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Abstract

As a common generalization of previous arborescence packings, Cs. Király and Szigeti [14]
introduced the reachability-based matroid-restricted packing of arborescences. That paper gave a
characterization when such a packing exists and a polynomial algorithm for the unweighted case.
Here we provide a polynomial algorithm for the weighted case. We reduce the problem to the
weighted matroid intersection problem by exploiting the underlying intersecting submodular bi-set
function.

1 Introduction

Let D = (V + s,A) be a rooted digraph, that is a digraph with a designated root vertex s. The arcs
leaving s are called root arcs. An s-arborescence is an acyclic subgraph in which s has in-degree zero
and every other vertex has in-degree one. For an s-arborescence T and a vertex v of T, T [s, v] denotes
the unique path from s to v. A set of arc-disjoint s-arborescences is called a packing of s-arborescences.
For X ⊆ V, P (X) denotes the set of vertices in V from which a vertex in X is reachable by a directed
path in D. For X,Y ⊆ V + s and an arc set B ⊆ A, ∂B

Y (X) denotes the set of arcs in B from Y \X to
X. If Y = V + s, then Y is often omitted. If B = A, that is, the arcs set of D, then B is also omitted.

LetM1 andM2 be matroids on the set ∂s(V ) of root arcs and the arc set A of D, respectively. A
packing T1, . . . , Tk of s-arborescences in D is said to be

• M2-restricted if the union of the arc sets of the arborescences T1, . . . , Tk forms an independent
set of M2;

• M1-based if, for each v ∈ V , the set of root arcs used in the paths from s to v in the arborescence
packing forms a base of M1, i.e., {∂(V ) ∩A(Ti[s, v]) : Ti contains v} is a base of M1;

• M1-reachability-based if, for each v ∈ V , the set of root arcs used in the paths from s to v in the
arborescence packing forms an independent set in M1 of size r1(∂s(P (v))).

The following theorem due to Cs. Király and Szigeti [14] characterizes when an M1-reachability-
based M2-restricted packing of s-arborescences exists.

Theorem 1.1. Let D = (V + s,A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2) two
matroids such that M2 is the direct sum of matroids Mv = (∂(v), rv) for v ∈ V . There exists an
M1-reachability-based M2-restricted packing of s-arborescences in D if and only if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂s(P (X))) for all X ⊆ V and F ⊆ ∂s(X). (1)

For M1-based M2-restricted packings, (1) can be simplified as follows.
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Corollary 1.2. Let D = (V + s,A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2) two
matroids such that M2 is the direct sum of matroids Mv = (∂(v), rv) for v ∈ V . There exists an
M1-based M2-restricted packing of s-arborescences in D if and only if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂(V )) for all ∅ 6= X ⊆ V and F ⊆ ∂s(X). (2)

The paper [14] also provided a polynomial algorithm to find an M1-reachability-based M2-
restricted packing of s-arborescences in D if there exists one. That algorithm used a submodular
function minimization algorithm for verifying (1). Here we will show that (1) can be verified by
repeated applications of matroid intersection.

The main contribution of this paper is to provide a polynomial algorithm for the weighted case. Our
approach is the following. In Phase 1, we find a minimum weight arc set that can be decomposed into a
reachability-based packing of arborescences and then, in Phase 2, we find the required decomposition.
The second phase doesn’t depend on the weighting, so we can use the algorithm developed in [14].
Thus our focus in this paper is to find a minimum weight arc set for a packing. The idea for finding such
an arc set of minimum weight is to show that it is a common base of two matroids, one of them being
M2. The construction of the other matroid was done by exploiting the underlying submodular bi-set
function. The application of bi-sets for arborescence packings was introduced by Bérczi and Frank [1]
and then later developed by Bérczi, T. Király and Kobayashi [2]. We continue this development by
showing how an intersecting submodular bi-set function induces a matroid.

We should also remark that Frank [8] used the same approach to reduce a rooted k-connection
problem to matroid intersection, where the matroid induced by a modular bi-set function is considered.

Since the construction is rather involved, in Section 3, we first consider the matroid-based packing
problem, a special case of the reachability-based packing. In this special case the problem is reduced to
the matroid intersection problem between M2 and a matroid induced by an intersecting submodular
set function.

For more details on the historical background and recent development of arborescence packings,
see [14]. The matroid terminology used here will follow [16].

2 Constructing Matroids from Submodular Functions

In this section we review a construction of matroids from intersecting submodular set functions and
then extend it to bi-set functions.

2.1 Set functions

Let S be a finite set. Two sets X,Y ⊆ V are intersecting if X ∩ Y 6= ∅. The family Q of subsets of S
is said to be intersecting if X ∪ Y,X ∩ Y ∈ Q for every intersecting X,Y ∈ Q. A function f : Q → R
on an intersecting family Q is called intersecting submodular if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y )
for any intersecting X,Y ∈ Q, and it is called monotone if f(X) ≤ f(Y ) for every X,Y ∈ Q with
X ⊆ Y . Initiated by Edmonds and Rota [7] or Edmonds [3], several authors gave constructions of
matroids from (intersecting) submodular functions. We use the following form (see Section 13.4.1 of
[9], or Section 3.4(c) in [10]).

