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Abstract

We investigate loss estimation in the matrix mean estimation problem.
Specifically, for estimators of a normal mean matrix, we consider the esti-
mation of the Frobenius loss. Based on the singular values of the observation,
we develop loss estimators that dominate the unbiased loss estimator for a
broad class of matrix mean estimators including the Efron–Morris estimator.
This is an extension of the results of Johnstone (1988) for a normal mean vec-
tor. We also provide improved estimators of loss for reduced-rank estimators.
Numerical results show the effectiveness of the proposed loss estimators.

1 Introduction

This paper considers loss estimation for a normal mean matrix. Specifically, let
X ∈ Rn×m be a matrix observation whose entries Xij are independent normal
random variables with mean Mij and variance 1, respectively. In the notation
of matrix-variate normal distributions by Dawid (1981), it is expressed as X ∼
Nn,m(M, In, Im), where Ik denotes the k-dimensional identity matrix. We assume
n ≥ m. The matrix M = E[X] ∈ Rn×m is called the mean matrix. We consider
estimation of M under the Frobenius loss:

L(M, M̂(X)) = ∥M̂(X)−M∥2F =

n∑
i=1

m∑
j=1

(M̂ij(X)−Mij)
2. (1)
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Note that the Frobenius loss (1) depends on both M and X. Let λ(X) be an
estimator of the Frobenius loss (1). We evaluate the performance of a loss estimator
λ(X) by squared error:

L∗(M, M̂(X), λ(X)) = (λ(X)− L(M, M̂(X)))2.

A loss estimator λ1(X) is said to dominate (or improve) another loss estimator
λ2(X) if

EM [L∗(M, M̂(X), λ1(X))] ≤ EM [L∗(M, M̂(X), λ2(X))]

holds for every M , with strict inequality for at least one value of M . One standard
loss estimator in normal mean estimation problems is Stein’s unbiased risk estimator
(Stein, 1974). This estimator is the unique unbiased loss estimator. The main
focus of this paper is on developing loss estimators that dominate the unbiased loss
estimator for a broad class of matrix mean estimators.

There has been substantial work on loss estimation for a normal mean vector,
which corresponds to m = 1. For the maximum likelihood estimator, Johnstone
(1988) showed that the unbiased loss estimator is improved by negative correction
when n ≥ 5. Johnstone (1988) also showed that, for the James–Stein estimator, the
unbiased loss estimator is improved by positive correction when n ≥ 5. However,
loss estimation for a normal mean matrix (m > 1) has not been investigated.

In this paper, we focus on the class of equivariant estimators for a normal mean
matrix:

M̂(X) = UΣ(Im − Φ(Σ))V ⊤, (2)

where X = UΣV ⊤ with U ∈ Rn×m, V ∈ Rm×m, U⊤U = V ⊤V = Im, Σ =
diag(σ1, . . . , σm) is the singular value decomposition ofX and Φ(Σ) = diag(ϕ1(σ), · · · , ϕm(σ))
with σ = (σ1, · · · , σm). Many matrix mean estimators belong to the above class.
For example, Efron and Morris (1972) proposed a minimax estimator that is a
natural extension of the James–Stein estimator:

M̂EM = X
(
Im − (n−m− 1)(X⊤X)−1

)
,

which is rewritten as the form (2) with

ϕi(σ) =
n−m− 1

σ2
i

(i = 1, . . . ,m).

Minimax estimators of the form (2) have been further developed (Efron and Morris,
1976; Stein, 1974; Zheng, 1986; Tsukuma, 2008). In addition, the reduced-rank
estimator, which truncates lower singular values of X, has the form (2) with

ϕi(σ) =

{
0 (1 ≤ i ≤ k)

1 (k + 1 ≤ i ≤ m)
.
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This estimator is effective in multivariate linear regression since the regression coef-
ficient matrix often has low rank in practice (Reinsel and Velu, 1998). We develop
loss estimators that dominate the unbiased loss estimator for mean matrix estima-
tors of the form (2). Our results include an extension of the results by Johnstone
(1988) for a normal mean vector.

In section 2, we review existing results on loss estimation for a normal mean
vector and matrix mean estimation. In section 3, we develop a formula of the
unbiased loss estimators for a normal mean matrix, following the method of Sheena
(1995) for the covariance estimation problem. In section 4, we develop improved loss
estimators for a broad class of matrix mean estimators, including the Efron–Morris
estimator and reduced-rank estimators. In section 5, we show the performance of
improved loss estimators by numerical experiments. In section 6, we give some
concluding remarks.

