range(∂g

x) = car(∂x) = X̌s,

∂g
x∂xv = PX̌sv (v ∈ Xs), ∂x∂

g
xw = PX̌s−1w (w ∈ dom(∂g

x)).

It should be noted that, since dom(∂g
x) should be a linear subspace of Xs−1 and dim range(∂x)

⊥ = 1,
dom(∂g

x) = X̌s−1 or dom(∂g
x) = Xs−1 hold. This fact implies that there are only two Tseng generalized

inverse operators, because the Tseng generalized inverse is uniquely determined by its domain.
The Tseng generalized inverse ∂g

x satisfying dom(∂g
x) = range(∂x) = X̌s−1 can be concretely ex-

pressed as

(∂g
xv)(x) :=

∫ x

0

v(y)dy − 1

2π

∫
S

∫ z

0

v(y)dydz (v ∈ X̌s−1),

which coincides with ∂̌−1
x (see, (1.4)) introduced by Hunter [22]. Since

∫ x

0
v(y)dy is not periodic if v

is not zero-mean, the definition above ceases to work for v ∈ Xs−1 \ X̌s−1 so that this operator is not
maximal.

On the other hand, the maximal Tseng generalized inverse ∂†
x can be expressed by using the Fourier

series as follows:

∂†
xv(x) :=

∑
−∞<k<∞, k ̸=0

v̂(k)

ki
exp (kix) , v̂(k) =

1

2π

∫
S
v(x) exp (−kix) dx,(2.1)

where i is the imaginary unit. In fact, this operator was already introduced by Yaguchi–Matsuo–
Sugihara [46] as an alternative to ∂̌−1

x . They used ∂†
x in order to describe the pseudospectral method

for the Ostrovsky equaiton (3.2) as a discretization of it.
In what follows, we use the symbol ∂̌−1

x and ∂†
x when we need to indicate each of the specific Tseng

generalized inverses, while ∂g
x is employed when we allow both.
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Remark 2.6. Although the concrete examples of Tseng generalized inverses of the spatial differential
operator had been used for various equations in the literature (see, Section 3), no one has explicitly
described that they can be regarded as a Tseng generalized inverse, to the best of the present authors’
knowledge.

The following lemma is an immediate corollary of Lemma 2.4:

Lemma 2.7. For any v ∈ Xs and any Tseng generalized inverse operator ∂g
x of ∂x, there exists a

constant c ∈ R such that v(x) = ∂g
x∂xv(x) + c holds for any x ∈ S.

Proof. By Lemma 2.4 and Definition 2.3, for any v ∈ Xs it holds that

(∂g
x∂xv)(x) =

(
P
range(∂g

x)
v
)
(x) = (PX̌sv) (x) = v(x)− c (x ∈ S)

for some constant c ∈ R, which proves the lemma. □

3. Existing works

In this section, we list equations in each class and existing results on them along Table 1. Unless
otherwise stated, existing works below employ ∂̌−1

x in order to derive the integral form.

3.1. Class (I). The class (I) does not only include the reduced Ostrovsky equation (1.2), but also the
short pulse equation [42]

(3.1)

(
ut −

(
1

6
u3

)
x

)
x

= u.

It models the propagation of ultrashort optical pulses in nonlinear media.
For any equations in this class, (i) their integral forms can be derived by following the argument for

the reduced Ostrovsky equation. For each specific cases, (ii) numerical methods based on their integral
forms have been devised in, e.g., [37, 41]. For any equations in this class, (iii) the entropy solution
exists uniquely [8] (the local well-posedness has been proved for the short pulse equation [29]). Finally,
(iv) Coclite–Ridder–Risebro [8] showed that their numerical method and its convergence analysis can
be applicable to any equations in this class. This is the only convergence result for (1.1) that the
present authors aware of.

3.2. Class (II).

3.2.1. Ostrovsky equation. Let us first consider the Ostrovsky equation

(3.2)

(
ut −

(
1

2
u2

)
x

+ βuxxx

)
x

= γu,

which has been studied most among various equations in the class (II). It is not in the class (I)
unless β = 0 (i.e., the reduced Ostrovsky equation (1.2)), but is in the class (II), i.e., f(u) = u,
h(u, ux, uxx) = −u2/2 + βuxx. It originally models the propagation of the gravity waves in a rotating
fluid [33]. As its another name, rotation-modified Korteweg–de Vries equation [17], suggests, the case
γ = 0 corresponds to the well-known Koteweg–de Vries equation.

For the Ostrovsky equation (3.2), (i) Yaguchi–Matsuo–Sugihara [46] pointed out that ∂̌−1
x and ∂†

x

can be used to derive its integral form. (ii) They also devised several finite difference schemes based
on its integral form, and Chen–Boyd [6] employed the pseudospectral method. However, to the best
of the present authors’ knowledge, there are no well-posedness results and mathematical analysis such
as convergence analysis for the Ostrovsky equation on S.

It should be noted that there are well-posedness results for the Ostrovsky equation under other
boundary conditions (see, e.g., [28]).



10 SHUN SATO AND TAKAYASU MATSUO

3.2.2. Other equations. The class (II) does not only include the Ostrovsky equation, but also the
Gardner–Ostrovsky equation [20]

(3.3)
(
ut + cux + α

(
u2
)
x
+ α1

(
u3
)
x
+ βuxxx

)
x
= γu,

the generalized Ostrovsky equation [27]

(3.4) (ut + hx(u)− βuxxx)x = γu,

where h is a C2 function which is homogeneous of degree p ≥ 2, i.e., vh′(v) = ph(v) holds, and the
regulalized short pulse equation [9], which is a special case of the generalized Ostrovsky equation with
h(u) = u3/6.

For such equations in the class (II), (i) these differential form can be similarly rewritten in the
integral form

(3.5) ut + hx(u, ux, . . . ) = ∂̌−1
x u.

We here like to emphasize our point again that, despite some concrete examples in the literature, this
general claim itself has not been explicitly written so far. Moreover, (ii) there are several numerical
schemes: e.g., Obregon–Stepanyants [32] devised a finite difference scheme for the Gardner–Ostrovsky
equation (3.3). However, there are no well-posedness results for them.

3.3. Class (III). Miyatake–Yaguchi–Matsuo [31] introduced the potential ϕ = ∂̌−1
x u, and rewrote the

Ostrovsky equation as

(3.6)

(
ϕt −

1

2
ϕ2
x + βϕxxx

)
x

= γϕ

in order to derive several new structure-preserving methods. In what follows, we call it the potential
Ostrovsky equation. Due to the presence of the term ϕ2

x, this equation cannot be written in the
form (1.6), i.e., it is not in the class (II), but is in the class (III).

Although the class (III) is a natural extension of the class (II), currently there are no physical
examples except for the potential Ostrovsky equation. Still, this class is introduced in order to clarify
the class of equations for which the operator ∂̌−1

x effectively works.
As pointed out by Miyatake–Yaguchi–Matsuo [31], (i) the operator ∂̌−1

x can operate on both sides
of the potential Ostrovsky equation (3.6) as already explained in Introduction. However, the resulting
integral form is complicated, and it was not used for numerical computation (see, the remark below).
There is no well-posedness result as well.

Remark 3.1. Miyatake–Yaguchi–Matsuo [31] instead proposed various finite difference schemes based
on the differential form. Since all existing numerical methods for the class (II) (⊇(I)) are based on
their integral form, this is the first numerical method based on the differential form of target PDEs as
far as the present authors are aware of.

