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Abstract

This paper deals with hierarchically decentralized control structure for
large-scaled dynamical networked systems by aggregation. Our main idea to
clarify the trade-off and the role-sharing of the global and the local controllers
is to introduce a model set named ”Global/Local Shared Model Set,” which
should be taken in both the global and local cites. We set up a fairly general
framework and derive the global and local control problems. We then clarify
the trade-off through the size of the model set and demonstrate it by a simple
example.

1 Introduction

In recent years, systems to be treated in various fields of engineering including
control have become large and complex. Typical examples include meteorological
phenomena, energy network systems, traffic flow networks and biological systems.
They can be regarded as hierarchical networked dynamical systems, and several
new frameworks to treat such systems from the view point control have been pro-
posed (See e.g. [1–3]). Hara et. al. proposed a new research area so called “Glocal
Control” meaning that both desired global and local behaviors are achieved by local
actions of measurement and control [3]. The key framework is based on hierarchi-
cal networked systems with multiple-resolution in time and space, and each layer
has its own objective which might be conflict with other layers’ objectives. Hence,
one of the big issues to realize the glocal control is to establish a unified way of
handling global/local objectives properly as a hierarchically decentralized control.
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We consider the following situation. There are a bunch of subsystems which
are slightly different each other, and we assume that each of them is equipped with
a local controller which can be designed independently so that it stabilizes its own
subsystem and optimizes a certain local objective. There also exists a so called
global controller which uses the average or sum of a certain quantity of the locally
controlled subsystems to coordinate all the subsystems properly for optimizing a
certain global objective.

There are two main reasons to consider such a situation. The first reason is from
the practical view point. A typical example is electric power network systems,
where the global control objective is to make the balance of demand and supply
of the total power of multiple generators, and each generator is locally controlled
to achieve the local performance better. The second reason is from the theoretical
view point. As seen in [4], averaging or low-rank inter-layer interactions in general
is quite effective to achieve the rapid consensus, and the property is fit to the glocal
control concept based on hierarchical networked systems with multiple time/space
resolutions [3].

There are two theoretical key issues to be investigated for hierarchically de-
centralized control by aggregation, namely (i) how to guarantees the stability of
whole system?, and (ii) how to derive the global/local trade-off relation and how to
compromise it?

To this end, we introduce a model set named ”Global/Local Shared Model
Set,” which is defined by a standard LFT form consisting of the nominal model and
norm-bounded perturbations. The nominal model is set for both the aggregated
system and each locally controlled subsystem to be followed within a certain error
bound. Then, each local controller is designed to make the resultant feedback
loop system of the local subsystem to be in the class and simultaneously attain a
local control performance. On the other hand, the global controller is designed to
attain control performance for this nominal model under consideration of the errors
between the nominal model and the local feedback loop systems. Thus, through
changing the size of the model set we will clarify the trade-off in the hierarchically
decentralized control systems and provide a simple illustrative example to show
the effectiveness of the approach.
Notation: RH∞: stable rational ring

Sc(P ): a set of all stabilizing controllers for P

2 General problem setting

We here propose a fairly general setting, which is represented by a block diagram
depicted in Fig. 1. The system consists of two layers, the upper layer for global
control and the lower layer for local control. They are connected each other by
aggregation 1

N 1⊤ from bottom to up and distribution 1 from up to bottom, where
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1 := [1, 1, . . . , 1]⊤ with size N .

G(s) =

Gyu(s) Gyw(s) Gyv(s)
Gzu(s) Gzw(s) Gzv(s)
Gru(s) Grw(s) Grv(s)

 ,

L(s) =

Lvr(s) Lvw(s) Lvu(s)
Lzr(s) Lzw(s) Lzu(s)
Lyr(s) Lyw(s) Lyu(s)

 ,

L∗♯(s) = diag
{
L
(i)
∗♯ (s)

}
,

Cℓ(s) = diag
{
C

(i)
ℓ (s)

}
.

uℓyℓ

vℓ rℓ

vg rg

ygug

wg zg

wℓzℓ

1
N 1⊤ 1

Cg(s)

G(s)

L(s)

Cℓ(s)

Fig. 1: Structure of total system

The upper and lower layer generalized plants are represented by G(s) and
L(s), respectively. The block diagonal property of L(s) means that the lower layer
is a collection of independent subsystems. Each subsystem thus has an independent
local controller C(i)

ℓ (s), and hence we have the block diagonal property of Cℓ(s).
The collections of inputs and outputs of the local controllers are denoted by yℓ

and uℓ, respectively. Signals vℓ and rℓ are N -dimensional vectors which corre-
spond to signals to link the upper layer, i.e., vg = 1

N 1⊤vℓ and rℓ = 1rg. Signals
wℓ and zℓ are the collections of input and output variables for representing the
local objective, respectively. The element-wise representation of uℓ is given by
uℓ = [u1, u2, . . . , uN ]⊤, and the same notation is used for yℓ, vℓ, rℓ, wℓ, and zℓ.
The upper layer is controlled by the global controller Cg(s) with input ug and out-
put yg. Signals vg and rg are the aggregated signal from the lower layer and the
reference signal to be sent out to the lower layer, respectively. Signals wg and zg are
the input and output variables for representing the global objective, respectively.

Our main idea to achieve the two requirements (i) and (ii) mentioned above, or
(i) stability of total system and (ii) global/local performance trade-off, is to intro-
duce a set of model set named ”Global/Local Shared Model Set,” which is defined
by a standard LFT form as

Mδ :=
{
M̃ = Fℓ (Mo(s),∆(s)) : ∥∆∥∞ ≤ δ

}
, (1)

where

Mo(s) =

[
M0(s) M1(s)
M2(s) 0

]
. (2)
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The set is expected to be shared by both upper and lower layers in the following
sense. The upper layer expects that each local agent is controlled such that the
closed-loop transfer function from ri to vi denoted by Φ

(i)
Lvr(s) belongs to Mδ ,

and hence the lower layer tries to optimize the local objective related to the closed-
loop transfer function from wi to zi denoted by Φ

(i)
Lzw(s) under the requirement

from the upper layer, where

Φ
(i)
Lvr := Fℓ

([
L
(i)
vr L

(i)
vu

L
(i)
yr L

(i)
yu

]
, C

(i)
ℓ

)
, Φ

(i)
Lzw := Fℓ

([
L
(i)
zw L

(i)
zu

L
(i)
yw L

(i)
yu

]
, C

(i)
ℓ

)
.