2 Preliminaries

2.1 Loss estimation for a normal mean vector

Suppose that we estimate θ ∈ Rp from an observationX ∼ Np(θ, Ip) by an estimator

θ̂(x) = x + g(x), where Ik denotes the k-dimensional identity matrix. We are
interested in estimation of the quadratic loss L(θ, θ̂(x)) = ∥θ̂(x)−θ∥2, which depends
on both θ and x. This problem is called loss estimation (Johnstone, 1988) and has
been investigated by several studies (Lu and Berger, 1989; Fourdrinier and Wells,
2012). The performance of a loss estimator λ(x) is evaluated by squared error
L∗(θ, θ̂(x), λ(x)) = (λ(x)− L(θ, θ̂(x)))2. A loss estimator λ1(x) is said to dominate
another loss estimator λ2(x) if

Eθ[L
∗(θ, θ̂(x), λ1(x))] ≤ Eθ[L

∗(θ, θ̂(x), λ2(x))]

holds for every θ, with strict inequality for at least one value of θ. A loss estimator
λ(x) is said to be admissible if any loss estimator does not dominate λ(x) and a
loss estimator λ(x) is said to be inadmissible if there exists a loss estimator that
dominates λ(x).

The quadratic risk of the estimator θ̂ is defined as R(θ, θ̂) = Eθ[L(θ, θ̂(x))].
Stein (1974) showed that R(θ, θ̂) = Eθ[λ

U(x)], where λU(x) = p+2∇·g(x)+∥g(x)∥2
is called Stein’s unbiased risk estimator (SURE). By completeness, λU(x) is the
unique unbiased loss estimator. Johnstone (1988) showed that Stein’s unbiased
risk estimator is inadmissible for the maximum likelihood estimator and also the
James–Stein estimator as follows. We assume that all expectations are finite.

Lemma 1. (Johnstone, 1988) Consider an estimator θ̂(x) = x+g(x). Let h : Rp →
R be a twice weakly differentiable function. The risk difference between the loss
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estimator λ(x) = λU(x) + h(x) and the unbiased loss estimator λU(x) is expressed
as

Eθ[L
∗(θ, θ̂(x), λ(x))]− Eθ[L

∗(θ, θ̂(x), λU(x))] = Eθ[−2∆h− 4g⊤∇h+ h2].

Therefore, if h satisfies
−2∆h− 4g⊤∇h+ h2 ≤ 0

for every x, then λ(x) dominates λU(x).

Lemma 2. (Johnstone, 1988) Consider the maximum likelihood estimator θ̂(x) =
x. If p ≥ 5 and 0 < r < 4(p− 4), then the loss estimator

λ(x) = λU(x)− r

∥x∥2

dominates the unbiased loss estimator λU(x) = p.

Lemma 3. (Johnstone, 1988) Consider the James–Stein estimator θ̂(x) = (1 −
p−2
∥x∥2 )x. If p ≥ 5 and 0 < r < 4p, then the loss estimator

λ(x) = λU(x) +
r

∥x∥2

dominates the unbiased loss estimator λU(x) = p− (p−2)2

∥x∥2 .

Fourdrinier and Strawderman (2003) developed a general method for obtaining
an improved loss estimator for pseudo-Bayes estimators. Recently, Narayanan and
Wells (2015) discussed loss estimation for the LASSO. See Fourdrinier and Wells
(2012) for a general review of results on the topic of loss estimation.

2.2 Estimation of a normal mean matrix

Suppose that we have a matrix observation X ∈ Rn×m whose entries are indepen-
dent normal random variables Xij ∼ N(Mij , 1), where n ≥ m and M ∈ Rn×m is an
unknown mean matrix. In the notation of matrix-variate normal distributions by
Dawid (1981), it is expressed as X ∼ Nn,m(M, In, Im). We consider estimation of
M under the Frobenius loss:

l(M, M̂(X)) = ∥M̂(X)−M∥2F =
n∑

i=1

m∑
j=1

(M̂ij(X)−Mij)
2.

Let X = UΣV ⊤, U ∈ Rn×m, V ∈ Rm×m, Σ = diag(σ1, . . . , σm) be the singular
value decomposition of X, where U⊤U = V ⊤V = Im and σ1 ≥ · · · ≥ σm ≥ 0 are
the singular values of X. In the following, we consider estimators of the form

M̂ = UΣ(Im − Φ(Σ))V ⊤, (3)
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where Φ(Σ) = diag(ϕ1(σ), · · · , ϕm(σ)) and σ = (σ1, · · · , σm). These estimators are
equivariant with respect to the transformation X → PXQ and M → PMQ with
orthogonal matrices P ∈ O(n) and Q ∈ O(m). The maximum likelihood estimator
M̂ = X has the form (3) with ϕ1(σ) = · · · = ϕm(σ) = 0. We note that the estimator
(3) is expressed as M̂ = X + g(X) with g(X) = −UΣΦ(Σ)V ⊤.

Many minimax estimators of the form (3) have been proposed when n ≥ m+2.
For example, the estimator by Efron and Morris (1972)

M̂EM = X
(
Im − (n−m− 1)(X⊤X)−1

)
(4)

corresponds to

ϕi(σ) =
n−m− 1

σ2
i

(i = 1, . . . ,m).