Theorem 2.1. Let Q be an intersecting family of subsets of a finite set S and f : Q → Z≥0 a
monotone intersecting submodular set function. Then

If = {Y ⊆ S : |X| ≤ f(X) ∀X ∈ Q, X ⊆ Y }

forms the independent set family of a matroid Mf and

Pf := {x ∈ RS : x(X) ≤ f(X) ∀X ∈ Q, 0 ≤ x(v) ≤ 1 ∀v ∈ S}

is the convex hull of the incidence vectors of the independent sets of Mf .
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2.2 Bi-set functions

We use the following terminologies for bi-sets. Let D = (V,A) be a digraph. For B ⊆ A, let V (B)
be the set of the endvertices of the arcs in B while let H(B) be the set of heads of the arcs in B.
The set of all bi-sets {X = (XO, XI) : XI ⊆ XO ⊆ V } is denoted by P2(V ) or simply by P2. For
X = (XO, XI) ∈ P2 and B ⊆ A, XO and XI denote the outer-set XO and the inner-set XI of X,
respectively, B(X) := {uv ∈ B : u ∈ XO, v ∈ XI} and iB(X) := |B(X)|. Note that, for X ⊆ V,
iB(X) = iB((X,X)). For X ∈ P2, Y ⊆ V + s and B ⊆ A, ∂B

Y (X) denotes the set of arcs in B from
Y \ XO to XI . For X,Y ∈ P2, we denote X ⊆ Y if XI ⊆ YI and XO ⊆ YO. The intersection ∩ and the
union ∪ of bi-sets X,Y ∈ P2 are defined by X∩Y := (XO∩YO, XI∩YI) and X∪Y := (XO∪YO, XI∪YI).
Bi-sets X and Y are said to be intersecting if XI ∩ YI 6= ∅.

Note that for X,Y ∈ P2,

A(X) ∩A(Y) = A(X ∩ Y), (3)

A(X) ∪A(Y) ⊆ A(X ∪ Y). (4)

A family F of bi-sets is intersecting if X ∩ Y ∈ F and X ∪ Y ∈ F for any intersecting bi-sets
X,Y ∈ F . A function f : F → R is intersecting submodular if f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) for
all intersecting X,Y ∈ F .

Frank [8, Theorem 3.3] proved the following statement for modular bi-set functions. We remark
that the same argument works for intersecting submodular bi-set functions.

Theorem 2.2. Let D = (V,A) be a digraph, F an intersecting bi-set family on V, and f : F → Z≥0
an intersecting submodular bi-set function. Then

I := {B ⊆ A : iB(X) ≤ f(X) ∀X ∈ F}

forms the family of independent sets of a matroid on A.

Proof. Let A = {F ⊆ A : ∃X ∈ F , (V (F ), H(F )) ⊆ X}, and define h : A → Z by h(F ) = min{f(X) :
(V (F ), H(F )) ⊆ X ∈ F} for F ∈ A.

Take any F1, F2 ∈ A, and let Xi ∈ H be a minimizer in the definition of h(Fi) for i = 1, 2. Note
that

(V (F1 ∩ F2), H(F1 ∩ F2)) ⊆ (V (F1) ∩ V (F2), H(F1) ∩H(F2)) ⊆ X1 ∩ X2

(V (F1 ∪ F2), H(F1 ∪ F2)) = (V (F1) ∪ V (F2), H(F1) ∪H(F2)) ⊆ X1 ∪ X2.
(5)

To see that A is an intersecting family, suppose that F1 ∩ F2 6= ∅. Then H(F1) ∩ H(F2) 6= ∅, and
hence (X1)I ∩ (X2)I 6= ∅. As F is an intersecting family, X1 ∩ X2 ∈ F and X1 ∪ X2 ∈ F . Therefore (5)
implies that F1 ∩ F2 ∈ A and F1 ∪ F2 ∈ A, and A is indeed an intersecting family.

Also (5) and the intersecting submodularity of f implies the intersecting submodularity of h as
follows:

h(F1) + h(F2) = f(X1) + f(X2) ≥ f(X1 ∩ X2) + f(X1 ∪ X2) ≥ h(F1 ∩ F2) + h(F1 ∪ F2).

We show now that B ∈ I if and only if |F | ≤ h(F ) for every F ⊆ B with F ∈ A. Indeed, if B ∈ I,
then for any F ⊆ B with F ∈ A and for any X with (V (F ), H(F )) ⊆ X ∈ F , |F | ≤ iB(X) ≤ f(X)
and hence |F | ≤ h(F ). On the other hand, if |F | ≤ h(F ) for every F ⊆ B with F ∈ A, then for any
X ∈ F , B(X) ∈ A and hence iB(X) = |B(X)| ≤ h(B(X)) ≤ f(X).

The statement now follows from Theorem 2.1.