Then, the upper layer designs the upper layer controller Cg(s) so that the global
control performance represented by the transfer function from wg to zg is opti-
mized under uncertainty channel Mδ connected in between rg and vg. Note that
Mδ includes the classes of additive and multiplicative perturbations and that the
averaging does not change the size of uncertainty δ as will be shown in the next
section.

Consequently, we can split the global/local controller design into two indepen-
dent designs, Global Controller Design and Local Controller Design.
Global Controller Design:

min
Cg∈Sc(Gyu)

{
max

M̃∈Mδ

∥ΦGzw∥∞
}
, (3)

where

ΦGzw := Fu

{
Fℓ

{[(
Gyu Gyw

Gzu Gzw

) (
Gyv

Gzv

)
(
Gru Grw

)
Grv

]
, M̃

}
, Cg

}
Local Controller Design:

min
C

(i)
ℓ ∈Sc(L

(i)
yu)

∥∥∥Φ(i)
Lzw

∥∥∥
∞

s.t. Φ
(i)
Lvr(s) ∈ Mδ (4)

The global and local problems are a robust performance problem and a 2-disk
problem, respectively, and hence they are not so easy to derive the optimal con-
trollers. However, we can investigate the global/local performance trade-off by the
uncertainty level δ. We can readily see that the smaller δ leads to the better global
performance and that the larger δ yields the better local performance. Note that we
have a freedom of the selection of Mo(s), although we assume in this paper that
Mo(s) is a priori selected for simplicity.

3 A typical situation with multiplicative perturbations

3.1 Aggregation of local systems

In this section, we give detailed formulations for a case of aggregation of local sub-
systems, where we replace notations C(i)

ℓ (s) and Φ
(i)
Lvr(s) defined in the previous
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section by C
(i)
ℓ (s) = Ci(s) and Φ

(i)
Lvr(s) = Φi(s) for simplicity.

We assume that the whole system consists of the following N local and SISO
subsystems;

vi = Pi(s)uoi, Pi(s) =
ni(s)

di(s)
, ni(s), di(s) ∈ RH∞,

where i (= 1, 2, . . . , N ) represents the index of a local subsystem, uoi is the input,
vi is the output, Pi(s) is the transfer function represented by a coprime factorization
over the stable rational ring, and ni and di are the numerator and the denominator.
Suppose that the input uoi consists of a local input ui and a global input ri = rg
such as uoi = ui+ ri and the local input ui is generated by a local controller Ci(s)
as

ui = Ci(s)yi, yi = vi + wi (5)

Suppose that Ci(s) is designed to stabilize Pi(s) and then it is represented by Youla
parametrization such as

Ci(s) = −αi(s) + di(s)qi(s)

βi(s)− ni(s)qi(s)
, ni(s)αi(s) + di(s)βi(s) = 1, (6)

where αi(s), βi(s), qi(s) ∈ RH∞. The local controller Ci(s) is also designed to
attain given local control performances.

We consider a case that the output of the group of these local subsystems is
the average of their local outputs such as vg = 1

N

∑N
i=1 vi where we call vg as the

aggregated output of the group of the local subsystems. Define a transfer function
Φi(s) from the global input ri = rg to the local output vi as

vi =
Pi(s)

1− Pi(s)Ci(s)
ri =: Φi(s)rg. (7)

Thus Φi(s) (= 1, 2, . . . , N ) can be regarded as the transfer function of the locally
controlled subsystem composed of the local system Pi(s) and the local controller
Ci(s).

Consequently, the local feedback system can be shown in Fig. 2, where the i-th
component of L(s) is given by

L(s) =

 Pi 0 Pi

WSLPi WSL WSLPi

Pi 1 Pi

 . (8)
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uoi+

+
+

+

WSL(s)

yi ui

zi ri

wi

vi

Pi(s)Ci(s)

Fig. 2: Feedback loop of local subsystem

Also define M as the aggregated subsystems such as

M(s) :=

N∑
i=1

1

N
Φi(s), (9)

then, the aggregated output vg can be represented as vg = 1
N

∑N
i=1Φi(s)ri =

M(s)rg. We call M(s) as the aggregated transfer function from rg to vg.
Next, the global controller Cg(s) is designed to generate the global input ug

from the global output yg such as

ug = Cg(s)yg. (10)

The purpose of the global controller Cg(s) is basically to attain the stability of the
whole system and global control performances.

The strategy of the hierarchically decentralized control system considered in
this paper is divided into three layers; lower layer, upper layer, and middle layer as
follows: (lower layer) design of the local controllers Ci(s) in the lower layer for
given local control objectives, (upper layer) design of the global controller Cg(s)
in the upper layer for a given global control objective, (middle layer) design of a
nominal model Mo(s) to which the locally controlled subsystems are designed to
be close.

The actual design procedure of the whole system is as follows: At first, set a
stable nominal model Mo(s) appropriately in the middle layer and its information
is broadcasted to each local subsystem. The control objective for a local controller
Ci(s) are both of to make its closed loop system composed of Pi(s) and Ci(s) to
be close to the nominal model Mo(s) and to attain a given local control perfor-
mance. On the other hand, the control objective for the global controller Cg(s) in
the upper layer is to attain a given global control performance with consideration
of the error between M(s) and Mo(s), that is, a robust control performance. When
the selected nominal model Mo(s) is not appropriate for both of the local control
performance and the global control performance, we reset Mo(s) and repeat the
above procedure.
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In the following subsections, we give actual formulae for the above mentioned
control strategy and clarify the relationship between controller designs in the upper
layer and the lower layer, and the setting of the model set Mδ. Then we discuss
trade-offs between the attained global control performance and the local control
performance.