3.4. Class (IV). Most recently, several equations with nonlinear implicit constraints have been emerged.
For example, there are the generalized sine-Gordon equation [12]

(3.7) (ut − (sinu)x)x = sinu,

the modified Hunter–Saxton equation [11]

(3.8)

(
ut +

1

2

(
u2
)
x
+

γ

6
u3
x

)
x

= u+
1

2
u2
x,

which describes the propagation of short waves in a long wave model, and the modified short pulse
equation [39]

(3.9) utx = u+
1

2
u
(
u2
)
xx

.
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Moreover, Tian–Yin [43] proposed another generalization of the Ostrovsky equation whose implicit
constraint is nonlinear (see, e.g., [38, 21] for other PDEs in this class).

As of writing the present paper, various studies involving integrability and exact solutions on the
whole real line have been conducted one after another. However, the transformation into the integral
form has never been discussed, and accordingly there are no related results that requires it (recall
Table 1).

4. Transformation between Differential and Integral Forms

In Section 4.1, we propose a new procedure for the transformation of the initial value problem (1.1)
into the integral form that gives a unified view for all of (I)–(IV). Then, we show a geometric inter-
pretation of the proposed procedure in Section 4.2. Finally, Section 4.3 is devoted to the equivalence
theorem, Theorem 4.9, which summarizes the discussion in this section.

4.1. Procedure of the Transformation into the Integral Form. For simplicity, we use the ab-
breviation such as f(u) which stands for f(u, ux, . . . ) in what follows. Under this abbreviation, we
cannot distinguish between the classes (I) and (II), but this will not cause any confusion. We suppose
F(u0) =

∫
S f(u0)(x)dx = 0 and s ≥ 1 in this section. Moreover, we assume there exists a solution

u ∈ C0([0, T ];Xs+k)∩C1([0, T ];Xs) of the initial value problem (1.1), where k is a nonnegative integer
such that f : Xs+k → Xs−1 and g : Xs+k → Xs. Note that, we do not necessarily know whether
these assumptions are satisfied in the PDEs (1.1), even in some concrete examples below (recall that
well-posedness is proved only for the class (I); see, Table 1). We here emphasize that what we seek
here is how we transform them when well-posed, and not the well-posedness itself. It should be noted
that, all well-posedness results for the class (I) are proved for their integral forms.

By operating on the both sides of (1.8) with a Tseng generalized inverse operator ∂g
x : Xs−1 → Xs,

for any t ∈ [0, T ], we see

(4.1) ut + g(u) = ∂g
xf(u) + c(t),

where c(t) does not depend on x from Lemma 2.7. In some happy cases, the implicit constraint
F(u(t)) = 0 enables us to determine the value of c(t) as follows.

Since the value of F(u(t)) is always 0 and u(t) satisfies

(4.2)
d

dt
F(u(t)) =

∫
S

δF
δu

utdx =

∫
S

δF
δu

(−g(u) + ∂g
xf(u)) dx+ c(t)

∫
S

δF
δu

dx,

the value of c(t) is determined as

(4.3) c(t) = C(u(t)) :=
∫
S

δF
δu (g(u)− ∂g

xf(u)) dx∫
S

δF
δu dx

for t ∈ [0, T ] satisfying

(4.4)

∫
S

δF
δu

dx ̸= 0.

On the other hand, for t ∈ [0, T ] such that
∫
S δF/δu dx = 0 holds, we obtain a new implicit constraint

(4.5) F1(u(t)) =

∫
S

δF
δu

(g(u)− ∂g
xf(u)) dx = 0

from (4.2), and we can continue the same line of discussion above by using F1 instead of F .
Fortunately, the most of the examples listed in Section 3 satisfy the condition (4.4) for any t ∈ [0, T ]

as we show below. First of all, equations in the class (II) (⊇ (I)) and (III) obviously satisfy them.
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Example 4.1 (Class (II)). The implicit constraint F(u) =
∫
S udx = 0 is linear, and it holds that∫

S δF/δu dx = 2π ̸= 0. Therefore, we see

C(u) = 1

2π

(∫
S
hx(u)dx−

∫
S
∂g
xudx

)
= 0,

where the last equality holds by range(∂g
x) = X̌s. Thus, it coincides with the transformation by

Hunter [22] and its followers if we employ ∂̌−1
x as the generalized inverse ∂g

x.

Example 4.2 (Class (III)). In this case, the implicit constraint is again linear. However, we see

C(u) :=
∫
S (g(u)− ∂g

xu) dx

2π
=

1

2π

∫
S
g(u)dx,

and it does not vanish in general. This procedure is quite simple in comparison with the cumbersome
argument described in Introduction for deriving the integral form in which we should carefully consider
each term is in X̌s−1 or not. Notice that the new procedure does not cause the unnatural term ∂̌−1

x ∂xg.

For the class (IV), whether the condition (4.4) holds or not depends on each solution in general.

Example 4.3. If we consider the nonlinear Klein–Gordon equation of the form

utx = u+ u2,

we obtain δF/δu = 1+ 2u. Then, the value of
∫
S(1+ 2u)dx depends on time.

Fortunately, the equations listed in Section 3.4 satisfy the condition (4.4) for any t ∈ [0, T ] as follows
thanks to some associated conservation laws as far as the initial condition u0 satisfies

∫
S δF/δu(u0) dx ̸=

0.

Example 4.4 (Sine-Gordon-type equations). For the sine-Gordon equation (1.11) and the generalized
sine-Gordon equation (3.7), the implicit constraint F(u) =

∫
S sinudx is not linear, and one may

feel whether
∫
S δF/δu dx =

∫
S cosudx vanishes or not depends on t. But, in fact,

∫
S cosudx is a

conserved quantity of them. Therefore, the value of c(t) can be determined for any t ∈ [0, T ] unless∫
S cosu0(x)dx = 0 holds.

Example 4.5 (Modified short pulse equation (3.9)). The implicit constraint

F(u) =

∫
S

(
u+

1

2
u
(
u2
)
xx

)
dx =

∫
S

(
u− uu2

x

)
dx

is again nonlinear. But in this case, since

d

dt

∫
S

1

2
u2
xdx =

∫
S
uxuxtdx =

∫
S
ux

(
u+

1

2
u
(
u2
)
xx

)
dx = 0

and ∫
S

δF
δu

dx =

∫
S

(
1− u2

x + (2uux)x
)
dx = 2π −

∫
S
u2
xdx,

the condition (4.4) holds for any t ∈ [0, T ] if 2π ̸=
∫
S ((u0)x)

2
dx.

We show that the modified Hunter–Saxton equation also satisfies the condition (4.4) later (Exam-
ple 4.8).

Next, let us consider the cases where the value of c(t) is determined by F1 instead of F . As of
writing this paper, we are not aware of such a physical example, but we can construct an example as
follows. (Although this is artificial, we believe this consideration is necessary to set a firm basis for
the proposed framework, unless it is proved that such a case never happens in physical applications.)
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Example 4.6. For the equation

(4.6)

(
ut −

1

2
u2

)
x

=
1

2
u2
x +

1

3
u3
x,

the implicit constraint is F(u) =
∫
S(u

2
x/2+u3

x/3)dx = 0. Thus,
∫
S δF/δu dx = −

∫
S
(
ux + u2

x

)
x
dx = 0

holds for any solution u, and we obtain a new constraint:

F1(u) = −
∫
S

(
ux + u2

x

)
x

(
−1

2
u2 − ∂g

x

(
1

2
u2
x +

1

3
u3
x

))
dx

= −
∫
S

(
ux + u2

x

)(
uux +

1

2
u2
x +

1

3
u3
x

)
dx = −

∫
S

(
uu2

x + uu3
x + φ(ux)

)
dx,

where φ(ux) is a polynomial of ux. Hence, we see∫
S

δF1

δu
dx = −

∫
S

(
u2
x + u3

x

)
dx.