M̂EM is minimax. Later, Efron and Morris (1976) proposed the modified estimator

M̂MEM = X

(
Im − (n−m− 1)(X⊤X)−1 − m2 +m− 2

tr(X⊤X)
Im

)
, (5)

which corresponds to

ϕi(σ) =
n−m− 1

σ2
i

+
m2 +m− 2∑

j σ
2
j

(i = 1, . . . ,m).

M̂MEM is minimax and dominates M̂EM. Zheng (1986) also developed minimax
estimators of the form (3) including an extension of the Baranchik type estimators.

Bayes minimax estimators of the form (3) have also been developed. Tsukuma
(2008) proposed a class of hierarchical priors and proved admissibility and mini-
maxity of the Bayes estimators based on them. His prior is a natural generalization
of Strawderman’s prior. On the other hand, Matsuda and Komaki (2015) developed
a singular value shrinkage prior

πSVS(M) = det(M⊤M)−(n−m−1)/2, (6)

which is superharmonic. This prior is a natural generalization of Stein’s prior.
The Bayes estimator with respect to πSVS is minimax and has similar properties to
M̂EM. This is an extension of the relationship between the James–Stein estimator
and Stein’s prior.

Reduced-rank estimators, which are commonly used in multivariate linear re-
gression, also has the form (3). When we apply multivariate linear regression to real
data, the regression coefficient matrix often has low rank. Therefore, it is effective
to impose a rank constraint on the regression coefficient matrix and this method is
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called the reduced-rank regression (Reinsel and Velu, 1998). Here, we consider the
reduced-rank estimator with rank k, which is represented as (3) with

ϕi(σ) =

{
0 (1 ≤ i ≤ k)

1 (k + 1 ≤ i ≤ m)
. (7)

Thus, the reduced-rank estimator truncates lower singular values. From the Eckart–
Young theorem, this estimator is the maximum likelihood estimator under the rank
constraint rank M = k (Eckart and Young, 1936).

3 Unbiased loss estimator for a normal mean matrix

In this section, we derive the unbiased loss estimators for matrix mean estimators
of the form (3). Our derivation is similar to the method of Sheena (1995), which
provides the unbiased estimator of risk for orthogonally invariant estimators of a
covariance matrix. Our method is valid for estimators with discontinuities such as
reduced-rank estimators. Takemura and Kuriki (1999) used a similar technique.

Following Sheena (1995), we utilize the coordinate system on the space of matri-
ces derived from the singular value decomposition. For X ∈ Rn×m, let X = UΣV ⊤

with U ∈ Rn×m, V ∈ Rm×m, Σ = diag(σ1, . . . , σm) be the singular value decom-
position of X, where U⊤U = V ⊤V = Im and σ1 ≥ · · · ≥ σm ≥ 0 are the singular
values of X. We put σ = (σ1, · · · , σm), U = (u1, · · · , um), and V = (v1, · · · , vm),
where ui ∈ Rn and vi ∈ Rm are column vectors. From James (1954), the Jacobian
of the singular value decomposition is

dX =
m∏
i=1

σn−m
i

∏
i<j

(σ2
i − σ2

j )dUdΣdV,

where

dU =

m∏
i,j=1

u⊤j dui, dΣ =

m∏
i=1

dσi, dV =
∏
i<j

v⊤j dvi.

Here,
∏

i<j denotes
∏m

i=1

∏m
j=i+1. Note that dU and dV are the invariant mea-

sures on the Stiefel manifold V (n,m) and the orthogonal group O(m), respectively.
Thus, when X ∼ Nn,m(M, In, Im), the probability density of U,Σ, V with respect
to dUdΣdV is

p(U,Σ, V ) = (2π)−nm/2 exp

(
−1

2
∥X −M∥2F

) m∏
i=1

σn−m
i

∏
i<j

(σ2
i − σ2

j )

= C exp

(
−1

2

m∑
i=1

σ2
i +

m∑
i=1

aiσi

)
m∏
i=1

σn−m
i

∏
i<j

(σ2
i − σ2

j ),
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where C = (2π)−nm/2 exp(−∥M∥2F/2) and ai = (U⊤MV )ii. Therefore, for any
statistic T (σ) that has finite expectation EM [T (σ)] < ∞, we have

EM [T (σ)] =

∫
T (σ)F (σ)G(σ)dΣ, (8)

where

F (σ) = C exp

(
−1

2

m∑
i=1

σ2
i

)
m∏
i=1

σn−m
i

∏
i<j

(σ2
i − σ2

j ),

and

G(σ) =

∫
exp

(
m∑
i=1

aiσi

)
dUdV.