3.2 Hierarchically decentralized control design

At first, in the lower layer, we consider to design a local controller Ci(s) which
simultaneously satisfies a given local control performance and a multiplicative per-
turbed model matching problem or an additive perturbed model matching problem
between the local closed loop system Φi(s) and the nominal model Mo(s) as fol-
lows:

find Ci(s) for each i s.t.
∥∥∥∥WSL

1

1− PiCi

∥∥∥∥
∞

< 1 (11)∥∥∥∥Φi −Mo

Mo

∥∥∥∥
∞

=

∥∥∥∥ 1

Mo

(
Pi

1− PiCi
−Mo

)∥∥∥∥
∞

< δ

(12)

or ∥Φi −Mo∥∞ =

∥∥∥∥ Pi

1− PiCi
−Mo

∥∥∥∥
∞

< δ (13)

where WSL(s) is a given weight function for the local performance of sensitivity
reduction and δ represents the size of the model set Mδ. Note that Φi(s) can be
represented as

Φi(s) =
Pi(s)

1− Pi(s)Ci(s)
=

ni

di
(diβi − diniqi) = ni(βi − niqi) (14)

and also similarly

1

1− Pi(s)Ci(s)
(15)

then, the above problem can be represented as follows:

find qi(s) ∈ RH∞ for each i s.t. ∥WSLdi(βi − niqi)∥∞ < 1 (16)∥∥M−1
o (ni(βi − niqi)−Mo)

∥∥
∞ < δ (17)

or ∥ni(βi − niqi)−Mo∥∞ < δ (18)

Next, denote ∆i(s) as the multiplicative error or the additive error between
Φi(s) and Mo(s);

∆i(s) :=
Φi(s)−Mo(s)

Mo(s)
=

1

Mo

(
Pi

1− PiCi
−Mo

)
(19)

or ∆i(s) := Φi(s)−Mo(s) =
Pi

1− PiCi
−Mo, (20)
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and the multiplicative error between the aggregated system M(s) and the nominal
model Mo(s) can be represented as

M −Mo

Mo
=

1

Mo

(
N∑
i=1

1

N
Φi −Mo

)
=

1

N

N∑
i=1

Φi −Mo

Mo
=

1

N

N∑
i=1

∆i =: ∆

(21)

and the additive error can also be represented as

M −Mo =
N∑
i=1

1

N
Φi −Mo =

1

N

N∑
i=1

(Φi −Mo) =
1

N

N∑
i=1

∆i =: ∆. (22)

Consequently, when the error condition (12) on subsystem i, that is, ∥∆i∥∞ < δ
is satisfied, we get

∥∆∥∞ =

∥∥∥∥∥ 1

N

N∑
i=1

∆i

∥∥∥∥∥
∞

< δ (23)

in both cases of the multiplicative error and the additive error.
On the other hand, in the upper layer, the global controller Cg(s) is designed

for satisfying the following global control objective under consideration of the per-
turbation (23), that is, the robust performance problem, on the aggregated system:

find Cg(s) ∈ Sc(Mo) s.t.

∥∥∥∥∥WS
1

1− (1 + ∆̃)MoCg

∥∥∥∥∥
∞

< 1 ; ∀∆̃ s.t.
∥∥∥∆̃∥∥∥

∞
< δ

(24)

in the multiplicative error case and

find Cg(s) ∈ Sc(Mo) s.t.

∥∥∥∥∥WS
1

1− (Mo + ∆̃)Cg

∥∥∥∥∥
∞

< 1 ; ∀∆̃ s.t.
∥∥∥∆̃∥∥∥

∞
< δ

(25)

in the additive error case, where WS(s) is an appropriate weight function.
The proble (24) can be also reduced to [5]

find Cg(s) ∈ Sc(Mo) s.t. |WSS|+ |δT | ≤ 1,∀ω, (26)

where S(s) and T (s) are

S(s) :=
1

1−Mo(s)Cg(s)
, T (s) :=

Mo(s)Cg(s)

1−Mo(s)Cg(s)
(27)

and the probem (25) can be reduced to [5]

find Cg(s) ∈ Sc(Mo) s.t. |WSS|+ |δU | ≤ 1,∀ω, (28)
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where

U(s) :=
Cg(s)

1−Mo(s)Cg(s)
. (29)

Remark 3.1 In these robust control performance problems, the detailed informa-
tion on each subsystem Φi(s) or each ∆i(s) is not necessary and only δ is nec-
essary. This implies the detailed information is aggregated and the computation
complexity can be restrained in the whole control system design. Such control
design strategy is necessary for controlling large-scaled systems.

Note that Mo(s) is assumed to be stable, then its stabilizing controller Cg(s) is
given as

Cg(s) = − q(s)

1−Mo(s)q(s)
, q(s) ∈ RH∞, (30)

and then S(s), T (s) and U(s) can be represented as

S(s) = 1−Mo(s)q(s), T (s) = Mo(s)q(s), U =
Cg

1−MoCg
= q. (31)

Therefore, the robust performance problems in the upper layer can be reduced into
the following:

find q(s) ∈ RH∞ s.t. |WS(1−Moq)|+ |δMoq| ≤ 1, ∀s = jω (32)

in the multiplicative error case and

find q(s) ∈ RH∞ s.t. |WS(1−Moq)|+ |δq| ≤ 1, ∀s = jω (33)

in the additive error case.
Although the nominal model Mo(s) ∈ RH∞ is also a design parameter, we

here assume for simplicity that it is set appropriately in advance. Then, we have
the following methods of hierarchically decentralized control design.