For such u that this value does not vanish, the value of c(t) can be determined by the (nontrivial)
implicit constraint F1(u) = 0. Otherwise, it reveals that ux = 0 holds for any x ∈ S thanks to
F(u) = 0, which implies such u is a constant function.

4.2. Geometric Interpretation of the Proposed Procedure. This section is devoted to illustrate
the intuition of the procedure in the previous section. To this end, we consider its geometric interpre-
tation. Roughly speaking, the proposed procedure can be viewed as the infinite-dimensional version of
the “geometric reduction” for finite-dimensional implicit DAEs [36], which gives us the local existence
and uniqueness results of them.

However, since the well-posedness of PDEs (1.1) is beyond the scope of this paper, we do not step
into the rigorous justification of the infinite-dimensional version of the geometric reduction. Such a
justification seems to be challenging, because, for example, the definition of the reducibility itself (see,
[36, Definition 4.2]) is only valid for finite-dimensional cases.

First of all, we consider a reduction process for general PDAEs (partial differential-algebraic equa-
tions) in the form

(4.7) F (u, ut) = 0,

where F : Xs × Xs → Xs is an arbitrary smooth map. When we define the Banach manifold
M = F−1(0), the equation (4.7) is equivalent to

(4.8) (u, ut) ∈ M.

Here, we regard M as a submanifold of TXs, where TXs stands for the tangent bundle of Xs. Then,
under some appropriate assumptions, the canonical projection W = π(M) is a submanifold of Xs

(π : TXs → Xs is a map such that π : (u, v) 7→ u). By definition of W , the solution u of the
equation (4.7) satisfies (u, ut) ∈ TW . Then, the solution u of the equation (4.7) also satisfies

(4.9) (u, ut) ∈ M1 := M ∩ TW.

The process obtaining M1 from M is called the geometric reduction, and we can further proceed the
reduction step such as Wi+1 = π(Mi), Mi+1 = TWi+1 ∩Mi (i = 1, 2, . . . ).

Now, let us restrict ourselves to the case F (u, v) := vx + gx(u) − f(u), i.e., the equation (1.1). In
this case, M can be explicitly written in the form

M = {(u, v) | F(u) = 0, v = −g(u) + ∂g
xf(u) + c1 (c ∈ R)}
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(recall (4.1)). Then, the canonical projection W of M and its tangent bundle TW can be constructed
by

W = π(M) = {u ∈ X | F(u) = 0} ,

TW =

{
(u, v)

∣∣∣∣ F(u) = 0,
d

dϵ
F(u+ ϵv)

∣∣∣∣
ϵ=0

= 0

}
.

In a manner similar to that in Section 4.1, M1 can be written in the form

M1 =

{
(u, v) ∈ M

∣∣∣∣ ⟨δF
δu

,1

⟩
̸= 0, v = −g(u) + ∂g

xf(u) + C(u)1
}

∪
{
(u, v) ∈ M

∣∣∣∣ ⟨δF
δu

,1

⟩
= 0, F1(u) = 0

}
.

(4.10)

Here, for u ∈ W such that ⟨δF/δu,1⟩ ̸= 0, the associated tangent vector v is uniquely determined
(namely, the constant c is determined by C(u), which is defined by (4.3)), while we obtain a new
constraint F1(u) = 0 for u ∈ W such that ⟨δF/δu,1⟩ = 0. At every step i, we obtain Mi by a similar
reduction process.

When we assume the reduction procedure is successfully well-defined, i.e., the sequence of the
Banach manifolds {Mi}∞i=1 can be defined, there are three possible scenarios as follows:

(a) Mi = Mi+1 for some finite positive integer i, and there is exactly one tangent vector v such
that (u, v) ∈ Mi for any u ∈ π(Mi):
In this case, the infinite-dimensional vector field can be uniquely determined. In other words,
the equation can be rewritten in the integral form for any initial conditions u0 ∈ π(Mi).

(b) Mi = Mi+1 for some finite positive integer i, but this time there are more than one tangent
vectors v such that (u, v) ∈ Mi for some u ∈ π(Mi):
In this case, the result of the reduction process does not provide the integral form at least for
some initial conditions.

(c) Mi ̸= Mi+1 holds for any positive integer i:
This case is the distinctive scenario of the infinite-dimensional case (see, example 4.7 below).
We cannot obtain the integral form by the reduction process above.

Below, we show an example which has the infinitely many implicit constraints, i.e., the case (c).

Example 4.7. We consider the following PDE

(4.11) utx =
1

3
u3
x,

which is obviously underdetermined since if u(t, x) is an solution, then u(t, x) + d(t) is also a solution
for any d : [0, T ] → R satisfying d(0) = 0. Since

∫
S δF/δu dx = −

∫
S(u

2
x)xdx = 0 holds, we then

proceed to obtain a new implicit constraint

F1(u) = −
∫
S

((
u2
x

)
x
∂g
xu

2
x

)
dx = −

[(
u2
x

)
∂g
xu

3
x

]
S +

∫
S
u5
xdx = 3

∫
S
u5
xdx.

In this manner, we can repeat this procedure, and it is easy to verify that at every step i (i = 1, 2, . . . ),
Fi = ci

∫
S u

2i+3
x dx holds for some constant ci. In other words, Mi ̸= Mi+1 holds for any positive

integer i.

Note that, when ⟨δF/δu,1⟩ ̸= 0 holds for any u ∈ W , M1 (defined by (4.10)) can be simply
expressed as

M1 = {(u, v) | F(u) = 0, v = −g(u) + ∂g
xf(u) + C(u)1} ,

and Mi = M1 holds for any positive integer i. It should be noted that, the discussion on the class (III)
(⊇ (II) ⊇ (I)) in the previous section can be rephrased as this case. However, it is not the case for
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the equations in the class (IV) in general. Still, the modified Hunter–Saxton equation, which is in the
class (IV), belongs to this case.

Example 4.8. For the modified Hunter–Saxton equation (3.8), the implicit constraint can be expressed
as F(u) =

∫
S
(
u+ 1

2u
2
x

)
dx = 0. Since∫

S

δF
δu

=

∫
S
(1− uxx) dx = 2π ̸= 0

holds for any u, Mi = M1 holds for any i. The integral form can be written in

ut +
1

2

(
u2
)
x
+

γ

6
u3
x = ∂g

x

(
u+

1

2
u2
x

)
+ C(u),

where

C(u) = 1

2π

∫
S
(1− uxx)

(
1

2

(
u2
)
x
+

γ

6
u3
x − ∂g

x

(
u+

1

2
u2
x

))
dx =

γ

12π

∫
S
u3
xdx.

It should be noted that, for such cases as the sine-Gordon equation (i.e., whether the condition (4.4)
holds or not depends on the initial condition), M1 itself does not describe the whole of the vector field.
However, if we fix the initial condition u0 satisfying

∫
S cosu0(x)dx ̸= 0, they can surely be rewritten

in the integral form by using one implicit constraint F(u) = 0. This can be done since the procedure
in the previous section copes with the single orbit itself, whereas the geometric reduction described
in this section is to determine the Banach manifold consisting of all the orbits, and the whole of the
vector field on such a manifold.

