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Abstract

In 2017, for inverse symmetric eigenvalue problems, a new quadrat-
ically convergent algorithm has been derived from simple matrix equa-
tions. Although this algorithm has some nice features compared with
the other quadratically convergent methods, it is not applied to multi-
ple eigenvalues. In this paper, we improve this algorithm with the aid
of an optimization problem for the eigenvectors associated with mul-
tiple eigenvalues. The proposed algorithm is adapted to an arbitrary
set of given eigenvalues. The main contribution is our convergence
theorem formulated in a different manner from previous work for the
existing quadratically convergent methods. Our theorem ensures the
quadratic convergence in a neighborhood of the solutions that satisfy
a mild condition.

1 Introduction

Let A0, A1, . . . , An be real symmetric n× n matrices and

λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
n

be real numbers. In addition, let c = [c1, . . . , cn]
T ∈ Rn and

Λ∗ = diag(λ∗
1, . . . , λ

∗
n).

Define

A(c) := A0 + c1A1 + · · ·+ cnAn, (1)

and denote its eigenvalues by λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c) in the ascending
order. A typical inverse eigenvalue problem is to find c∗ ∈ Rn such that
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λi(c
∗) = λ∗

i for all 1 ≤ i ≤ n. Such inverse eigenvalue problems often arise
in a variety of applications, e.g., inverse Sturm–Liouville problems, inverse
vibration problems, and nuclear spectroscopy [6, 7, 8, 14]. In this study,
we focus on numerical algorithms for solving the above inverse eigenvalue
problems. Throughout the paper, I is an identity matrix, and O is a zero
matrix. For any matrix, let ∥ · ∥ denote the spectral norm and [·]ij denote
the (i, j) elements for 1 ≤ i, j ≤ n.

There are various quadratically convergent methods for solving the above
problems. A typical method is the following Newton’s method. Define
f : Rn → Rn by f(c) = [λ1(c), . . . , λn(c)], where λ1(c) ≤ · · · ≤ λn(c) are
eigenvalues of A(c). The Newton’s method computes c∗ such that f(c∗) = 0,
where the convergence rate is quadratic [14, Method I]. Since this approach
is straightforward, it can be extended to more general inverse eigenvalue
problems [11, 12]. However, the Newton’s method for the above nonlinear
equation f(c) = 0 requires an eigenvalue decomposition in each iteration.
Hence, a Newton-like method was derived from an approximation of the
eigenvalue decomposition [14, Method II]; see [3, 4, 18] for the details of
the algorithm developments and its convergence theory. Moreover, there is
a different approach with the use of matrix exponentials and Cayley trans-
forms [14, Method III]. This algorithm is now called the Cayley transform
method, which is also well studied [2, 5, 17, 19]. Furthermore, on the ba-
sis of a different formulation: det(A(c∗) − λ∗

i I) = 0 for all i = 1, . . . , n,
another quadratically convergent method is derived as in [14, Method IV].
Some quadratically convergent methods have been proposed for more gen-
eral problems from the above formulation with some matrix factorizations
in recent studies [9, 10, 13]. However, according to the discussion in [14,
§2], the method as in [14, Method IV] almost always requires more itera-
tions than the Newton’s method for f(c) = 0 as in [14, Method I] in the
numerical experiments.

In this paper, we focus on a latest iterative algorithm in [1], which is
summarized as follows. Let x∗

i for i = 1, . . . , n denote normalized eigen-
vectors corresponding to the eigenvalues λ∗

i for i = 1, . . . , n. In addition,
let X∗ := [x∗

1, . . . ,x
∗
n] ∈ Rn×n, which is an orthogonal matrix. For com-

puted matrices X(k) ∈ Rn×n (k = 0, 1, . . .) in the iterative process, define
E(k) ∈ Rn×n (k = 0, 1, . . .) such that X(k) = X∗(I + E(k)) based on the
orthonormal set of the eigenvectors {x∗

1, . . . ,x
∗
n}. Then we compute Ẽ(k)

approximating E(k) from the following relations:{
X∗TX∗ = I,
X∗TA(c∗)X∗ = Λ∗.