9



[Hierarchically Decentralized Control Design (Multiplicative Error Case)]
Upper layer:

find q(s) ∈ RH∞ s.t. ∥ |WS(1−Moq)|+ |δMoq| ∥∞ ≤ 1 (34)

Lower layer:

find qi(s) ∈ RH∞ for each i s.t. ∥WSLdi(βi − niqi)∥∞ < 1 (35)∥∥M−1
o (ni(βi − niqi)−Mo)

∥∥
∞ < δ (36)

[Hierarchically Decentralized Control Design (Additive Error Case)]
Upper layer:

find q(s) ∈ RH∞ s.t. ∥ |WS(1−Moq)|+ |δq| ∥∞ ≤ 1 (37)

Lower layer:

find qi(s) ∈ RH∞ for each i s.t. ∥WSLdi(βi − niqi)∥∞ < 1 (38)

∥ni(βi − niqi)−Mo∥∞ < δ (39)

Remark 3.2 (multiplicative error case) Note first that Mo(s) is fixed in this pa-
per and then q(s) and qi(s) are the design parameters. In (34), even if we set q(s) in
the upper layer appropriately, it is known that there exists an unavoidable trade-off
between δ and the magnitude of WSL. On the other hand, in order to improve the
local control performance (35) in the lower layer, an arbitrary high control perfor-
mance is attained by a setting qi → βi

ni
when the zeros of ni is stable. Then, when

we set qi = (1 + ϵi)
βi

ni
where ϵi has an enough small gain, (36) is represented by∥∥M−1

o (ni(βi − niqi)−Mo)
∥∥
∞ =

∥∥−niβiϵiM
−1
o − 1

∥∥
∞ < δ. (40)

Therefore, from (40), it is known that the possible δ which satisfies (40) becomes
large. In summary, there exists a trade-off between the global control performance
and the local control performance and it is represented by means of the size δ of
the model set Mδ.

Remark 3.3 (additive error case) From (37), it is known that we can make the
global control performance improved arbitrarily by setting q of enough low gain
and Mo ≃ q−1. As a result, Mo becomes a high gain system. On the other hand,
in order to improve the control performance in the lower layer, it is attained by
qi ≃ βi

ni
when βi

ni
is stable (in order to make q proper, multiply an appropriate

factor to βi

ni
if necessary [5]). Thus, (36) becomes approximately ∥Mo∥∞ < δ and

it contradicts to the design policy of Mo for the upper layer, that is, it becomes a
high gain system as mentioned above. From above consideration, it is known that
there exists a trade-off between the design policies in the upper layer and the lower
layer by using the setting of the nominal model Mo.
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We demonstrate the performance trade-off discussed above in Section 4 with a
concrete problem in which classes of plants and controllers are specified.

3.3 Sensitivity trade-off condition

In the previous subsections, we introduce the hierarchically decentralized control
design with the multiplicative/additive perturbation representation and discuss the
trade-off between the global control performance in the upper layer and the local
control performance in the lower layer. In this subsection, we give an explicit
condition which represents the similar trade-off as follows:

Theorem 3.1 In both of the multiplicative/additive perturbation representations,
the global sensitivity function S in the upper layer and the local sensitivity function
Si in the lower layer satisfy the following:

|1− S| ·
∣∣∣∣1− Pi

Mo
Si

∣∣∣∣ < 1, ∀ω (41)

Proof. At first, we consider the case of the multiplicative perturbation repre-
sentation. In the upper layer, the robust stability condition

∥δMoq∥∞ = ∥δ(1− S)∥∞ ≤ 1, (42)

that is,

|δ(1− S)| ≤ 1, ∀ω, (43)

should be satisfied. On the other hand, the model matching condition in the lower
layer ∥∥δ−1M−1

o (Mo − Φi)
∥∥
∞

=
∥∥δ−1M−1

o (Mo − PiSi)
∥∥
∞ , (44)

that is, ∣∣δ−1M−1
o (Mo − PiSi)

∣∣ < 1, ∀ω (45)

should be simultaneously satisfied. Conditions (43) and (45) are also represented
as

|1− S| ≤
∣∣∣∣1δ
∣∣∣∣ , ∀ω, (46)∣∣∣∣1− Pi

Mo
Si

∣∣∣∣ < |δ| , ∀ω, (47)

respectively. By multiplying (46) and (47), we get (41).
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Next, we consider the case of the additive perturbation representation. In the
upper layer, the robust stability condition

∥δq∥∞ =
∥∥δM−1

o (1− S)
∥∥
∞ ≤ 1, (48)

that is,

|δM−1
o (1− S)| ≤ 1, ∀ω, (49)

should be satisfied. On the other hand, the model matching condition in the lower
layer

∥Mo − Φi∥∞ = ∥Mo − PiSi∥∞ < δ, (50)

that is,

|Mo − PiSi| < δ, ∀ω, (51)

should be simultaneously satisfied. Conditions (49) and (51) are also represented
as

|1− S| ≤
∣∣∣∣Mo

δ

∣∣∣∣ , ∀ω, (52)∣∣∣∣1− Pi

Mo
Si

∣∣∣∣ < ∣∣∣∣ δ

Mo

∣∣∣∣ , ∀ω, (53)

respectively. By multiplying (52) and (53), we also get (41).

Remark 3.4 The inequality (41) is a necessary condition for the robust stability
of the whole system, however it is observed that simultaneously restraining the
gains of the sensitivity S in the upper layer and the sensitivity Si in the lower layer
small, may violate (41). From this, condition (41) represents a trade-off between
the control performances in the upper layer and the lower layer.

4 An Illustrative Example

This section demonstrates the global/local performance trade-off by a very simple
example in a case of the multiplicative perturbation representation defined in the
following subsections.