3 Minimum Weight Packing: Matroid-based Case

As a warm up for the next section, in this section we consider the minimum weight matroid-based
packing problem, a special case of the reachability based packing problem.
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3.1 Algorithm

Let D = (V + s,A) be a rooted digraph, M1 = (∂s(V ), r1) and M2 = (A, r2) = ⊕v∈VMv two
matroids, whereM1 is a matroid of rank k. As we explained in the introduction, our goal is to find a
minimum weight arc set that can be decomposed into a matroid-based matroid-restricted packing of
s-arborescences. We show how to reduce the problem to the weighted matroid intersection problem.

The following set function b on A, introduced in [13], will play an important role:

b(H) := k|V (H)− s| − k + r1(H ∩ ∂s(V )) ∀∅ 6= H ⊆ A.

Observe that b is non-negative integer valued, monotone and intersecting submodular on 2A \{∅}, and
hence by Theorem 2.1,

Ib := {B ⊆ A : |H| ≤ b(H) ∀∅ 6= H ⊆ B}

forms the independent set family of a matroid Mb on A. Section 4 of [13] provides a polynomial
algorithm to decide whether a set B belongs to Ib or not.

Lemma 3.1. Suppose that M2 = ⊕v∈VMv and each Mv has rank k. Then B ⊆ A is the arc set of
an M1-based M2-restricted packing of s-arborescences if and only if B is a common independent set
of M2 and Mb of size k|V |.

Proof. We first prove that, in both directions,

|∂B(v)| = k ∀v ∈ V. (6)

Indeed, if B is the arc set of a packing, then (6) follows from the definition ofM1-based packings. If B
is a common independent set of size k|V |, then k|V | =

∑
v∈V k ≥

∑
v∈V r2(∂

B(v)) =
∑

v∈V |∂B(v)| =
|B| = k|V |. Thus (6) follows.

By (6), for any X ⊆ V and F ⊆ ∂B
s (X),

k|X| =
∑
v∈X
|∂B(v)| = |B(X) ∪ ∂B(X)|. (7)

Also, in both directions, B is independent in M2, and hence

|∂B(X)− F | = r2(∂
B(X)− F ). (8)

First suppose that B ⊆ A is the arc set of anM1-basedM2-restricted packing of s-arborescences.
By Corollary 1.2,

r1(F ) + r2(∂
B(X)− F ) ≥ k (∀∅ 6= X ⊆ V, F ⊆ ∂B

s (X)). (9)

To show that B ∈ Ib, we prove that |H| ≤ b(H) ∀∅ 6= H ⊆ B. Take any H ⊆ B with H 6= ∅ and let
X := V (H)− s and F := H ∩ ∂s(V ). Then

|B(X) ∪ ∂B(X)| ≥ |H|+ |∂B(X)| − |F |. (10)

By adding (7), (8), (10) and (9), we get the inequality |H| ≤ b(H), implying that B ∈ Ib.

Now suppose that B is a common independent set of M2 and Mb of size k|V |. To verify that B
satisfies (9), take any X ⊆ V with X 6= ∅ and F ⊆ ∂B

s (X) and let H := B(X) ∪ F. Then we again
have (10). Also since B is independent in Mb and H ⊆ B,

|H| ≤ b(H) = k|X| − k + r1(F ). (11)

By adding (7), (8), (10) and (11), we get (9). By Corollary 1.2, digraph (V +s,B) contains aM1-based
M2-restricted packing of s-arborescences and, since its size is exactly k|V | = |B|, its arc set coincides
with B.
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Theorem 3.2. Let D = (V +s,A) be a rooted digraph, c : A→ R,M1 = (∂(V ), r1) andM2 = (A, r2)
two matroids such that M2 is the direct sum of matroids Mv = (∂(v), rv) for v ∈ V . There exists a
polynomial algorithm to decide whether D has an M1-based M2-restricted packing of s-arborescences
and to find one of minimum weight if D has at least one such packing.

Proof. Let k be the rank ofM1. IfMv has rank less than k for some v ∈ V , then we can immediately
conclude that there is no M1-based M2-restricted packing. If Mv has rank at least k, then we
may suppose that each Mv has rank exactly k by truncating it at k. Hence by Lemma 3.1 and
Edmonds’ weighted matroid intersection algorithm [6], we can find the arc set of minimum weight
that can be decomposed into an M1-based M2-restricted packing of s-arborescences in D. The
required decomposition can be then obtained by the algorithm of [14, Section 6].

3.2 Polyhedral aspects

An immediate corollary of Lemma 3.1 is a polyhedral description of the characteristic vectors of the
arc sets of the matroid-based matroid-restricted packings of arborescences as the intersection of two
base polyhedra due to Edmonds [3]. In this subsection we provide a slightly different description which
is more natural and fits better to Corollary 1.2.

Theorem 3.3. Let D = (V + s,A), M1 = (∂s(V ), r1),M2 = (A, r2) = ⊕v∈VMv where M1 and each
Mv is a matroid of rank k. Let PD,M1,M2 be defined by the following linear system

x(∂(X)− F ) ≥ k − r1(F ) ∀ ∅ 6= X ⊆ V, ∀F ⊆ ∂s(X), (12)

r2(J) ≥ x(J) ∀ J ⊆ ∂(v), ∀v ∈ V, (13)

x(a) ≥ 0 ∀ a ∈ A, (14)

x(A) = k|V |. (15)

Then PD,M1,M2 is an integer polyhedron and its vertices are the characteristic vectors of the arc sets
of the M1-based M2-restricted packings of s-arborescences in (D,M1,M2).