4.3. Equivalence of the Two Forms for Smooth Solutions. We summarize the discussion above
in the theorem below. Here, for simplicity, we assume the condition (4.4) holds for any t ∈ [0, T ].
Recall that, as shown in Example 4.6, there are equations such that the condition (4.4) does not hold
but they can be rewritten in the integral form by our procedure. Still, we here focus on the cases such
that (4.4) holds since all physical examples satisfy this assumption.

Theorem 4.9. Let f : Xs+k → Xs−1 and g : Xs+k → Xs be mappings for a nonnegative integer
k. Suppose that the initial condition u0 satisfies F(u0) =

∫
S f(u0)(x)dx = 0. Then, the solution

u ∈ C0([0, T ];Xs+k) ∩C1([0, T ];Xs) of the initial value problem (1.1) satisfying
∫
S δF/δu dx ̸= 0 (t ∈

[0, T ]) is also the solutions of the following initial value problem, and vice versa:

(4.12)

{
ut + g(u) = ∂g

xf(u) + C(u) (t ∈ [0, T ], x ∈ S),
u(0, x) = u0(x) (x ∈ R).

Proof. We already confirmed that the solution u(t) ∈ Xs of the problem (1.1) is also the solution of
the problem (4.12) in Section 4.1. On the other hand, the converse holds since f(u) ∈ X̌s−1 holds for
any t ∈ [0, T ] thanks to f(u0) ∈ X̌s−1 (recall that C(u) in (4.12) is constructed in (4.3) so that this
claim holds), and ∂x∂

g
x is an orthogonal projector on X̌s−1 (Definition 2.3). □

Note that though the equivalence theorem above strongly relies on the common implicit constraint
F(u(t)) = 0, the origins of the constraints in the differential and integral forms are significantly
different. In the differential form, the implicit constraint is automatically realized by its structure,
namely, the property 1 ∈ range(∂x)

⊥ of the spatial differential operator ∂x. On the other hand, in the
integral form, the implicit constraint is kept as a nontrivial conserved quantity. This difference has a
critical impact over discretization, which is discussed below. Briefly speaking, the former is naturally
inherited, while the latter is generally lost unless some explicit care is taken such that it is kept.
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5. Classification of Existing Spatial Discretizations and New Variants

Based on the above observation, we consider the finite difference spatial discretization of the initial
value problem (1.1). For this purpose, we introduce uk : [0, T ] → R (k ∈ Z) as the approximation
of u(t, k∆x), where the discrete periodic boundary conditions uk+K = uk is imposed, and the spatial
mesh size ∆x is defined as ∆x = 2π/K for some positive integer K. Since we assume the discrete
periodicity, we employ the notation u = (u1, . . . , uK)⊤. Although this is an abuse of symbol, we use
this since generally no confusion occurs between this and the continuous solution u(t, x).

In Section 5.1, we compare the discretization of the differential and integral forms. Then, we classify
the existing schemes and derive their new variants in Section 5.2.

5.1. Discretization of the Two Forms. Here, we point out an extremely important fact that,
despite the equivalence theorem in the continuous case, discretizations based on the differential and
integral forms can be essentially different.

5.1.1. Discretization of the integral form. Since numerical methods for equations in the class (II) had
been mainly considered based on the integral form in the literature, let us first start with the integral
form. Although existing numerical methods for the class (II) keeps the implicit constraint thanks to
its simplicity, when it comes to class (IV), the implicit constraint is violated in general as illustrated
below.

Let us for brevity introduce the map F : Xs+k → Xs such that F (u) = ∂g
xf(u), and consider the

discretization

(5.1) u̇k + ḡk(u) = F̄k(u) + C̄(u)

of the integral form (4.12), where ḡk : RK → R and F̄k are some approximations of g and F , and u̇k

stands for the time derivative of uk.
In this case, the equation is an ODE, and generally no constraint is explicitly accompanied here.

Thus, unless some special care is taken in the discretization so that a discrete counterpart of the
implicit constraint F(u) = 0 successfully results, the solution generally violates the implicit constraint
(recall the discussion in the last of the previous section). This is in sharp contrast to the continuous
case.

Still, for equations in the class (II), the implicit constraint is linear, and as its consequence, even
when we are based on the integral form, we can easily construct a numerical method satisfying a
discrete analogue of the linear implicit constraint (see, the examples in the following section).

Another note should go to the fact that, again as opposed to the continuous case, (5.1) cannot be
generally reduced to a differential form in the following sense. One may expect that we can obtain a
differential form such as

δxu̇k + δxḡk = δxF̄k(u)

by some difference operator δx such as the forward difference δ+x uk = (uk+1−uk)/∆x, central difference

δ
⟨1⟩
x uk = (uk+1−uk−1)/(2∆x), among others. Unfortunately, however, unless the term δxF̄k(u) can be
simplified so that no singular operators appear there, this implicit DAE is obviously underdetermined.

5.1.2. Discretization of the differential form. Next, let us consider the direct discretization of the
differential form (as described in Remark 3.1, Miyatake–Yaguchi–Matsuo [31] firstly introduced the
discretization of the differential form). We show such a discretization keeps a discrete analogue of the
implicit constraint so that it can be transformed into another expression, which can be regarded as a
discretization of the integral form.

For simplicity, we consider the discretization in the form

(5.2) δx (u̇k + ḡk (u)) = f̄k (u) ,
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where f̄k : RK → R is some approximation of f . It should be noted that, the equation (5.2) is a DAE
due to the singularity of δx (recall Remark 1.3).

Here, we introduce the matrix-vector expression

(5.3) D (u̇+ ḡ(u)) = f̄(u),

where D is the matrix representation of δx, and ḡ and f̄ are defined as ḡ(u) := (ḡ1(u), . . . , ḡK(u))⊤ and
f̄(u) := (f̄1(u), . . . , f̄K(u))⊤. We assume D is circulant and 1⊤D = 0, where 1 := (1, . . . , 1)⊤. These
are quite mild assumptions since we impose the discrete periodic boundary condition and employ the
uniform grid.

Then, by multiplying 1⊤, we see that the solution u of the equation (5.2) automatically satisfies the
implicit constraint

(5.4) Fd(u) :=

K∑
k=1

f̄k(u)∆x = 0 (∀t ∈ [0, T ]).

Note that, this is a discrete counterpart of the implicit constraint F(u) = 0. Thus, there is a distinct
advantage of the differential form.

Furthermore, discretized differential form can be safely transformed to an integral form, which is
another advantage. To see this, let us follow the line of the discussion in Section 4.1. By introducing
the Tseng generalized inverse δgx of a difference operator δx, the scheme (5.2) can be transformed into

(5.5) u̇k + ḡk(u) = δgxf̄k (u) + c(t),

where c(t) does not depend on k. It should be noted that, the matrix expression of δgx is a generalized
inverse matrix of D. In a way similar to the case of the original PDE (Section 4.1), the implicit
constraint enables us to determine c(t) under an assumption as follows.