We note that
∂

∂σi
G(σ) =

∫
ai exp

(
m∑
i=1

aiσi

)
dUdV. (9)

Theorem 1. Suppose that an estimator M̂ of the form (3) satisfies the following
conditions:

1. All expectations in (10) are finite.

2. For 1 ≤ i ≤ m, ϕi(σ) is absolutely continuous with respect to σi.

3. For 1 ≤ i ≤ m, limσi→σi−1 ϕi(σ)F (σ)G(σ) = limσi→σi+1 ϕi(σ)F (σ)G(σ) = 0.

Then,

EM [∥M̂−M∥2F] = nm+EM

 m∑
i=1

(
σ2
i ϕ

2
i − 2(n−m+ 1)ϕi − 2σi

∂ϕi

∂σi

)
− 4

∑
i<j

σ2
i ϕi − σ2

jϕj

σ2
i − σ2

j

 .

(10)

Proof. Let g(X) = −UΦ(Σ)V ⊤ so that M̂ = X + g(X). Then, the Frobenius risk
of the estimator M̂ is

EM [∥M̂ −M∥2F] = EM [∥X −M∥2F] + 2EM [tr(X −M)⊤g(X)] + EM [∥g(X)∥2F]

= nm+ 2EM [trX⊤g(X)]− 2EM [trM⊤g(X)] + EM

[
m∑
i=1

ϕi(σ)
2

]

= nm− 2EM [trΣΦ(Σ)]− 2EM [trU⊤MV Φ(Σ)] + EM

[
m∑
i=1

ϕi(σ)
2

]

= nm+ EM

[
m∑
i=1

(ϕi(σ)− 2σi − 2ai)ϕi(σ)

]
. (11)
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Let Σi = {(σ1, · · · , σi−1, σi+1, · · · , σm)|σ1 > · · · > σi−1 > σi+1 > · · · > σm} and dΣi =
dσ1 · · · dσi−1dσi+1 · · · dσm for i = 1, · · · ,m. From (8), (9), and the conditions 2 and
3,

EM

[
m∑
i=1

aiϕi(σ)

]
=

m∑
i=1

∫
ϕi(σ)F (σ)

∂

∂σi
G(σ)dΣ

=
m∑
i=1

∫
Σi

∫ σi−1

σi+1

ϕi(σ)F (σ)
∂

∂σi
G(σ)dσidΣi

=

m∑
i=1

∫
Σi

(
[ϕi(σ)F (σ)G(σ)]σi=σi−1

σi=σi+1
−
∫ σi−1

σi+1

∂

∂σi
(ϕi(σ)F (σ))G(σ)dσi

)
dΣi

= −
m∑
i=1

∫
Σi

∫ σi−1

σi+1

1

F (σ)

∂

∂σi
(ϕi(σ)F (σ))F (σ)G(σ)dσidΣi

= −
m∑
i=1

EM

[
1

F (σ)

∂

∂σi
(ϕi(σ)F (σ))

]
. (12)

Substituting (12) into (11) and calculating the derivative, we obtain (10).

We note that all estimators appearing in this paper satisfy the conditions of
Theorem 1. From Theorem 1, the unbiased loss estimator is obtained as follows.

Corollary 1. Suppose that an estimator M̂ of the form (3) satisfies the conditions
of Theorem 1. Then, the unbiased loss estimator for M̂ is

λU(X) = nm+

m∑
i=1

(
σ2
i ϕ

2
i − 2(n−m+ 1)ϕi − 2σi

∂ϕi

∂σi

)
− 4

∑
i<j

σ2
i ϕi − σ2

jϕj

σ2
i − σ2

j

. (13)

4 Improving on the unbiased loss estimator for a nor-
mal mean matrix

In this section, we provide loss estimators that dominate the unbiased loss estimator
(13) for matrix mean estimators of the form (3). Our results include an extension
of the results by Johnstone (1988) for a normal mean vector.

Throughout this section, we use the following formula from Stein (1974) for the
Laplacian form. Note that

∑
i<j denotes

∑m
i=1

∑m
j=i+1.

Lemma 4. (Stein, 1974) Suppose that f : Rn×m → R is represented as f(X) =
f̃(σ), where n ≥ m and σ = (σ1, · · · , σm) denotes the singular values of X. If f is
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twice weakly differentiable, then its Laplacian is expressed as

∆f =
n∑

i=1

m∑
j=1

∂2f

∂X2
ij

= 2
∑
i<j

σi
∂f̃
∂σi

− σj
∂f̃
∂σj

σ2
i − σ2

j

+ (n−m)
m∑
i=1

1

σi

∂f̃

∂σi
+

m∑
i=1

∂2f̃

∂σ2
i

. (14)

4.1 Fundamental results

First, we consider estimators of the form (3) with ϕi(σ) = ri/σ
2
i , where each ri is

constant. This class includes the maximum likelihood estimator (ri = 0) and the
Efron–Morris estimator (4) (ri = n−m− 1). The unbiased loss estimator (13) is

λU(X) = nm+

m∑
i=1

ri(ri − 2(n−m− 1))

σi(X)2
− 4

∑
i<j

ri − rj
σi(X)2 − σj(X)2

. (15)

4.1.1 Downward correction

For a normal mean vector, Johnstone (1988) showed that the unbiased loss estimator
for the maximum likelihood estimator is improved by downward correction (Lemma
2). The following Theorem gives a class of matrix mean estimators for which down-
ward correction provides improvement, and which includes the maximum likelihood
estimator.