Proof. First, we replace (12) by another inequality which is more convenient to apply the results of
the previous section.

Claim 3.4. (12) is equivalent to

b(H) ≥ x(H) ∀ ∅ 6= H ⊆ A (16)

provided that (13) – (15) are satisfied.

Proof. SinceM2 = ⊕v∈VMv and each matroidMv is of rank k, (13) implies that k|V | ≥
∑

v∈V r2(∂(v)) ≥∑
v∈V x(∂(v)) ≥ x(A). Then, by (15), x(v) = k for every v ∈ V. Hence (12) holds if and only if the

following inequality holds for any nonempty X ⊆ V and F ⊆ ∂s(X):

k|V (F ∪A(X))− s| = k|X| =
∑
v∈X

x(∂(v)) = x(∂(X) ∪A(X)) ≥ k − r1(F ) + x(F ∪A(X)).

The latter condition is equivalent to (16) by (14).

By Theorem 2.1, the polyhedron Pb, defined by the inequalities (14), (16) and x(a) ≤ 1 ∀a ∈ A,
is the convex hull of the incidence vectors of the independent sets of the matroid Mb (defined in
the previous section). By Edmonds [4], the polyhedron P2, which is the convex hull of the incidence
vectors of the independent sets of the matroidM2, is defined by the inequalities (13) and (14). Then,
by Edmonds [3], P3 := Pb ∩ P2 is an integer polyhedron and is defined by (13), (14) and (16). (Note
that the condition x(a) ≤ 1 ∀a ∈ A is implied by (13) applied to J = {a}.) As we have seen above,
(15) is a valid inequality for P3. Then, by (15), PD,M1,M2 (whose defining inequalities are, by Claim
3.4, (13)–(16)), is a face of the integer polyhedron P3 and hence PD,M1,M2 is also integer. Then, by
Lemma 3.1 and Edmonds [3], the theorem follows.
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4 Minimum Weight Packing: Reachability-based Case

4.1 Reducing to the weighted matroid intersection problem

Let D = (V + s,A) be a rooted digraph, M1 = (∂A
s (V ), r1) and M2 = (A, r2) = ⊕v∈VMv two

matroids. Let m(v) = r1(∂
A
s (P (v)) for each v ∈ V . Suppose also that a weight c : A → R is given.

In this section we prove that the problem of computing a minimum weight M1-reachability-based
M2-restricted packing of s-arborescences can be reduced to the matroid intersection problem. To this
end we first consider the case when the instance satisfies the following three conditions:

r2(∂
A(v)) = m(v) (∀v ∈ V ), (17)

each root arc belongs to every base of M2, (18)

∂A
s (v) is independent in M1 for every v ∈ V . (19)

These assumptions can be achieved by truncation of M2 and by subdivision of the root arcs; the
detailed expositions are postponed to the end of this subsection.

When (18) holds, the cut condition (1) holds if and only if the inequality holds for every X ⊆ V
and F = ∂A

s (X). Hence in view of Theorem 1.1 our goal is to find a minimum weight arc set B ⊆ A
satisfying the following two conditions:

r1(∂
B
s (X)) + r2(∂

B
V (X)) ≥ r1(∂

A
s (P (X)) (∀X ⊆ V ). (20)

|B| =
∑
v∈V

m(v). (21)

Theorem 4.1. Let D = (V + s,A) be a rooted digraph with c : A → R, M1 = (∂A
s (V ), r1) and

M2 = (A, r2) = ⊕v∈VMv two matroids. Suppose that (17) and (18) are satisfied. Then a minimum
weight arc set B ⊆ A of an M1-reachability-based M2-restricted packing can be computed by solving
a minimum weight matroid intersection problem.

Our algorithm makes use of the following clever setting of a bi-set family and a bi-set function
introduced by Bérczi and Frank [1] to understand the theorem by Kamiyama et al [12], and further
developed by Bérczi et al [2].

Let us define ∼ as follows: for u, v ∈ V, u ∼ v if and only if ∂A
s (P (u)) = ∂A

s (P (v)). It is easy to
see that ∼ is an equivalence relation. We call the equivalence classes A1, . . . , A` as atoms of D. For
every root arc ei, let Ui be the set of vertices in V which can be reached from s via the arc ei in D.
Let

F := {X ∈ P2 : ∃1 ≤ j ≤ `, ∅ 6= XI ⊆ Aj , (XO \ XI) ∩Aj = ∅},
IX := {ei ∈ ∂A

s (V ) : XI ⊆ Ui, ei /∈ ∂A
s (XI), (XO \ XI) ∩ Ui = ∅} (∀X ∈ F),

JX := {ei ∈ ∂A
s (V ) : XI ⊆ Ui, and either ei ∈ ∂A

s (XI) or (XO \ XI) ∩ Ui 6= ∅} (∀X ∈ F),

p(X) := r1(IX ∪ JX)− r1(JX) (∀X ∈ F).