Since the value of Fd(u) is always 0 and the solution u of the equation (5.5) satisfies

(5.6)
d

dt
Fd(u) = ∇Fd(u) · u̇ = ∇Fd(u) ·

(
−ḡ(u) +Dgf̄(u) + c(t)1

)
(‘·’ denotes the standard inner product), the value of c(t) is determined as

(5.7) c(t) = Cd(u) :=
∇Fd(u) ·

(
ḡ(u)−Dgf̄(u)

)
∇Fd(u) · 1

for t ∈ [0, T ] satisfying ∇Fd(u) · 1 ̸= 0. Thus, in this case, the equation (5.2) is an implicit DAE with
index one (when ∇Fd(u) · 1 = 0, we obtain a new constraint and index is more than one). Under the
assumption ∇Fd(u)·1 ̸= 0 (t ∈ [0, T ]) (which obviously corresponds to the condition

∫
S δF/δu dx ̸= 0),

the equation (5.2) is equivalent to

(5.8) u̇k + ḡk(u) = δgxf̄k(u) + Cd(u),

which can be regarded as a discretization of the integral form (4.12).
Note that, although so far we have considered the simple discretization (5.2), our strategy can easily

be applied to other cases. For example, the Ostrovsky equation (3.2) can be rewritten as

utx − u2
x − uuxx + βuxxxx = γu,

whose discretization is not necessarily in the form (5.5). For example, one sometimes should employ the
spatial discretization which cannot be written in the form (5.2) in order to maintain the conservation
law (see, e.g., (5.15)). Thus, in general, we can consider

(5.9) δxu̇k +
(
∂xg
)
k
(u) = f̄k(u),
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where (∂xg)k is an approximation of ∂xg satisfying
∑K

k=1(∂xg)k(u) = 0. Even when we deal with such
a case, we can similarly derive the corresponding integral form

u̇k + δgx
(
∂xg
)
k
(u) = δgxf̄k(u) + Cd(u), Cd(u) =

∇Fd(u) ·
(
Dg
(
∂xg
)
(u)−Dgf̄(u)

)
∇Fd(u) · 1

.

Although the discretization (5.9) is more general than the simple case (5.2) and includes some practical
numerical methods we show below, there is no significant difference between (5.2) and (5.9) in view
of the transformation into the integral form. Thus, for simplicity, we employ the simple case in
Theorem 5.2, and refer the simple case hereafter.

5.2. Classification of Existing Methods and Their Equivalents. In this section, we classify the
existing methods (see, Table 2) from the viewpoint of Section 4, and derive their equivalent expressions
in another form when possible. Although the full-discretizations are defined in the literature, we show
the corresponding semi discretizations by taking the limit ∆t → 0.

Table 2. The classification of the existing methods and their equivalent schemes in
another form. Schemes in italic are those newly derived in this paper.

PDE Differential form (1.1) Integral form (4.12)

utx + gx(u) = f(u) ut + g(u) = F (u) + C(u)
Scheme δxu̇k + δxḡk(u) = f̄k(u) u̇k + ḡk(u) = F̄k(u) + C̄(u)

implicit DAE ODE

Ostrovsky average-difference (5.13) trapezoidal (5.11)

Fourier-spectral (5.14) Fourier-spectral (5.12)

pOstrovsky central difference (5.15) generalized inverse (5.16)

SG average-difference (5.17) trapezoidal (5.20)

Yaguchi–Matsuo–Sugihara [46] introduced the discrete counterpart

(5.10) δ−1
FDuk =

(
u0

2
+

k−1∑
i=1

ui +
uk

2

)
∆x− 1

2π

K∑
i=1

u0

2
+

i−1∑
j=1

uj +
ui

2

 (∆x)
2

of ∂̌−1
x , and devised the norm-preserving scheme

(5.11) u̇k − 1

3

(
δ⟨1⟩x u2

k + ukδ
⟨1⟩
x uk

)
+ βδ⟨3⟩x uk = γδ−1

FDuk

for the Ostrovsky equation (3.2). Note that, δ−1
FD corresponds to the discretization of (1.4) by the

trapezoidal rule. Moreover, they devised another norm-preserving scheme

(5.12) u̇k − 1

3

(
δPSu

2
k + ukδPSuk

)
+ βδ3PSuk = γδ†PSuk

by using the Fourier-spectral difference operator δPS (see, [14] for definition) and its Moore–Penrose

pseudoinverse δ†PS. Note that, as the notation implies, in the finite-dimensional case, the maximal Tseng
generalized inverse coincides with the Moore–Penrose pseudoinverse (see, [3, Chapter 9, Theorem 3]).

These schemes are the discretization of the integral form (4.12), which generally cannot be rewritten
in the differential form due to the lack of the implicit constraint. However, the numerical solutions of

them satisfies the constraint
∑K

k=1 uk = 0, which is a discrete counterpart of the implicit constraint
of the Ostrovsky equation. This happens since the (original) implicit constraint is linear. Moreover,
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the discrete counterparts δ−1
FD and δ†PS of ∂g

x can be regarded as a generalized inverse of some differ-
ence operators. Thus, they have corresponding expression in the differential form (1.1): in fact, the
trapezoidal scheme (5.10) can be equivalently rewritten as

(5.13) δ+x

(
u̇k − 1

3

(
δ⟨1⟩x u2

k + ukδ
⟨1⟩
x uk

)
+ βδ⟨3⟩x uk

)
= γµ+

x uk,

where the forward average operator µ+
x is defined as µ+

x uk = (uk + uk+1)/2, and the Fourier-spectral
scheme (5.12) can be equivalently rewritten as

(5.14) δPS

(
u̇k − 1

3

(
δPSu

2
k + ukδPSuk

)
+ βδ3PSuk

)
= γuk.

Miyatake–Yaguchi–Matsuo [31] devised the norm-preserving scheme

(5.15) δ⟨1⟩x ϕ̇k − 1

3

((
δ⟨1⟩x ϕk

)
δ⟨1⟩x + δ⟨1⟩x

(
δ⟨1⟩x ϕk

))(
δ⟨1⟩x ϕk

)
+ βδ⟨4⟩x ϕk = γϕk

for the potential Ostrovskey equation (3.6), which is in differential form. Since the assumption∇Fd(u)·
1 ̸= 0 always holds thanks to the linear implicit constraint, it can be transformed into the integral
form

ϕ̇k − 1

3

(
δ⟨1⟩x

)† ((
δ⟨1⟩x ϕk

)
δ⟨1⟩x + δ⟨1⟩x

(
δ⟨1⟩x ϕk

))(
δ⟨1⟩x ϕk

)
+ β

(
δ⟨1⟩x

)†
δ⟨4⟩x ϕk(5.16)

= γ
(
δ⟨1⟩x

)†
ϕk.

In the transformations of the schemes (5.12) and (5.15), the Moore–Penrose pseudoinverse is used
as one of the generalized inverses. On the other hand, in the transformation of the scheme (5.11) into
(5.13), the summation by the trapezoidal rule is used as one of the generalized inverses of the average-
difference (δ+x , µ

+
x ), which is recently devised by Furihata–Sato–Matsuo [16]. It can be generalized as

shown in the theorem below.

Remark 5.1. Strictly speaking, since the average-difference had not been rigorously defined as a linear
operator (see, Remark 6.1), its generalized inverse can not be defined too at this moment. However,
as shown in the theorem below, the operator δ−1

FD can be used like as the generalized inverse of the
average-difference.

Moreover, the team including present authors has already obtained some results on this issue (see,
Section 7). In fact, the average-difference can be defined as a linear operator, and there actually δ−1

FD

can be regarded as its Tseng generalized inverse. Due to the restriction of the space and since this
topic is beyond the scope of this paper, we do not step into such a justification here.