4.1 Problem Description

Local Subsystems: The plant of each local system is represented by

Pi(s) =
ki

s+ hi
, hi, ki > 0, (54)

ki ∈ [kp, kp], kp, kp > 0, hi ∈ [hp, hp], hp > 0, hp < 1,
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and the objective is to satisfy

(ia)
∥∥∥∥WSL

1

1− PiCi

∥∥∥∥
∞

< 1 ; WSL(s) :=
ηℓ

s+ 1
, ηℓ > 0 (55)

The requirement (ia) is to reduce the sensitivity and ηℓ represents the local perfor-
mance to be maximized.
Global System: The original global control objective is to satisfy

(g)
∥∥∥∥WS

1

1−MCg

∥∥∥∥
∞

< 1 ; WS(s) =
ηg

τs+ 1
, ηg > 0, τ > 0, (56)

where M is defined by (9) and it represents the average of Φi(s). The global
objective is to reduce the sensitivity, i.e., to maximize ηg.
Shared Model Set Mδ: The shared model set Mδ is given by

Mδ :=
{
M̃ | M̃ = Mo(1 + ∆), ∥∆∥∞ < δ

}
; Mo(s) =

b

s+ a
, a, b > 0.

(57)

4.2 Synthesis of Global and Local Controllers

Global Controller Design:
First note that (34) is a function of q̂(s) := Mo(s)q(s), which is strictly proper

and stable, (34) can be rewritten as

q̂(s) ∈ RH∞ & strictly proper s.t. ∥ |WS(1− q̂)|+ |δq̂| ∥∞ ≤ 1. (58)

The problem is normally difficult to solve, and hence we will consider one of stan-
dard sufficient condition of (58) which is represented by [5]

∥ |WS(1− q̂)|2 + |δq̂|2 ∥∞ ≤ 1/2, (59)

or equivalently ∥∥∥∥[ ηg
1+τs

δ

]
q̂(s)−

[ ηg
1+τs

0

]∥∥∥∥2
∞

≤ 1

2
. (60)

Note that we may assume that τ = 1 in WS(s) without loss of generality. Then,
multiplying an inner matrix function defined by[

ηg (1− s)δ
−(1 + s)δ ηg

](√
η2g + δ2 + δs

)−1

(61)

from left yields ∥∥∥∥[A1(s)q̂(s)−B1(s)
B2(s)

]∥∥∥∥2
∞

≤ 1

2
, (62)
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where

A1(s) :=

√
η2g + δ2 − δs

1 + s
, (63)

B1(s) :=
η2g

(1 + s)
(√

η2g + δ2 + δs
) , B2(s) :=

ηgδ√
η2g + δ2 + δs

. (64)

It is clear that ∥B2∥2∞ ≤ 1
2 is a necessary condition for the feasibility. Under

this condition the norm condition (59) is rewritten as

|A1(jω)q̂(jω)−B1(jω)|2 <
1

2
− |B2(jω)|2; ∀ω. (65)

Hence, focusing on

1

2
−B2(s)B2(−s)

=
1

2

1− 2η2gδ
2(√

η2g + δ2 + δs
)(√

η2g + δ2 − δs
)


=
η2g + δ2 − 2η2gδ

2 − δ2s2

2
(√

η2g + δ2 + δs
)(√

η2g + δ2 − δs
) =: B̂2(s)B̂2(−s), (66)

we get its unimodular factor B̂2(s) as

B̂2(s) :=
s+

√
1 +

η2g(1−2δ2)

δ2

√
2

(
s+

√
η2g+δ2

δ

) (67)

This leads to an equivalent norm condition expressed as∥∥∥∥∥A1(s)

B̂2(s)
q̂(s)− B1(s)

B̂2(s)

∥∥∥∥∥
∞

≤ 1 . (68)

This is a fairly standard 1-block H∞ optimal control problem except the restric-
tion on the class of q̂(s), which should be strictly proper and stable. Fortunately,
the value of B1(s)

B̂2(s)
at s = ∞ is zero. Hence, we only need to take care the finite

non-minimum phase zero of A1(s)

B̂2(s)
, or A1(s), which is given by

sz =

√
1 +

(ηg
δ

)2
. (69)
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Finally, thanks to a famous result of Nevanlinna-Pick interpolation problem, we
can see that the necessary and sufficient condition for (59) is given by

(i)

∣∣∣∣∣B1(sz)

B̂2(sz)

∣∣∣∣∣ ≤ 1, (ii) ∥B2∥2∞ ≤ 1

2
. (70)

We can first observe that he condition (ii) ∥B2∥2∞ ≤ 1
2 gives the following

constraints on achievable ηg :

any positive ηg : 0 < δ ≤ 1√
2

(71)

ηg ≤ δ√
2δ2 − 1

:
1√
2
< δ < 1, (72)

because B2(s) is a strictly proper 1-st order stable system so that

∥B2∥2∞ = |B2(0)|2 =
η2gδ

2

η2g + δ2
.

In the following, we will shows that the condition (i)
∣∣∣B1(sz)

B̂2(sz)

∣∣∣ ≤ 1 holds true if
(ii) is satisfied.

Substitute s = sz =
√
1 +

(ηg
δ

)2 into

B1(s)

B̂2(s)
=

√
2η2g
δ

1

(s+ 1)

(
s+

√
1 +

η2g(1−2δ2)

δ2

) ,

we have∣∣∣∣∣B1(sz)

B̂2(sz)

∣∣∣∣∣ =
√
2η2g
δ

1(√
1 +

η2g
δ2

+ 1

)[√
1 +

η2g
δ2

+

√
1 + (1− 2δ2)

η2g
δ2

]
Let

t :=
η2g
δ2

(> 0),

the condition (i) becomes
√
2δt(√

t+ 1 + 1
) [√

t+ 1 +
√
1 + (1− 2δ2) t

] ≤ 1.