Theorem 2. Consider an estimator M̂ of the form (3) with ϕi(σ) = ri/σ
2
i . If ri+ i

is non-decreasing in i and n−m−2i−1−2ri > 0 for every i, then the loss estimator

λ(X) = λU(X)−
m∑
i=1

ciσi(X)−2, ci =
4

m
(n−m− 2i− 1− 2ri),

dominates the unbiased loss estimator λU(X) in (15).

Proof. From the assumptions on ri, we have c1 ≥ · · · ≥ cm > 0. Therefore,∑
i<j

ciσ
−2
i − cjσ

−2
j

σ2
i − σ2

j

=
∑
i<j

(ci − cj)σ
2
j + cj(σ

2
j − σ2

i )

σ2
i σ

2
j (σ

2
i − σ2

j )

=
∑
i<j

ci − cj
σ2
i (σ

2
i − σ2

j )
−
∑
i<j

cj
σ2
i σ

2
j

≥ −
∑
i<j

cj
σ2
i σ

2
j

≥ −
∑
i<j

cj
σ4
j

= −
m∑
i=1

(i− 1)
ci
σ4
i

. (16)
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Let h(X) = −
∑m

i=1 ciσi(X)−2 and g(X) = −UΣΦ(Σ)V ⊤. From (14) and (16),
we have

∆h = 4
∑
i<j

ciσ
−2
i − cjσ

−2
j

σ2
i − σ2

j

+ 2(n−m− 3)
m∑
i=1

ciσ
−4
i

≥
m∑
i=1

2(n−m− 2i− 1)ciσ
−4
i .

Also, we have

g⊤∇h =
d

dt
h(X + tg)|t=0

= − d

dt

m∑
i=1

ci

(
σi −

ri
σi
t

)−2
∣∣∣∣∣
t=0

= −2

m∑
i=1

riciσ
−4
i .

Therefore,

−2∆h− 4g⊤∇h+ h2 ≤
m∑
i=1

(c2i − 4(n−m− 2i− 1− 2ri)ci)σ
−4
i + 2

∑
i<j

cicjσ
−2
i σ−2

j

= −(m− 1)
m∑
i=1

c2iσ
−4
i + 2

∑
i<j

cicjσ
−2
i σ−2

j

= −
∑
i<j

(ciσ
−2
i − cjσ

−2
j )2

≤ 0.

Hence, from Lemma 1, λ(X) = λU(X) + h(X) dominates λU(X).

Corollary 2. Suppose n − 3m − 1 > 0. For the maximum likelihood estimator
M̂(X) = X, the loss estimator

λ(X) = nm−
m∑
i=1

ciσi(X)−2, ci =
4

m
(n−m− 2i− 1), (17)

dominates the unbiased loss estimator λU(X) = nm.

Proof. It is obvious from Theorem 2 and ri = 0.
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4.1.2 Upward correction

For a normal mean vector, Johnstone (1988) showed that the unbiased loss estima-
tor for the James–Stein estimator is improved by upward correction (Lemma 3).
The following Theorem gives a class of matrix mean estimators for which upward
correction provides improvement, and which includes the Efron–Morris estimator
(4).

Theorem 3. Consider an estimator M̂ of the form (3) with ϕi(σ) = ri/σ
2
i . If ri is

non-decreasing in i and 2ri − n+m+ 3 > 0 for every i, then the loss estimator

λ(X) = λU(x) +

m∑
i=1

ciσi(X)−2, ci =
4

m
(2ri − n+m+ 3),

dominates the unbiased loss estimator λU(X) in (15).

Proof. From the assumptions on ri, we have 0 < c1 ≤ · · · ≤ cm. Therefore,

∑
i<j

ciσ
−2
i − cjσ

−2
j

σ2
i − σ2

j

=
∑
i<j

ci(σ
2
j − σ2

i ) + σ2
i (ci − cj)

σ2
i σ

2
j (σ

2
i − σ2

j )

= −
∑
i<j

ci
σ2
i (σ

2
i − σ2

j )
+
∑
i<j

ci − cj
σ2
j

≤ 0. (18)

Let h(X) =
∑m

i=1 ciσi(X)−2 and g(X) = −UΣΦ(Σ)V ⊤. From (14) and (18),
we have

∆h = −4
∑
i<j

ciσ
−2
i − cjσ

−2
j

σ2
i − σ2

j

− 2(n−m− 3)
m∑
i=1

ciσ
−4
i

≥ −
m∑
i=1

2(n−m− 3)ciσ
−4
i .