Theorem 5.2. Suppose that the initial condition (uk(0) | k = 1, . . . ,K) satisfies
∑K

k=1 f̄k(u(0)) = 0,

and
∑K

j=1

∑K
k=1

∂f̄j
∂uk

(u(t)) ̸= 0 holds for any t ∈ [0, T ]. Then, the average-difference method

(5.17) δ+x (u̇k + ḡk(u)) = µ+
x f̄k(u)

is equivalent to

(5.18) u̇k + ḡk(u) = δ−1
FDf̄k(u) + Cd(u),

where Cd(u) is defined as

Cd(u) =
∑K

j=1

∑K
k=1

∂f̄j
∂uk

(u)
(
ḡk(u)− δ−1

FDf̄k(u)
)

∑K
j=1

∑K
k=1

∂f̄j
∂uk

(u)
.
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Proof. First, we derive the integral form (5.18) from the differential form (5.17). By summing the both
sides of (5.17) for k = 1, . . . , j − 1, we see

u̇j − u̇1

∆x
+

ḡj(u)− ḡ1(u)

∆x
=

f̄0(u)

2
+

j−1∑
k=1

f̄k(u) +
f̄j
2
,

which is equivalent to

u̇k + ḡk(u) = δ−1
FDf̄k(u) + c(t),

where c(t) does not depend on k. Note that, the equation above corresponds to (4.1). Therefore,

analogously, in order to determine the value of c(t), we can use the implicit constraint
∑K

k=1 µ
+
x f̄k(u) =

0, which is satisfied for any solutions of (5.17). Before following the argument (4.2), notice that, thanks

to the discrete periodicity,
∑K

k=1 µ
+
x f̄k(u) =

∑K
k=1 f̄k(u) holds, which allows us to use the simple

constraint
∑K

k=1 f̄k(u) = 0. Then, we see

0 =
d

dt

K∑
k=1

f̄k(u) =

K∑
j=1

K∑
k=1

∂f̄k
∂uj

(u)u̇j =

K∑
j=1

K∑
k=1

∂f̄k
∂uj

(u)
(
−ḡk(u) + δ−1

FDf̄j(u) + c(t)
)

Thus, we obtain c(t) = Cd(u) under the assumption of the theorem.

Now, let us prove the converse. Note that, for any zero-mean vector v (i.e.,
∑K

k=1 vk = 0 holds),

δ+x δ
−1
FDvk = µ+

x vk is satisfied (this claim can be verified by simple calculation). Therefore, the solution

u of (5.18) also satisfies (5.17) due to
∑K

k=1 f̄k(u) = 0, which is kept by the definition of Cd. □

By using the theorem above, we see that the average-difference method [41]

(5.19) δ+x u̇k = µ+
x sinuk

for the sine-Gordon equation (1.11) is equivalent to

(5.20) u̇k = δ−1
FD sinuk −

∑K
k=1 cosukδ

−1
FD sinuk∑K

k=1 cosuk

,

unless
∑K

k=1 cosuk = 0. This assumption, however, can be replaced by that for the initial condition,

because
∑K

k=1 cosuk is a conserved quantity of the average-difference method (5.19) (see, [16, The-

orem 1]). As can be seen, the integral form (5.20) has nonlocal operator δ−1
FD and thus in this sense

(5.20) is more complicated than (5.19).

Summing up all the observations, let us close this section with the summary below. In general, the
discretizations of differential and integral forms have the following features, respectively:

• Discretizations of the differential form
+ are often free from nonlocal operator;
+ automatically have an implicit constraint corresponding to F(u) = 0;
− are implicit DAEs (but usually has index one);
+ can be almost always rewritten in the integral form.

• Discretizations of the integral form
− must have nonlocal operator;
− can lose the implicit constraint;
+ are merely ODEs;
− cannot be rewritten in the differential form in general.
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Counting all the above pros and cons, we believe that, for actual computation, the discretization of
the differential form should be employed. For the third points, in particular, it should be noted that a
reduction to an ODE is known to be unpractical for the large DAE representing an electrical network
involving a large and sparse matrix, because the sparsity is destroyed by the reduction (see, e.g. [2,
Example 9.3]). Since the spatial discretization of the differential form also involves a large and sparse
matrix, we believe it should be numerically treated as is, namely, without a reduction to an ODE.

On the other hand, the discretization of the integral form may fit to analyzing the property of the
scheme as we will show an example in Section 6, where we have more intense look at the discretization
of the differential form.

6. On Spatial Discretization of the Mixed Derivative

In this section, we discuss which difference operators are suitable for the spatial discretization of
the mixed derivative. Since the method of some mathematical analysis on numerical schemes in the
form (5.2) is yet to be investigated as mentioned in Introduction, we prefer to be based on another
expression (5.8), which is just an ODE. We first investigate the accuracy of generalized inverse δgx of
each difference operator δx in Section 6.1. This is sufficient because the emergence of δgx is the only
distinct property of (5.8). As a result, we conclude that the average-difference is the best way to
discretize the mixed derivative among 2nd order differences. This consequence agrees very well with
the numerical observation for some specific cases [41, 16]. Then, in Section 6.2, we newly introduce
some higher order extensions of the average-difference method, and confirm they inherit the good
property of the average-difference method.

6.1. Analysis of the Generalized Inverses of Difference Operators. Since the difference op-
erator δx is an approximation of the differential operator ∂x, one may expect that δgx is also an
approximation of ∂g

x. Notice also that it is enough to just consider ∂̌−1
x as ∂g

x, since in (4.12) ∂g
x is only

applied to zero-mean functions, and as noted after Definition 2.5 ∂g
xv = ∂†

xv holds for such functions.
Thus, we expect the relation

(6.1) δgxvk − δgxvk−1 ≈
∫ k∆x

(k−1)∆x

v(y)dy.

for v : S → R and vk ≈ v(k∆x). Here, we assume (vk | k = 1, . . . ,K) ∈ range(δx), since δgx is usually
applied to such vectors (see, Section 5.1.2). Thanks to range(δx) ⊆ dom(δgx), this assumption justifies
that δgx can be applied to vk. Moreover, again as noted after Definition 2.5, this assumption implies
δgxvk = δ†xvk holds, i.e., the values of δgxvk are the same for any Tseng inverses.

In order to verify the accuracy of the approximation in (6.1), let us consider uω(x) = exp(iωx)
(ω ∈ Z), i.e., each frequency component of the Fourier series. Then, the exact value Ik(ω) of the
integration on [(k − 1)∆x, k∆x] can be computed as

(6.2) Ik(ω) :=

∫ k∆x

(k−1)∆x

exp(iωx)dx =
2

ω
exp

(
iω

(
k − 1

2

)
∆x

)
sin

ω∆x

2
.

Now, let us consider the approximation Īk(ω) := δgxu
ω
k − δgxu

ω
k−1 of Ik, where uω

k := uω(k∆x) =
exp(iωk∆x). In what follows, we only use the notation uω

k as a single component (i.e., uω
k denotes

a scholar, and uω denotes a function itself) in order to avoid the ambiguity of possible confusions
between the continuous function and the vectors (in Section 5). Notice that, for any ω ∈ Z, the
vector (uω

k | k = 1, . . . ,K) is one of the eigenvectors of the matrix representation D of δx, because
D is assumed to be circulant. Namely, δxu

ω
k = λωu

ω
k holds for any ω ∈ Z and k ∈ Z, where λω is

the corresponding eigenvalue, and λω+K = λω holds for any ω ∈ Z. Then, since δgxv = δ†xv holds
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for any v ∈ range(δx) (recall the discussion immediately after Definition 2.5) and the Moore–Penrose
pseudoinverse D† of the circulant matrix D is also circulant, we see

δgxu
ω
k = δ†xu

ω
k = λ−1

ω uω
k = λ−1

ω exp(iωk∆x)

for ω ∈ {n ∈ Z | λn ̸= 0} (recall dom(∂̌−1
x ) = X̌s−1 = range(∂x), and notice (uω

k | k = 1, . . . ,K) ∈
range(δx) ⇐⇒ λω ̸= 0). Therefore, for such ω, it holds that

(6.3) Īk(ω) := δgxu
ω
k − δgxu

ω
k−1 = 2iλ−1

ω exp

(
iω

(
k − 1

2

)
∆x

)
sin

ω∆x

2
.