Note that for any X ∈ F ,
IX ∪ JX = ∂A

s (P (XI)). (22)

The following lemma motivates us to look at the function p. Although the lemma follows implicitly
from Bérczi et al [2], we give a simpler (specialized) proof for completeness.

Lemma 4.2. For any B ⊆ A, the following two conditions are equivalent:

|∂B
V (X)| ≥ r1(∂

A
s (P (X)))− r1(∂

A
s (X)) (∀X ⊆ V ) (23)

|∂B
V (X)| ≥ p(X) (∀X ∈ F) (24)
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Proof. (23)⇒ (24): This direction was explicitly discussed in [2] and the proof goes as follows. Suppose
that (23) holds. For (24), consider any X = (XO, XI) ∈ F . Let Y := (YO, YI) := (XI ∪ (V \⋃

i/∈JX Ui), XI). By the definition of YO,

JX = JY = ∂A
s (YO). (25)

Moreover, since no arc leaves
⋃

i/∈JX Ui,

∂B
V (YO) ⊆ ∂B

V (X). (26)

By YI ⊆ YO ⊆ P (XI) = P (YI), we have P (YI) = P (YO), so that

IX ∪ JX = ∂A
s (P (XI)) = ∂A

s (P (YI)) = ∂A
s (P (YO)), (27)

where the first equality follows from (22). Theses arguments provide (24) as follows:

p(X) = r1(IX ∪ JX)− r1(JX) = r1(∂
A
s (P (YO)))− r1(∂

A
s (YO)) (by (25) and (27))

≤ |∂B
V (YO)| (by (23))

≤ |∂B
V (X)| (by (26)).

(24)⇒ (23): Suppose that (24) holds. To verify that (23) holds, take any X ⊆ V. We construct a
directed graph Datom on the set of all atoms obtained from D by contracting the set of vertices of
each atom to a vertex. Then Datom is acyclic. Let v0 = s, v1, . . . , v` be a topological order of this
graph. We denote the atoms so that atom Ai corresponds to vertex vi. Suppose that the atoms that
intersect X are Ah1 , . . . Ahk

, and let

Xj := (P (Ahj
) ∩X,Ahj

∩X) for 1 ≤ j ≤ k,

Kj := ∂A
s (

j⋃
i=1

P (Ahi
)),

Lj := ∂A
s (X ∩

j⋃
i=1

Ahi
).

With this setting of Xj , we have Xj ∈ F and

|∂B
V (X)| =

k∑
j=1

|∂B
V (Xj)|. (28)

We prove by induction on i that

i∑
j=1

p(Xj) ≥ r1(Ki)− r1(Li) (∀1 ≤ i ≤ k). (29)

If i = 1, then vhi
is a source in Datom, and hence by (22),

p(X1) = r1(IX1 ∪ JX1)− r1(JX1) = r1(∂
A
s (P (Ah1)))− r1(∂

A
s (X ∩Ah1)) = r1(K1)− r1(L1).

Suppose that (29) is satisfied for i′ with 1 ≤ i′ < i. The submodularity and the monotonicity of r1
give

r1(IXi
∪ JXi

) + r1(JXi
∪Ki−1) ≥ r1(JXi

) + r1(IXi
∪ JXi

∪Ki−1). (30)
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Also, by Li−1 ⊆ Ki−1, we have Ki−1∪(Li−1∪(JXi
\Ki−1)) = JXi

∪Ki−1 and Ki−1∩(Li−1∪(JXi
\Ki−1)) =

Li−1. Hence, by the submodularity of r1, we have

r1(Ki−1) + r1(Li−1 ∪ (JXi
\Ki−1)) ≥ r1(Li−1) + r1(JXi ∪Ki−1). (31)

Combining those inequalities we get

i∑
j=1

p(Xj) = r1(IXi
∪ JXi

)− r1(JXi
) +

i−1∑
j=1

p(Xj)

≥ r1(IXi
∪ JXi

)− r1(JXi
) + r1(Ki−1)− r1(Li−1) (by induction)

≥ r1(IXi
∪ JXi

∪Ki−1)− r1(Li−1 ∪ (JXi
\Ki−1)) (by (30) and (31))

= r1(Ki)− r1(Li) (by definition).

Thus (29) holds. In particular, by setting i = k, we get

|∂B
V (X)| =

k∑
j=1

|∂B
V (Xj)| (by (28))

≥
k∑

j=1

p(Xj) (by (23))

≥ r1(Kk)− r1(Lk) (by (29))

= r1(∂
A(P (X)))− r1(∂

A
s (X)) (by definition)

as we stated.

We define a bi-set function b : F → Z as follows:

b(X) := m(XI)− |∂A
s (XI)| − p(X) (∀X ∈ F).

Lemma 4.3. F is an intersecting family and b is a non-negative intersecting submodular bi-set func-
tion on F .