Also, we have

g⊤∇h =
d

dt
h(X + tg)|t=0

=
d

dt

m∑
i=1

ci

(
σi −

ri
σi
t

)−2
∣∣∣∣∣
t=0

= 2
m∑
i=1

riciσ
−4
i .

11



Therefore,

−2∆h− 4g⊤∇h+ h2 ≤
m∑
i=1

(c2i − 4(2ri − n+m+ 3)ci)σ
−4
i + 2

∑
i<j

cicjσ
−2
i σ−2

j

= −(m− 1)

m∑
i=1

c2iσ
−4
i + 2

∑
i<j

cicjσ
−2
i σ−2

j

= −
∑
i<j

(ciσ
−2
i − cjσ

−2
j )2

≤ 0.

Hence, from Lemma 1, λ(X) = λU(X) + h(X) dominates λU(X).

Corollary 3. Suppose n−m−1 > 0. For the Efron–Morris estimator M̂EM in (4),
the loss estimator

λ(X) = nm− (n−m− 1)2
m∑
i=1

σi(X)−2+ c
m∑
i=1

σi(X)−2, c =
4

m
(n−m+1), (19)

dominates the unbiased loss estimator λU(X) = nm− (n−m− 1)2
∑m

i=1 σi(X)−2.

Proof. It is obvious from Theorem 3 and ri = n−m− 1.

4.1.3 Border between downward and upward correction

Here, we consider estimators of the form (3) with ϕi(σ) = r/σ2
i . The maximum

likelihood estimator (r = 0) and the Efron–Morris estimator (r = n−m−1) belong
to this class. The following Theorem provides the border between downward and
upward correction.

Theorem 4. Consider an estimator M̂ of the form (3) with ϕi(σ) = r/σ2
i .

(i) If 0 ≤ r < (n−2m−2)/2, then the loss estimator with downward correction

λ(X) = λU(X)− c

m∑
i=1

σi(X)−2, 0 ≤ c ≤ 4

m
(n− 2m− 2r − 2),

dominates the unbiased loss estimator λU(X) = nm+r(r−2(n−m−1))
∑m

i=1 σi(X)−2.
(ii) If r > (n− 2m− 2)/2, then the loss estimator with upward correction

λ(X) = λU(X) + c

m∑
i=1

σi(X)−2, 0 ≤ c ≤ 4

m
(−n+ 2m+ 2r + 2),

dominates the unbiased loss estimator λU(X) = nm+r(r−2(n−m−1))
∑m

i=1 σi(X)−2.

12



Proof. Let h(X) = c
∑m

i=1 σi(X)−2 and g(X) = −UΣΦ(Σ)V ⊤. From (14), we have

∆h = 4c
∑
i<j

σ−2
i σ−2

j − 2(n−m− 3)c

m∑
i=1

σ−4
i .

Also, we have

g⊤∇h =
d

dt
h(X + tg)|t=0

= c
d

dt

m∑
i=1

(
σi −

r

σi
t

)−2
∣∣∣∣∣
t=0

= 2cr

m∑
i=1

σ−4
i .

Therefore,

−2∆h− 4g⊤∇h+ h2 = (c2 + 4(n−m− 2r − 3)c)

m∑
i=1

σ−4
i + (2c2 − 8c)

∑
i<j

σ−2
i σ−2

j

≤ (mc2 + 4(n− 2m− 2r − 2)c)

m∑
i=1

σi(X)−4,

where we used

(m− 1)
m∑
i=1

σ−4
i − 2

∑
i<j

σ−2
i σ−2

j =
∑
i<j

(σ−2
i − σ−2

j )2 ≥ 0.

Hence, from Lemma 1, λ(X) = λU(X) + h(X) dominates λU(X) if

(mc2 + 4(n− 2m− 2r − 2)c)
m∑
i=1

σi(X)−4 ≤ 0,

which holds when c is between 0 and −(4/m)(n− 2m− 2r − 2).

4.2 Estimators with scalar shrinkage

The modified Efron–Morris estimator (5) adds scalar shrinkage to the Efron–Morris
estimator (4). Tsukuma (2008) provided a general condition on estimators of the
form (3) to be improved by additional scalar shrinkage. Here, we improve on the
unbiased loss estimators for matrix mean estimators of the form (3) with scalar
shrinkage:

ϕi(σ) =
ri
σ2
i

+
s∑m

i=1 σ
2
i

,

where s > 0.

13



Theorem 5. Let M̂0 and M̂ be estimators of the form (3) with ϕi(σ) = r/σ2
i and

ϕi(σ) = ri/σ
2
i + s/(

∑m
i=1 σ

2
i ), respectively. If the loss estimator

λ(X) = λU(X) +
m∑
i=1

ciσi(X)−2

dominates the unbiased loss estimator λU(X) for M̂0, then the loss estimator

λ(X) = λU(X) +

m∑
i=1

ciσi(X)−2

dominates the unbiased loss estimator λU(X) for M̂ .