Case 1: If 0 < δ ≤ 1√
2
, it is clear that√

1 + (1− 2δ2) t ≥ 1,
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and hence we get
√
2δt(√

t+ 1 + 1
) [√

t+ 1 +
√

1 + (1− 2δ2) t
] ≤

√
2δt(√

t+ 1 + 1
)2

We also see that
√
2δt(√

t+ 1 + 1
)2 − 1 =

(√
2δ − 1

)
t− 2

√
t+ 1− 2(√

t+ 1 + 1
)2 < 0, ∀t > 0

holds. It is clear from above two inequalities that that (i) hold trues.
Case 2: If 1√

2
< δ < 1, we define U =

√
t+ 1 and V =

√
(1− 2δ2) t+ 1. It

is clear that:

U2 − V 2 = (t+ 1)−
[(
1− 2δ2

)
t+ 1

]
= 2δ2t

Substitute U and V into (2), the condition (i) becomes:

U2 − V 2

√
2δ (U + 1) (U + V )

≤ 1

⇔ U2 − V 2

√
2δ (U + 1) (U + V )

− 1 ≤ 0

⇔
(
1−

√
2δ
)
U2 − V 2 −

√
2δ (U + V + UV )

√
2δ (U + 1) (U + V )

≤ 0

It is clear that (8) hold trues for every U > 0, V > 0 since 1−
√
2δ < 0.

In conclusion, the condition (i) hold trues if (ii) is satisfied for any δ ∈ (0, 1) ,
and the optimal global performance η∗g(δ) is simply expressed as follows:

[Global Control Performance Limitation] η∗g(δ)

η∗g(δ) =

{
δ√

2δ2−1
, δ > 1√

2

+∞, otherwise
(73)

Fig. 3 shows the plot (dotted line) of η∗g(δ).

Local Controller Design:
The objective is to satisfy both of (12) and (55) for a class of Φi(s) given by

(ib) Φi(s) :=
Pi(s)

1− Pi(s)Ci(s)
=

ki
s+ ai

, ai > 0. (74)

The constraint (ib) is for specifying the class of desirable responses. By using
the Youla parametrization of Ci(s), any ai > 0 can be attained and it is a design
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parameter. In order to describe the optimal η∗ℓi(δ) of Pi(s) for a given δ, we define
the following functions and notations:

a∗(δ) :=
ki

b(1− δ)
a

X∗(a∗) := −h2i +
√

h4i + (a∗)2(1− h2i )− h2i

Rα(a
∗) :=

(
(X∗(a∗) + 1) (X∗(a∗) + (a∗)2)

X∗(a∗) + h2i

) 1
2

, Rβ(a
∗) :=

a∗

hi

δ :=
kp − kp

kp + kp
, ho :=

√
h2i

1− h2i

The following is the summary of the optimal η∗ℓi(δ) (See the Appendix for the
detailed derivation. ):

[Local Control Performance Limitations] η∗ℓi(δ)

Suppose δ > δ, k/(1 + δ) < b < k/(1− δ).

Then η∗ℓi(δ) =

{
Rα(a

∗(δ)), a∗(δ) ≥ ho

Rβ(a
∗(δ)), a∗(δ) < ho

(75)

Note that η∗ℓi(δ) is an increasing function of δ. Fig. 3 shows a numerical simu-
lation of η∗g(δ) and η∗ℓi(δ), where a = 1.2, b = 1, ki = 1, hi = 0.6, kp = 0.9, and
kp = 1.1. The figure shows a trade-off between η∗g(δ) and η∗ℓi(δ) by using the size
δ of the shared model set Mδ.
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Fig. 3: Trade-off curves between the global control performance η∗g(δ) (dotted
line) and the local control performance η∗ℓi(δ) ∗ 0.2 (dashed line)
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5 Stochastic analysis on the variations of the local systems

In the previous sections, we discuss trade-off between the global control perfor-
mance in the upper layer and the local control performance in the lower layer. It
is known that the results are derived from the deterministic worst case paradigm.
Then, a question arises; is this kind of trade-off avoidable by assuming some ap-
propriate conditions on the systems?

In the previous sections, we deal with the error between a nominal model Mo

and the aggregated system M with a hard bound. On the other hand, for example,
in the electric networks, it is known that aggregating a bunch of electric suppliers
and regarding it as a supplier, the variation of the supplies or the dynamics of
the suppliers is averaged and can be ignored when the number of the suppliers is
enough large; this is called “averaging effect.”

From above consideration, in this section, we introduce conditions local sys-
tems should satisfy in order to model the phenomena of the averaging effect and
discuss if the trade-off in the previous sections can be avoided when the number
of subsystems N is enough large. In concrete, we assume a stochastic property on
the perturbations and the model errors on the subsystems in the lower layer and
analyze the trade-off in stochastic sense.

At first, we consider that the local controllers Ci are designed to satisfy (35) for
a given WSL. As mentioned in Remark 3.3, a setting qi ≃ βi

ni
attains an arbitrary

high local control performance. Next set the nominal model Mo as a center of
the group of Φi, where the meaning of the center is explained hereafter. On the
frequency ω, we consider the following variable transformation:

ω̃ :=
eω − 1

eω + 1
(76)

Note that the domain of ω is transferred from 0 ≤ ω ≤ ∞ to 0 ≤ ω̃ ≤ 1. Then,
we assume the following on the additive model error ∆i = Φi−Mo and that gives
the meaning of the center of {Φi}:

Assumption 5.1 The real parts or the imaginary parts of the model errors ∆i and
∆j , that is, Re[∆i(ω̃)] and Re[∆j(ω̃)] or ℑ[∆i(ω̃)] and ℑ[∆j(ω̃)], are indepen-
dent each other for any i and j, and the following is satisfied:[

Re[∆i(ω̃)] ℑ[∆i(ω̃)]
]⊤

=

∫
dBi(ω̃), (77)
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where Bi(ω̃) ∈ R2 is a Brownian motion on ω̃ with a probabilistic density

p(ω̃1 − ω̃2, Bi(ω̃1), Bi(ω̃2))

= (2π(ω̃1 − ω̃2))
−1(detΣ)−

1
2

× exp

(
− 1

2(ω̃1 − ω̃2)
(Bi(ω̃1)−Bi(ω̃2))

⊤Σ−1

× (Bi(ω̃1)−Bi(ω̃2))

)
,

Σ = diag(δ
2
, δ

2
). (78)

This assumption introduces a randomness of the change of ∆i(ω) for ω and it is
reasonable when the transfer functions of local systems have stochastic variations.