By combining (6.2) and (6.3), we see Īk(ω) = iλ−1
ω ωIk(ω). Furthermore, we can easily compute the

relative error e(ω̃) as follows:

(6.4) e(ω̃) :=

∣∣∣∣ Īk(ω)− Ik(ω)

Ik(ω)

∣∣∣∣ = ∣∣iλ−1
ω ω − 1

∣∣ ,
where ω̃ = ω∆x is the scaled wave number.

Note that, there are the implicitly defined finite differences such as the average-difference and the
compact difference (see, e.g., [26]), i.e., Ux = u is discretized as δxUk = µxuk with the pair of a
difference operator δx and an average operator µx. For example, the average-difference is defined by
δ+x Uk = µ+

x uk, and the compact difference is defined by δa,b,cx Uk = µα,β
x uk, where

δa,b,cx Uk =
2cUk+3 + 3bUk+2 + 6aUk+1 − 6aUk−1 − 3bUk−2 − 2cUk−3

12∆x
,

µα,β
x uk = βuk+2 + αuk+1 + uk + αuk−1 + βuk−2

and α, β, a, b, c are parameters. Even in these cases, similar argument can be done by using the
eigenvalues of D†M instead of λ−1

ω ’s, where D and M are the matrix representations of δx and µx.

Remark 6.1. The compact difference operators are well-defined thanks to the diagonal dominance of
the matrix M . On the other hand, since M is singular if K is even for the average-difference, its
definition as a linear operator itself is challenging. In this paper, we do not step into this issue as we
described in Remark 5.1.

Therefore, the order of the average-difference cannot be defined in usual sense. However, we com-
pare it with 2nd order difference operators since the average-difference reproduce the exact value up
to 2nd order polynomials, which is a common feature of 2nd order difference operators (see, e.g.,
Fornberg [14]).

The relative errors eCD2(ω̃), eOD2(ω̃), and eAD2(ω̃) of the 2nd order central difference, 2nd order
one-sided difference (−uk+2 + 4uk+1 − 3uk)/(2∆x), and average-difference can be computed as

eCD2(ω̃) =

∣∣∣∣ ω̃

sin ω̃
− 1

∣∣∣∣ , eOD2(ω̃) =

∣∣∣∣ 2iω̃

−3 + 4 exp(iω̃)− exp(2iω̃)
− 1

∣∣∣∣
eAD(ω̃) =

∣∣∣∣ ω̃

2 tan(ω̃/2)
− 1

∣∣∣∣
for ω̃ /∈ {nπ | n ∈ Z}. On the other hand, the relative error ePS(ω̃) for ω̃ /∈ {nπ | n ∈ Z} of the
Fourier-spectral difference is

ePS(ω) =

{
|2nπ/(ω̃ − 2nπ)| (ω̃ ∈ (2nπ, 2(n+ 1)π))

|2(n+ 1)π/((2n+ 1)π − ω̃)| (ω̃ ∈ ((2n+ 1)π, (2n+ 2)π))
.

These relative errors are summarized in Figure 1.
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Figure 1. The relative errors e(ω̃) of 2nd order difference operators and the Frourier-
spectral difference operator.

Figure 1 shows that the average-difference is far better than the central difference, in particular,
for high frequency components. This fact is in good agreement with the observation by Sato–Oguma–
Matsuo–Feng [41] for the sine-Gordon equation (see, [41, Fig.14 and 16]). There, numerical solutions
obtained by a finite difference method with the central difference strongly suffer from artificial oscil-
lation, while those by the average-difference method reproduce the solution very well. Moreover, for
frequency components above the Nyquist frequency ω̃ = π, the average-difference is superior to the
Fourier-spectral difference. This agrees well with the observation by Furihata–Sato–Matsuo [16] for the
linear Klein–Gordon equation with the square wave (see, [16, Fig. 3]). There, numerical solutions ob-
tained by the central difference, Fourier-spectral difference, and average-difference are compared, and
it was found that those by the central and Fourier-spectral differences suffer from artificial oscillation,
while again, the average-difference reproduces better numerical solutions.

The behavior of the one-sided difference is similar to that of the average-difference method. However,
the average-difference method is better than the one-sided difference for most frequency components.

As a result, we conclude that the average-difference method is the best among the 2nd order dif-
ference methods considered here. It should be noted that, the target initial value problem in the
form (1.1) involves equations whose solutions tend to have steep fronts (see, e.g., [29, 30]). Therefore,
the behavior of high-frequency component is often important, and the conclusion here is expected to
extend to wide range of PDEs (1.1). In what follows, we compare methods from this standpoint.

However, the average-difference method has been recently devised and thus less investigated. For
example, its higher order extensions have not been discussed whereas higher order one-sided difference,
central difference, and compact difference operators are well developed. This might give an impression
that the direction this paper suggests, i.e., the use of the average-difference method is not necessarily
promising. To partially ease this concern, in the next section, we consider an extension of the average-
difference method.

Remark 6.2. The average-difference method resembles the box scheme. In fact, the average-difference
method for the advection equation ut = ux coincides with the box scheme (detailed analysis on the box
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scheme and its higher order extensions for the advection equation can be found in Frank–Reich [15]).
Therefore, the average-difference method also resembles to multisymplectic integrators (see, e.g., [25]).
For example, the Preissman box scheme for the linear Klein–Gordon equation utx = u coincides with
the average-difference method with the implicit midpoint rule for temporal discretization.

However, the direction of the extension to nonlinear case and their scope are different. The average-
difference method was investigated in Furihata–Sato–Matsuo [16] with special emphasis on its appli-
cation to the equations in the form utx = δH/δu, while the Preissman box scheme is designed for
maintaining the discrete multisymplecticity.

6.2. Extension of the Average-Difference Method. In this section, we consider a higher order
extension of the average-difference method. However, directly extending it seems to be difficult because
there are many possibilities. Therefore, in view of the relation δ+x δ

−1
FDvk = µ+

x vk ((vk | k = 1, . . . ,K) is

a zero-mean vector) connecting the average-difference method (δ+x , µ
+
x ) and the trapezoidal rule δ−1

FD,

we first consider a higher order extension δ−1
FD,s of the trapezoidal rule instead of that of the average-

difference method. Then, we define the extended average-difference method (δ+x , µ
+,s
x ) by introducing

the extended forward average operator µ+,s
x such that µ+,s

x vk = δ+x δ
−1
FD,svk holds for any zero-mean

vector (vk | k = 1, . . . ,K).
To this end, let us first consider a higher order extension of the trapezoidal rule for the indefinite

integral. Recall that the trapezoidal discretization (5.10) uses the approximation such as

(6.5)
v1 + v0

2
∆x ≈

∫ ∆x

0

v(y)dx

for each interval [(k−1)∆x, k∆x], where vk := v(k∆x). The left-had side can be regarded as the exact
integration of the linear interpolation of ((k−1)∆x, vk−1) and (k∆x, vk). In order to finally derive the
extended average operator µ+,s

x such that locally defined, we should carefully extend the trapezoidal
rule here. In fact, it can be done by using the Lagrange interpolation as follows.