Proof. Let X = (XO, XI) and Y = (YO, YI) be two intersecting bi-sets in F . By the definition of F
and XI ∩YI 6= ∅, there exists a unique atom Ak containing both XI and YI , and consequently XI ∩YI
and XI ∪ YI . Since (XO \XI)∩Ak = ∅ = (YO \ YI)∩Ak, we have ((XO ∩ YO) \ (XI ∩ YI))∩Ak = ∅ =
((XO ∪ YO) \ (XI ∪ YI)) ∩Ak, and hence X ∩ Y,X ∪ Y ∈ F , that is, F is intersecting.

To see the intersecting submodularity of b, it suffices to show, by the modularity of m(XI) −
|∂A

s (XI)|, that p is intersecting supermodular. By the definition of an atom and (22), we have

∂A
s (P (Ak)) = IX ∪ JX = IY ∪ JY = IX∩Y ∪ JX∩Y = IX∪Y ∪ JX∪Y, (32)

Also by the definition of J ,

JX ∪ JY = JX∪Y and JX ∩ JY ⊇ JX∩Y. (33)

Thus

p(X) + p(Y ) = r1(IX ∪ JX)− r1(JX) + r1(IY ∪ JY)− r1(JY)

≤ r1(IX ∪ JX) + r1(IY ∪ JY)− r1(JX ∩ JY)− r1(JX ∪ JY) (by submodularity)

≤ r1(IX∩Y ∪ JX∩Y) + r1(IX∪Y ∪ JX∪Y)− r1(JX∩Y)− r1(JX∪Y) (by (32) and (33))

= p(X ∩ Y) + p(X ∪ Y).
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Finally, to see that b is non-negative, take any X ∈ F . Let d = r1(∂
A
s (P (XI))). By (22), r1(IX ∪

JX) = d. Also, since XI is contained in an atom, the definition of atoms implies r1(∂
A
s (P (v))) = d for

every v ∈ XI . Hence, picking any v ∈ XI , we have

b(X) =
∑
u∈XI

(r1(∂
A
s (P (u))− |∂A

s (u)|)− p(X)

≥ r1(∂
A
s (P (v)))− |∂A

s (v)| − r1(IX ∪ JX) + r1(JX) (by |∂A
s (u)| ≤ r1(∂

A
s (P (u))) from (19))

= r1(JX)− |∂A
s (v)| (by r1(∂

A
s (P (v))) = d = r1(IX ∪ JX))

≥ r1(∂
A
s (v))− |∂A

s (v)| (by ∂A
s (v) ⊆ JX)

≥ 0 (by (19)).

Thus b is non-negative.

Let I:= {B ⊆ A : iB(X) ≤ b(X) ∀X ∈ F}. Then, by Lemma 4.3 and Theorem 2.2, I forms the
independent set family of a matroid on A. This matroid is denoted by M.

Theorem 4.1 now follows from the following lemma.

Lemma 4.4. Suppose that (17) and (18) are satisfied. Then B ⊆ A is the arc set of an M1-
reachability-based M2-restricted packing of s-arborescences if and only if B is a common independent
set of M2 and M of size m(V ).

Proof. First let us mention that the rank of M2 is m(V ). Indeed, by (17),

r2(A) =
∑
v∈V

r2(∂
A(v)) =

∑
v∈V

r1(∂
A
s (P (v))) =

∑
v∈V

m(v) = m(V ). (34)

Note that in both directions B is independent in M2. Moreover, we have

|∂B(v)| = m(v) (∀v ∈ V ), (35)

∂A
s (V ) ⊆ B, (36)

|B| = m(V ), (37)

in both directions. Indeed, if a packing exists then (35) and (36) follow from the definition of
reachability-based packing and (18). Thus |B| =

∑
v∈V |∂B(v)| =

∑
v∈V r1(∂

A
s (P (v)) =

∑
v∈V m(v) =

m(V ), where the second equation also follows from the definition of reachability-packing.
On the other hand, if B is a common independent set with |B| = m(V ), then, by (17) and the

independence of B in M2,

m(V ) =
∑
v∈V

m(v) =
∑
v∈V

r2(∂
A(v)) ≥

∑
v∈V

r2(∂
B(v)) =

∑
v∈V
|∂B(v)| = |B| = m(V ),

implying (35). It follows, by (34), that B is a base of M2 and hence, by (18), that ∂A
s (V ) ⊆ B, i.e.,

(36) holds.
By (36), the independence condition for M, that is, iB(X) ≤ b(X) (∀X ∈ F), is written as

iB(X) ≤ m(XI)− |∂B
s (XI)| − p(X) (X ∈ F). (38)

On the other hand, since

m(XI) =
∑
v∈XI

|∂B(v)| = iB(X) + |∂B(X)| (39)

holds by (35), (38) is equivalent to

p(X) ≤ |∂B
V (X)| (∀X ∈ F). (40)
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On the other hand, Lemma 4.2 and (36) imply that (40) is equivalent to

|∂B(X)| ≥ r1(∂
A
s (P (X)))− r1(∂

B
s (X)) (∀X ⊆ V ). (41)

The last condition is equivalent to (20), that is, the condition for B to be the arc set of an M1-
reachability-based M2-restricted packing (under the condition that |B| = m(V )).