Then, the following holds:

Lemma 5.1 For a given any probability ϵ > 0, the following holds:

P

(
sup
ω

|∆(ω)| ≥ δ√
Nϵ

)
≤ ϵ (79)

Proof. From Assumption 5.1 on ∆i, ∆ = 1
N

∑N
i=1∆i satisfies

[
Re[∆(ω̃)] ℑ[∆(ω̃)]

]⊤
=

∫
dB(ω̃), (80)

p(ω̃1 − ω̃2, B(ω̃1), B(ω̃2))

= (2π(ω̃1 − ω̃2))
−1(detΣ)−

1
2

× exp

(
− 1

2(ω̃1 − ω̃2)
(B(ω̃1)−B(ω̃2))

⊤Σ−1

× (B(ω̃1)−B(ω̃2))

)
,

Σ = diag

(
δ
2

N
,
δ
2

N

)
. (81)

From martingale inequality [6] on Brownian motion B(ω̃), for any λ > 0 and
p ≥ 1 we get the following inequality:

P

 ∑
0≤ω̃≤T

|B(ω̃)| ≥ λ

 ≤ 1

λp
E (|B(T )|p) (82)

Then, we can get (79) by substituting T = 1, λ = δ√
Nϵ

, and p = 2.

Remark 5.1 From Lemma 5.1, it is known that by allowing a risk of probability
ϵ, ∥∆(ω)∥∞ has an upper bound δ′ := δ√

Nϵ
. When ϵ ≪ 1, however the number of
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local systems N is enough large such that it satisfies δ′ = δ√
Nϵ

≪ 1, the bound δ′

becomes enough small with a high probability 1− ϵ. For example, when δ
2
= 0.1,

ϵ = 0.01, and N = 104, the upper bound δ′ becomes δ′ = δ√
Nϵ

≃ 0.0316 and it is
realized with a probability 1− ϵ = 0.99.

From above observation, we set the weight WU as

WU =
δ√
Nϵ

WUo (83)

and consider the following robust control performance problem in the upper layer:

find q ∈ H∞

s.t. |WS(1−Moq)|+ |WUq|

= |WS(1−Moq)|+
∣∣∣∣ δ√

Nϵ
WUoq

∣∣∣∣ ≤ 1,∀ω (84)

Then, we get the following:

Proposition 5.1 Under Assumption 5.1, a global controller Cg which satisfies (84)
attains the robust control performance with a probability 1− ϵ.

Remark 5.2 When N is enough large, the second term of (84) is negligible in
a stochastic sense and setting q ≃ M−1

o gives an arbitrary high control perfor-
mance. The local controllers attain arbitrary high local control performances as
mentioned before and we can avoid the trade-off between the global control ob-
jective and the local control objectives in the deterministic case as discussed in
Section 3.2 and 3.3. This result also gives a design strategy for hierarchically
decentralized control systems on the size and the variations of the aggregated sys-
tems.

6 Conclusion

In this article, we have proposed a fairly general formulation of hierarchically de-
centralized control for large-scaled systems by aggregation. We have introduced
Global/Local Shared Model Set to split the global and local control problems and
to clarify the global/local performance trade-off. The effectiveness of the method
has been confirmed by a simple example. The future topics include to investigate
the analytical formulae of the trade-off by an optimal choice of the nominal model
Mo.
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A Proof of Local Control Performance Limitations

The stabilizing controller Ci for Pi is given by

Ci = − qi
1− Piqi

, qi ∈ RH∞, (85)

and hence we have

Φi =
Pi

1− PiCi
=

ki
s+ hi

(
1− ki

s+ hi
qi

)
. (86)

The constraint (74) of the class of Φi gives bi = ki and

qi =
ai − hi

ki

s+ hi
s+ ai

. (87)

This leads to

S =
1

1− PiCi
=

s+ hi
s+ ai

. (88)

and

Φi −Mo

Mo
=

(bi − b)s+ (bia− bai)

b(s+ ai)
=

(ki − b)s+ (kia− bai)

b(s+ ai)
. (89)
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Consequently, the control performance problem can be represented by∥∥∥∥ η

s+ 1

s+ hi
s+ ai

∥∥∥∥
∞

< 1 (90)

and model error problem is represented by∥∥∥∥(ki − b)s+ (kia− bai)

b(s+ ai)

∥∥∥∥
∞

< δ. (91)

A necessary condition for (91) is∣∣∣∣(ki − b)s+ (kia− bai)

b(s+ ai)

∣∣∣∣
s=j∞

=

∣∣∣∣ki − b

b

∣∣∣∣ < δ, (92)

that is,

(1− δ2)b2 − 2kib+ k2i < 0. (93)

From the condition (93), we get a necessary condition on b as

ki
1 + δ

< b <
ki

1− δ
. (94)

A.1 Model error constraint

A.1.1 Case (1)

The pole of the model error system is ai and the zero is

kia− bai
ki − b

. (95)

We first consider the following case:

Case(1) : a2i >

(
kia− bai
ki − b

)2

. (96)

In this case, (92) becomes a necessary and sufficient condition for (91) and we get
(94). On the other hand, the condition (96) can be rewritten by

1

(k2i − b)2
{
(b2 − (ki − b)2)a2i − 2kibaai + k2i a

2
}
< 0. (97)

From (94), we can show

b2 − (ki − b)2 > 0, (98)

that is,

0 < ki < 2b, (99)
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then, the condition (96) or (97) gives the range of possible ai as

a∗i :=
kia(b− |ki − b|)
b2 − (ki − b)2

< ai <
kia(b+ |ki − b|)
b2 − (ki − b)2

=: a∗i . (100)

Case (1)-1
Moreover, when

ki − b > 0, (101)

we get

a∗i =
kia(2b− ki)

b2 − (ki − b)2
= a < ai < a∗i =

k2i a

b2 − (ki − b)2
=

kia

2b− ki
. (102)

Case (1)-2
In the other case of

ki − b < 0, (103)

we get

a∗i =
kia

2b− ki
< ai < a∗i = a. (104)

A.1.2 Case (2)

Next, consider the case;

Case(2) : a2i <

(
kia− bai
ki − b

)2

. (105)

In this case, we get∥∥∥∥(ki − b)s+ (kia− bai)

b(s+ ai)

∥∥∥∥
∞

=

∣∣∣∣(ki − b)s+ (kia− bai)

b(s+ ai)

∣∣∣∣
s=0

=

∣∣∣∣kia− bai
aib

∣∣∣∣ < δ.