Here, we consider the (2s− 1)th order Lagrange interpolation

p(s)(x) =

s∑
j=−s+1

vj l
(s)
j (x), l

(s)
j (x) =

∏
−s+1≤i≤s; i ̸=j(x− i∆x)∏
−s+1≤i≤s; i̸=j(j − i)∆x

,

where we use 2s nodes (−s + 1)∆x, (−s + 2)∆x, . . . , 0,∆x, . . . , (s − 1)∆x, s∆x for the interpolation.
Then, by using p(s), we can approximate the right-hand side of (6.5):∫ ∆x

0

v(y)dx ≈
∫ ∆x

0

p(s)(x)dx =

s∑
i=−s+1

vj

∫ ∆x

0

l
(s)
j (x)dx.

Note that it coincides with the trapezoidal rule when s = 1. Since
∫∆x

0
lsj(x)dx =

∫∆x

0
ls−j+1(x)dx

holds for any j > 0, the approximation above can be simplified into

(6.6)

∫ ∆x

0

v(y)dx ≈
s∑

j=1

µ
(s)
j (vj + v1−j)∆x

for any positive integer s, where µ
(s)
j = (1/∆x)

∫∆x

0
l
(s)
j (x)dx. For example, it holds that

µ
(1)
1 =

1

2
,

µ
(2)
1 =

13

24
, µ

(2)
2 = − 1

24
,

µ
(3)
1 =

401

720
, µ

(3)
2 = − 31

480
, µ

(3)
3 =

11

1440
.
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By using the (2s− 1)th order approximation (6.6), we can define an extension δ−1
FD,s as follows:

δ−1
FD,svk =

k∑
j=1

(
s∑

i=1

µ
(s)
i (vj+i + vj+1−i)∆x

)
− 1

K

K∑
j=1

(
s∑

i=1

µ
(s)
i (vj+i + vj+1−i)∆x

)
,

where δ−1
FD,1 = δ−1

FD holds. It should be noted that, by definition, δ−1
FD,s reproduce the exact value up

to (2s− 1)th order polynomial.
Now, let us define an extension of the average-difference method (δ+x , µ

+,s
x ) by using the relation

µ+,s
x vk = δ+x δ

−1
FD,svk. Here, the extended average operators µ+,s

x turn out to be expressed as

µ+,s
x vk :=

s∑
j=1

µ
(s)
j (vk+j + vk+1−j) .

For example, µ+,2
x and µ+,3

x can be written as

µ+,2
x vk :=

−vk−1 + 13vk + 13vk+1 − vk+2

24
,

µ+,3
x vk :=

11vk−2 − 93vk−1 + 802vk + 802vk+1 − 93vk+2 + 11vk+3

1440
.

It should be noted that, since δ−1
FD,s reproduces the exact value up to (2s−1)th order polynomials, the

extended average-difference (δ+x , µ
+,s
x ) reproduces the exact value up to 2sth order polynomials.

The relative error e(ω̃) corresponds to these extensions of the average-difference method can be
similarly computed. They are compared with several difference operators such as various compact
differences in Figure 2 (see, e.g., [24, 14] for the definitions of each difference operator). Similar to
the original average-difference (recall, Remark 6.1), whether these extensions can be regarded as the
difference operators is unclear. Thus, again, the order of them cannot be defined in the usual sense.
However, since they reproduce the exact value up to 2sth polynomials as we described above, we
compare them with 2sth order difference operators.

As shown in Figure 2, the average-difference-type methods (AD2–AD6) are again far better than
central differences (CD2–CD6). Tridiagonal compact differences (TC4, TC6) are slightly better than
the average-differences for low frequency components, but again, the opposite happens for high fre-
quency components.

Spectral-like compact difference (SLC6) is better than the others except for the Fourier-spectral
difference in ω̃ < 2.8. However, it is far worse than the average-difference method around the Nyquist
frequency. In view of this, a spectral-like extension of the average-difference method seems worth
investigation (see, Section 7).

Since the coefficients of the one-sided differences diverge when its order becomes higher, its relative
error does not converge to that of the Fourier-spectral difference operator. In fact, when p → ∞, the
relative error eODp(ω̃) of pth order one-sided difference operator converges to 0 if ω̃ ∈ (0, π/3), and
1 if ω̃ ∈ (π/3, π). Though the relative errors of one-sided differences near the Nyquist frequency is
acceptable, that of around ω̃ = π/2 is far worse than the other differences. In view of this, we conclude
one-sided differences should not be employed for discretizing the mixed derivative.

Therefore, the extensions of the average-difference method are expected to be tough against the
solution with high frequency components, e.g., waves developing steep fronts as time evolves.

7. Concluding Remarks

7.1. Our contributions. In this paper, we discussed the spatial discretization of the evolutionary
equations with a mixed derivative.
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Figure 2. The relative errors e(ω̃) of difference operators. CD, TC, SLC, FS, and
OD stand for central, tridiagonal compact, spectral-like compact, Fourier-spectral, and
one-sided differences. AD denotes average-difference method. The numbers attached
to these names indicate the order of accuracy.

We here emphasize that, the present paper is the first attempt to construct a unified approach
for (1.1) including the class (IV), while currently there are sporadic studies for each specific case in the
classes (I), (II), and (III). In the proposed approach, the equivalence of the differential and integral
form (Theorem 4.9) plays an important role. Though several papers dealt with each specific case in
the class (II) (⊇ (I)) by following the strategy introduced by Hunter [22], in the present paper, we
proposed a novel, more unified procedure, which is also applicable to the equations in the class (III)
and (IV). There, we employed the Tseng generalized inverse, which is the standard concept of the
generalized inverse of the linear operator between Hilbert spaces. It should be noted that, although
we focused on the periodic domain in this paper, we believe that our idea to introduce the Tseng
generalized inverse can be applied to other boundary conditions.

In Section 5, we investigated the difference between the discretizations of the differential and integral
forms. Although most existing numerical methods have been constructed based on their integral forms
for the equations in the class (II), we pointed out that the numerical solutions can violate the implicit
constraint when one deal with the class (IV). In addition to that, even for the class (III) (⊇ (II) ⊇ (I)),
the discretization of the differential form has an advantage that is often free from nonlocal operators.
Thus, we advocate employing the differential form for actual computation.

Then, in Section 6, among several finite difference methods, we concluded that the average-difference
method is best suited to discretize the mixed derivative. Moreover, we developed some higher order
extensions of the average-difference method, and showed this direction is promising.

7.2. Future works. In this paper, we left several issues to future works.
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First, the rigorous justification of the infinite dimensional reduction process should be done, and we
believe that it will be a powerful tool for analyzing evolutionary PDEs with a mixed derivative.

Second, although we focused only on the spatial discretization, we should also investigate how to
fully discretize them. There certainly are a lot of existing works on the temporal discretization of the
general implicit DAEs, but we think some special treatment will be needed when we deal with DAEs
obtained by the spatial discretization of PDEs with the mixed derivative.

Third, though we used a conserved quantity in order to certify the transformation of the average-
difference method for the sine-Gordon equation in Section 5.2, we did not consider any other conserva-
tion laws in this paper. In view of this, we believe that the combination of the concept of the geometric
integration and the framework in this paper should be investigated.

Finally, detailed analysis and further development of the average-difference method should be dis-
cussed. For example, since the superiority of the spectral-like compact difference in low frequency
components could be attributed to the fact that its parameter is defined to replicate the dispersion
relation of propagating waves as good as possible, we believe that such an extension of the average-
difference method may be promising. As we described in Remarks 5.1, we have already obtained some
results on this issue and will report it elsewhere soon.
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