We now show how to solve the general case of the minimum weight packing problem (without
assuming (17), (18) and (19)). Let (D = (V + s,A), c,M1,M2) be an instance of the problem.
Suppose that there exists a feasible (M1-reachability-based M2-restricted) packing. Let B0 be the
union of the arc sets of the arborescences in this packing. Then, for each vertex v ∈ V, ∂B0(v) is
independent in Mv (and hence in M2) of size r1(∂

A
s (P (v)). By truncating each matroid Mv at

r1(∂
A
s (P (v)), B0 certifies that the problem still has a solution. (Conversely, every feasible packing of

the latter problem is a feasible packing of the former one.) Hence we may suppose (17) by truncating
each matroid Mv at the preprocessing.

Next, to achieve (18) and (19) we construct a new instance (D′, c′,M′1,M′2) from (D, c,M1,M2).
We first remove from D all the root-arcs that are loops in M1. D′ is obtained from the remaining
digraph by subdividing each root arc sv to sv′ and v′v by inserting a new vertex v′, and we set
c′(v′v) = c(sv), c′(sv′) = 0 and c′(a) = c(a) for all non root arcs. M ′1 is obtained from M1 by replacing
its ground set by ∂A′

s (V ′). Each new vertex v′ in D′ has in-degree one, and we assign a free matroid
Mv′ to each such v′. For the original vertices u of D,M′u is obtained fromMu by replacing each root
arc su by u′u. Then (18) and (19) are satisfied for the new instance.

The two instances are equivalent in the sense that from a feasible packing for (D′, c′,M′1,M′2) one
can easily construct a feasible packing for (D, c,M1,M2) of the same weight and vice versa.

4.2 Algorithmic aspects

In Theorem 4.1 and a discussion at the end of the last subsection, we have seen that computing the
minimum weight arc set of a feasible packing can be done by solving the weighted matroid intersection
problem between M2 and M = (A, I). It remains to provide a polynomial-time independence oracle
for M. We will show that the independence of each arc set B can be checked by solving matroid
intersection problems repeatedly.

Lemma 4.5. We can decide in polynomial time whether a set B of arcs belongs to I or not.

Proof. We will use the definitions from the last subsection. Using any searching algorithm, the sets
Ui, and hence the partition of V into atoms, IX and JX for any X ∈ F can be computed in polynomial
time. Also it can be decided in polynomial time whether a bi-set X belongs to F or not.

Recall that B is independent in I if and only if iB(X) ≤ b(X) for every X ∈ F . Since there are
O(n) atoms, we may focus on checking the inequality for every X ∈ F with XI ⊆ Ai for a fixed atom
Ai. In other words, our goal is to check

iB(X) ≤ m(XI)− |∂A
s (XI)| − r1(IX ∪ JX) + r1(JX) (∀X ∈ Fi := {Y ∈ F : YI ⊆ Ai}).

By (22), r1(IX ∪ JX) is constant over Fi. Therefore, it suffices to design an algorithm for checking the
following condition for a given k : Ai → Z+ and ` ∈ Z+:

iB(X) ≤ k(XI)− ` + r1(JX) (∀X ∈ Fi). (42)

We first solve the case when ` = 0, that is, checking

iB(X) ≤ k(XI) + r1(JX) (∀X ∈ Fi), (43)

and then show how to deal with the general case. The special case when ` = 0 will be done by reducing
the problem to the independence matching problem, which is known to be equivalent to the matroid
intersection problem (see, e.g., [15]). In the independence matching problem, we are given a bipartite
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graph G = (U,W ;E) and a matroid MW on W . A matching M in G is said to be independent if
W (M) is independent in MW , where W (M) denotes the endvertices of M in W .

In order to define G and MW appropriately we need the following definitions. For an arc a, let
t(a) and h(a) be the tail and the head of a, respectively. Let B1 = B(Ai) and B2 = ∂B

V (Ai). For each
vertex v ∈ Ai, we prepare k(v) copies v1, . . . , vk(v) of v, and let kAi = {v1, . . . , vk(v) : v ∈ Ai} be the
set of all those copies. Then we define an auxiliary bipartite graph G = (U,W ;E) as follows:

U = B1 ∪B2 (⊆ B),

W = kAi ∪ ∂A
s (V ),

E = E1 ∪ E2 ∪ E3 ∪ E4,

where

E1 = {avi : a ∈ B1, v ∈ Ai, h(a) = v or t(a) = v}
E2 = {avi : a ∈ B2, v ∈ Ai, h(a) = v}
E3 = {aej : a ∈ B1 ∪B2, ej ∈ ∂A

s (Ai), h(a) = h(ei)}
E4 = {aej : a ∈ B2, ej ∈ ∂A

s (V ) \ ∂A
s (Ai), t(a) ∈ Uj}.

A matroid MW is defined to be the sum of the free matroid on kAi and M1. The rank function of
MW is denoted by rW .

Claim 4.6. (43) holds if and only if G has an independent matching that covers U .