Proof. Let h(X) =
∑m

i=1 ciσi(X)−2, g0(X) = M̂0(X)−X and g(X) = M̂(X)−X.

From Lemma 1, the risk difference between the loss estimator λ(X) = λU(X)+h(X)

and the unbiased loss estimator λU(X) for M̂0 is expressed as

EM [L∗(M, M̂0(X), λ(X))]−EM [L∗(M, M̂0(X), λU(X))] = EM [−2∆h−4g⊤0 ∇h+h2].

Since λ(X) dominates λU(X), we have

EM [−2∆h− 4g⊤0 ∇h+ h2] ≤ 0

for every M . Also, from s > 0, we obtain

g⊤∇h =
d

dt
h(X + tg)|t=0

=
d

dt

m∑
i=1

ci

(
σi −

ri
σi
t− sσi∑

j σ
2
j

t

)−2
∣∣∣∣∣∣
t=0

= g⊤0 ∇h+ 2s

m∑
i=1

ciσ
−2
i

(
m∑
i=1

σ2
i

)−1

≥ g⊤0 ∇h.

Therefore, the risk difference between the loss estimator λ(X) = λU(X)+h(X) and
the unbiased loss estimator λU(X) for M̂ is

EM [L∗(M, M̂(X), λ(X))]− EM [L∗(M, M̂(X), λU(X))] = EM [−2∆h− 4g⊤∇h+ h2]

≤ EM [−2∆h− 4g⊤0 ∇h+ h2]

≤ 0

for every M .
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Corollary 4. Suppose n−m− 1 > 0. For the Efron–Morris estimator with scalar
shrinkage M̂MEM in (5), the loss estimator

λ(X) = λU(X) + c

m∑
i=1

ciσi(X)−2, c =
4

m
(n−m+ 1), (20)

dominates the unbiased loss estimator λU(X).

Proof. It is obvious from Theorem 5 and Corollary 3.

4.3 Reduced-rank estimators

Finally, we consider the reduced-rank estimator with rank k, which is represented
as (3) with (7). Recently, Mukherjee et al. (2015) derived the degrees of freedom for
reduced-rank regression. From their results, the unbiased loss estimator is obtained
as

λU(X) =

m∑
i=k+1

σi(X)2 − nm+ 2

 k∑
i=1

m∑
j=k+1

σi(X)2 + σj(X)2

σi(X)2 − σj(X)2
+ nk

 . (21)

Theorem 6. Consider the reduced-rank estimator with rank k. If n−m−2k−1 ≥ 0,
then the loss estimator

λ(X) = λU(X)−
k∑

i=1

ciσi(X)−2, ci =
4

k
(n−m− 2i− 1), (22)

dominates the unbiased loss estimator λU(X) in (21).

Proof. Let h(X) = −
∑k

i=1 ciσi(X)−2 and g(X) = −UΣΦ(Σ)V ⊤, where ϕi(σ) is
defined as (7). From (14) and (16), we have

∆h = 4

k∑
i=1

k∑
j=i+1

ciσ
−2
i − cjσ

−2
j

σ2
i − σ2

j

+ 4

k∑
i=1

m∑
j=k+1

ciσ
−2
i

σ2
i − σ2

j

+ 2(n−m− 3)

k∑
i=1

ciσ
−4
i

≥ −4

k∑
i=1

(i− 1)ciσ
−4
i + 2(n−m− 3)

k∑
i=1

ciσ
−4
i

=
k∑

i=1

2(n−m− 2i− 1)ciσ
−4
i .

Also, we have

g⊤∇h =
d

dt
h(X + tg)|t=0 = 0,
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since σi(X + tg) = σi(X) for 1 ≤ i ≤ k. Therefore,

−2∆h− 4g⊤∇h+ h2 ≤
k∑

i=1

(c2i − 4(n−m− 2i− 1)ci)σ
−4
i + 2

∑
i<j

cicjσ
−2
i σ−2

j

= −(k − 1)

k∑
i=1

c2iσ
−4
i + 2

k∑
i=1

k∑
j=i+1

cicjσ
−2
i σ−2

j

= −
k∑

i=1

k∑
j=i+1

(ciσ
−2
i − cjσ

−2
j )2

≤ 0.

Hence, from Lemma 1, λ(X) = λU(X) + h(X) dominates λU(X).

5 Numerical results

In this section, we show the performance of improved loss estimators by numerical
experiments. The risk functions of loss estimators are computed by the Monte
Carlo method with sample size 106. For each loss estimator λ(X), we present the
percentage improvement in risk over the unbiased loss estimator λU(X):

100
EM [L∗(M, M̂(X), λU(X))]− EM [L∗(M, M̂(X), λ(X))]

EM [L∗(M, M̂(X), λU(X))]
. (23)

In the results below, we plot (23) as a function of the singular values of the mean
matrix σ1 = σ1(M), . . . , σm = σm(M).