(106)

The condition (106) can be reduced into

b2(1− δ2)a2i − 2kibaai + k2i a
2 < 0, (107)

which provides the possible range of ai as

ai =
abki(1− δ)

b2(1− δ2)
=

aki
b(1 + δ)

< ai <
aki

b(1− δ)
= ai. (108)
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On the other hand, similar to the case (1), from the necessary condition (92) or
(94), (99) is safisfied and the condition (105) also gives the range of possible ai as

ai < a∗i =
kia(b− |ki − b|)
b2 − (ki − b)2

or
kia(b+ |ki − b|)
b2 − (ki − b)2

= a∗i < ai. (109)

Case (2)-1
Moreover, when ki − b > 0, we get

ai < a∗i = a or a∗i =
kia

2b− ki
< ai. (110)

Case (2)-2
On the other hand, whenki − b < 0, we get

ai < a∗i =
kia

2b− ki
or a∗i = a < ai. (111)

A.1.3 Summary of model error constraint

aia

b

ki

ki
1+δ

ki
1−δ

ai =
aki

b(1−δ)ai =
aki

b(1+δ)

ai =
aki

2b−ki

Fig. 4: The allowable region of ai and b

The combination of the results of case(1)-1, case(1)-2, case(2)-1, and case(2)-2
gives the allowable region on the plain of ai and b, which is shown as in Fig. 4.
The two triangular regions of the horizontal-hatted pattern represent the allowable
set of (ai, b) given in case (1)-1 and case (1)-2. The other two triangular regions of
the vertical-hatted pattern represent the allowable set of (ai, b) given in case (2)-1
and case (2)-2.

Note that the intersection point between ai =
aki

2b−ki
and b = ki

1+δ is (ai, b) =
(a1+δ

1−δ ,
ki
1+δ ) and it is also the intersection between ai =

aki
2b−ki

and ai =
aki

b(1−δ) .
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Similarly, the intersection point between ai = aki
2b−ki

and b = ki
1−δ is (ai, b) =

(a1−δ
1+δ ,

ki
1−δ ) and it is also the intersection between ai =

aki
2b−ki

and ai =
aki

b(1+δ) .

Moreover, at ai = a on the line ai =
aki

b(1−δ) , b = ki
1−δ holds and at ai = a on the

line ai =
aki

b(1+δ) , b = ki
1+δ holds.

As a result, the rectangular region composed of the two triangular regions of
the horizontal-hatted pattern and the two triangular regions of the vertical-hatted
pattern represents the allowable region of (ai, b).

A.2 Control performance

Consider the following case:

hi < 1, ai. (112)

Define

g(X) :=
1

X + 1

X + h2i
X + a2i

, X ∈ R, X ≥ 0 (113)

and investigate the maximum by considering the following equation:

d

dX
g(X) = (X + 1)−2(X + ai)

−2(−X2 − 2h2iX + a2i − a2ih
2
i − h2i ) = 0.

(114)

A.2.1 Case (i)

In order to that g(X) has a positive maximizer X∗ > 0 of g(X), a condition

a2i − a2ih
2
i − h2i > 0, (115)

that is,

a2i >
h2i

1− h2i
(116)

is necessary. In this case, such X∗ is given by

X∗(ai) = −h2i +
√

h4i + a2i − a2ih
2
i − h2i > 0. (117)

Note that from (112), X∗(ai) is an increasing function of ai. Moreover, Xsup,
which is defined by∥∥∥∥ η

s+ 1

s+ hi
s+ ai

∥∥∥∥2
∞

=

∣∣∣∣ 1

X + 1

X + h2i
X + a2i

∣∣∣∣
X=Xsup

, (118)
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is given by

Xsup = X∗(ai). (119)

Then, we get

η2 =
1

g(Xsup)
= (Xsup + 1)

Xsup + a2i
Xsup + h2i

=
(X∗(ai) + 1)(X∗(ai) + a2i )

X∗(ai) + h2i
=: η2(ai).

(120)

Note that this is an increasing function of ai in the region a2i >
h2
i

1−h2
i
,.

A.2.2 Case (ii)

On the other hand, when

a2i − a2ih
2
i − h2i < 0, (121)

that is,

a2i <
h2i

1− h2i
, (122)

Xsup = 0. (123)

Then, we get

η2 =
1

g(Xsup)
= (Xsup + 1)

Xsup + a2i
Xsup + h2i

=
a2i
h2i

=: η2(ai). (124)

This is also an increasing function of ai.

Summary of Case (i) and Case (ii)

η2(ai) =
(X∗(ai) + 1)(X∗(ai) + a2i )

X∗(ai) + h2i
for a2i >

h2i
1− h2i

, (125)

η2(ai) =
a2i
h2i

for a2i <
h2i

1− h2i
. (126)

From the increasing property of η2(ai), the largest ai for each b in their allow-
able region, which is given in Fig. 4, gives the best local performance. Such choice
of ai, called a∗i , is given by the intersection between lines b = b and ai =

aki
b(1−δ) ,

which is shown at a black-circled point in Fig. 5. This concludes the statement of
the Local Control Performance Limitation.

26



aia∗ia

b

b

ki

ki
1+δ

ki
1−δ

ai =
aki

b(1−δ)ai =
aki

b(1+δ)

ai =
aki

2b−ki

Fig. 5: The allowable region of (ai, b) and the best choice a∗i of ai for a given b
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