Proof. The Rado-Perfect theorem [18, 17] (see [15, (2.75)]) says that G has an independent matching
of size d if and only if |U \ C| + rW (Γ(C)) ≥ d for every C ⊆ U , where Γ(C) denotes the set of
neighbors of C in G. Hence G has an independent matching that covers U if and only if

|C| ≤ rW (Γ(C)) (C ⊆ U). (44)

We show (43) is equivalent to (44).
Suppose that (43) holds. To see (44) take any C ⊆ U . We may suppose C 6= ∅. Take X = (XO, XI)

such that XI = H(C)∪ T (C ∩B1) and XO = V (C), where H and T denote the set of heads and tails
of arcs of C in D, respectively. Then XI 6= ∅, and we have X ∈ Fi. Also from the construction we
have

C ⊆ B(X), (45)

JX = Γ(C) ∩ ∂A
s (V ). (46)

Hence we have

|C| ≤ iB(X) (by (45))

≤ k(XI) + r1(JX) (by (43))

= |Γ(C) ∩ kAi|+ r1(Γ(C) ∩ ∂A
s (V )) (by (46))

= rW (Γ(C)).

Thus (44) holds.
Conversely, suppose (44) holds. Take any X ∈ Fi. Observe that B(X) ⊆ U and each element in

Γ(B(X)) ∩ kAi is a copy of a vertex in XI . Hence

|Γ(B(X)) ∩ kAi| ≤ k(XI). (47)

By the construction we also have
Γ(B(X)) ∩ ∂A

s (V ) = JX. (48)
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Hence we have

iB(X) = |B(X)| ≤ rW (Γ(B(X))) (by (44))

= |Γ(B(X)) ∩ kAi|+ r1(Γ(B(X)) ∩ ∂A
s (V ))

≤ k(XI) + r1(JX) (by (47) and (48)).

Thus (43) holds.

By Claim 4.6, we can check whether B satisfies (43) in polynomial time by a matroid intersection
algorithm. It remains to extend the approach to the case when ` > 0. We do this by using a standard
technique for checking the independence in a so-called count matroid observed by Imai [11].

Let us use the auxiliary graph G = (U,W ;E) and MU ,MW defined above, and assume that B
satisfies (43) for ` = 0. We consider checking

iB(X) ≤ k(XI)− ` + r1(X) (∀X ∈ Fa
i := {X ∈ Fi : a ∈ B(X)}) (49)

for a fixed a ∈ U . We prepare a new auxiliary bipartite graph Ga = (Ua,W ;Ea) obtained from G by
replacing a with ` + 1 copies a0, . . . , a` (and then replacing each edge ax ∈ E in G incident to a ∈ U
with ` + 1 copies a0x, . . . , a`x). Applying the same proof as that in Claim 4.6 we have the following:

Claim 4.7. Suppose that B satisfies (43). Then (49) holds if and only if Ga has an independent
matching that covers Ua.

In view of this claim one can check (42) in polynomial time first by checking (43) by computing a
maximum independent matching in G and then checking (49) by computing a maximum independent
matching in Ga for every a ∈ U . This completes the proof.

We have polynomial independence oracles for M2 and, by Lemma 4.5, also for M. Then we have
the following result.

Theorem 4.8. Let D = (V + s,A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2) two
matroids such that M2 is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V . Let c be a
weighting on the arc set A. There exists a polynomial algorithm to find an M1-reachability-based
M2-restricted packing of s-arborescences in D of minimum weight.

Proof. By Lemma 4.4, Lemma 4.5 and Edmonds’ weighted matroid intersection algorithm [6], we
can find the arc set of minimum weight that can be decomposed into an M1-reachability-based M2-
restricted packing of s-arborescences in D. The required decomposition can be then obtained by the
algorithm of [14].
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[2] K. Bérczi, T. Király, Y. Kobayashi, Covering intersecting bi-set families under matroid con-
straints. SIAM J. Discrete Math., 30-3, 1758–1774 (2016) SIAM J. Discrete Math., 27 (2013),
pp. 567–574.

12



[3] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Combinatorial Struc-
tures and their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim eds., Gordon and
Breach, New York, 1970, pp. 69–87.

[4] J. Edmonds, Matroids and the greedy algorithm, Math. Prog., 1 (1971) 127–36.

[5] J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, B. Rustin ed., Academic
Press, New York, 1973, pp. 91–96.

[6] J. Edmonds, Matroid intersection, Ann. Disc. Math., 4 (1979) 29–49.

[7] J. Edmonds, G.-C. Rota, Submodular set functions, abstract, Waterloo Conference on Combina-
torics, Waterloo, Ontario, 1966.

[8] A. Frank, Rooted k-connections in digraphs, Discrete applied Mathematics 157 (2009) 1242-1254.

[9] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, 2011.

[10] S. Fujishige, Submodular Functions and Optimization, 2nd ed., Ann. Discrete Math., Elsevier,
New York, 2005.

[11] H. Imai, Network flow algorithms for lower truncated transversal polymatroids,
J. Oper. Res. Soc. Japan, 26 (1983) 186–210.

[12] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-trees in directed graphs, Combinatorica,
29 (2009) 197-214.

[13] N. Katoh, S. Tanigawa, Rooted-tree decomposition with matroid constrains and the infinitesimal
rigidity of frameworks with boundaries, SIAM J. Discrete Math., 27, 155–185 (2013)
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