5.1 Maximum likelihood estimator

Figure 1 shows the percentage improvement in risk of loss estimators for the max-
imum likelihood estimator M̂(X) = M . The unbiased loss estimator is λU(X) =
nm. Our loss estimator (17) and the improved loss estimator by Johnstone (1988)
λJ(X) = nm − 2(nm − 4)/∥X∥2F are compared. Note that we formally extended
Johnstone’s loss estimator to matrix mean case by considering the vectorization of
M and X.

Figure 1 (a) shows the case n = 8, m = 2 and σ1 = 10. Our loss estimator
performs better than the unbiased loss estimator and the risk reduction increases
as σ2 decreases, whereas Johnstone’s loss estimator has almost the same risk with
the unbiased loss estimator. Figure 1 (b) shows the case n = 8, m = 2 and σ2 = 0.
Though Johnstone’s loss estimator performs best when σ1 is small, its risk becomes
almost the same as that of the unbiased estimator as σ1 increases. On the other
hand, our loss estimator has constant risk reduction even when σ1 is large.
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In summary, our loss estimator works well when several singular values are close
to zero. Thus, it is effective when the mean matrix has low rank. These properties
are similar to the Frobenius risk of the Efron–Morris estimator (4) and also the
Bayes estimator with respect to the singular value shrinkage prior (6).
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Figure 1: Percentage improvement in risk of our loss estimator (17) (solid line) and
Johnstone’s loss estimator (dashed line) over the unbiased loss estimator for the
maximum likelihood estimator when n = 8 and m = 2. (a) σ1 = 10. (b) σ2 = 0.

5.2 Efron–Morris estimator

Figure 2 shows the percentage improvement in risk of our loss estimator (19) for the
Efron–Morris estimator (4) when n = 6 and m = 2. Our loss estimator performs
better than the unbiased loss estimator and the risk reduction is large when several
singular values are close to zero. In particular, the percentage improvement in risk
is almost constant when the mean matrix has low rank, as shown in Figure 2 (b).

5.3 Efron–Morris estimator with scalar shrinkage

Figure 3 shows the percentage improvement in risk of our loss estimator (20) for
the Efron–Morris estimator with scalar shrinkage (5) when n = 6 and m = 2.
Similarly to the Efron-Morris estimator without scalar shrinkage (Figure 2), our
loss estimator has large risk reduction when several singular values are close to
zero and the percentage improvement in risk is almost constant when the mean
matrix has low rank. The percentage improvement in risk is larger than that for
the Efron-Morris estimator without shrinkage.
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Figure 2: Percentage improvement in risk of our loss estimator (19) over the un-
biased loss estimator for the Efron–Morris estimator when n = 6 and m = 2. (a)
σ1 = 10 (b) σ2 = 0.
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Figure 3: Percentage improvement in risk of our loss estimator (20) over the unbi-
ased loss estimator for the Efron–Morris estimator with scalar shrinkage (5) when
n = 6 and m = 2. (a) σ1 = 10. (b) σ2 = 0.
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5.4 Reduced-rank estimator

Figure 4 shows the percentage improvement in risk of our loss estimator (22) for the
reduced-rank estimator (7). Compared to Figure 1-3, the percentage improvement
in risk is not large. Figure 4 (a) shows the case n = 6, m = 2, k = 1, and σ2 = 0
and Figure 4 (b) shows the case n = 9, m = 3, k = 2, and σ2 = σ3 = 0. In both
cases, the risk reduction by our loss estimator increases as σ1 goes to zero.
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Figure 4: Percentage improvement in risk of our loss estimator (22) over the unbi-
ased loss estimator for the reduced-rank estimator (7). (a) n = 6, m = 2, k = 1,
and σ2 = 0. (b) n = 9, m = 3, k = 2, and σ2 = σ3 = 0.

6 Concluding remarks

In this study, we investigated loss estimation for a normal mean matrix. We de-
veloped loss estimators that dominate the unbiased loss estimator for a broad class
of matrix mean estimators, including the Efron–Morris estimator with and with-
out scalar shrinkage. Our results include an extension of the results of Johnstone
(1988) for a normal mean vector. We also provided improved loss estimators for
reduced-rank estimators. We confirmed the effectiveness of improved loss estimators
by numerical results.

In practice, it is unreasonable to use a negative value as an estimate of loss.
Therefore, if a loss estimator λ(X) takes negative values with nonzero probability,
its positive-part version max(0, λ(X)) dominates the original λ(X). For example,
the unbiased loss estimator and also our improved estimator for the Efron–Morris
estimator take negative values. However, numerical experiments showed that the
positive-part version of the unbiased loss estimator is not dominated by the positive-
part version of our improved loss estimator. It is a future problem to develop loss
estimators that improve upon the positive-part version of the unbiased loss estimator
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in such case.
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