(2)

After computing Ẽ(k), we can update X(k+1) := X(k)(I − Ẽ(k)), where I −
Ẽ(k) is the first order approximation of (I + Ẽ(k))−1 using the Neumann
series. Under some conditions, E(k) → O and X(k) → X∗ as k → ∞ are
proved, where the convergence rates are quadratic.
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Although this algorithm has some nice features compared with the other
quadratically convergent methods, it is not applied to multiple eigenvalues.
With such a background, our aim is to modify this algorithm to solve the
problems with multiple eigenvalues. Our approach is based on an optimiza-
tion problem, namely the orthogonal Procrustes problem [15, §6.4.1]. As a
result, the columns of X(k) (k = 0, 1, . . .) associated with multiple eigenval-
ues are computed with the aid of the polar decomposition, different from the
usual way explicitly computing the QR factorization as in [14, 18, 19]. Such
an idea using the polar decomposition is also found in [16] that presents an
efficient iterative refinement algorithms for symmetric eigenvalue problems.
In this sense, our approach to multiple eigenvalues is straightforward. Not-
ing the above algorithm design, we provide convergence theory to ensure the
quadratic convergence under a technical assumption. The main contribution
is the convergence theorem derived from Lemmas 4 and 5 newly shown in
this paper. It is worth noting that our convergence theorem is a different
formulation from the previous work for the existing quadratically convergent
methods.

This paper is organized as follows. In Section 2, we derive a new algo-
rithm applied to multiple eigenvalues, modifying the basic algorithm pre-
sented in [1]. In Section 3, we prove quadratic convergence of the proposed
algorithm. The strength of our convergence analysis is described in Sec-
tion 4. In Section 5, we report a numerical result to illustrate our conver-
gence theory. Concluding remarks are given in Section 6.

2 Proposed algorithm

In this section, we derive a new algorithm based on the relations in (2).
Before that, we briefly review a basic algorithm presented in [1] for the
situation where all prescribed eigenvalues are distinct, i.e., λ∗

1 < · · · < λ∗
n.

As in the previous section, for a given X(k) ∈ Rn×n, define E(k) ∈ Rn×n

such that

X(k) = X∗(I + E(k)), (3)

whereX(k) is assumed to be sufficiently close toX∗. First, usingX∗TX∗ = I
in (2), we have

I + E(k) + E(k)T +∆
(k)
1 = X(k)TX(k), ∆

(k)
1 := E(k)TE(k). (4)

Since we assume ∥E(k)∥ is sufficiently small, omitting the quadratic term

∥∆(k)
1 ∥ ≤ ∥E(k)∥2, we obtain the following matrix equation for Ẽ(k):

Ẽ(k) + Ẽ(k)T = X(k)TX(k) − I. (5)
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Next, noting X∗TA(c∗)X∗ = Λ∗ in (2), we have

Λ∗ + Λ∗E(k) + E(k)TΛ∗ +∆
(k)
2 = X(k)TA(c∗)X(k), ∆

(k)
2 := E(k)TΛ∗E(k).

(6)

As in (5), omitting ∆
(k)
2 , we have the following equation for Ẽ(k) and c(k+1):

Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗ = X(k)TA(c(k+1))X(k). (7)

Combining (5) and (7), we obtain the following equations:{
I + Ẽ(k) + Ẽ(k)T = X(k)TX(k),

Λ∗ + Λ∗Ẽ(k) + Ẽ(k)TΛ∗ = X(k)TA(c(k+1))X(k),
(8)

where the elements of Ẽ(k) and c(k+1) are unknown variables. In (8), Ẽ(k)

and c(k+1) can be easily obtained as shown in [1].
However, if Λ∗ has multiple eigenvalues, the matrix equations in (8)

have no solutions in general, and hence some modifications are required.
For simplicity, we assume that the first p eigenvalues are multiple, i.e.,

λ∗
1 = · · · = λ∗

p < λ∗
p+1 < · · · < λ∗

n

in the same manner as [14, 17, 18, 19]. It is easy to generalize the following
discussion to an arbitrary set of prescribed eigenvalues as shown later.

First of all, note that, even if the problem has a locally unique solution
c∗, the corresponding X∗ as in (2) is not unique. In other words, X∗

p :=
[x∗

1, . . . ,x
∗
p] associated with the multiple eigenvalues is not unique. More

specifically, for any orthogonal matrix Q ∈ Rp×p, all the columns of X∗
pQ

are also eigenvectors. Hence, for a given X(k), let

Y (k) := arg min
X∗

∥X∗ −X(k)∥F, (9)

where ∥ · ∥F denotes the Frobenius norm. In addition, define F (k) that
satisfies

X(k) = Y (k)(I + F (k)). (10)

Then, we see

∥F (k)∥F = ∥X(k) − Y (k)∥F = min
X∗

∥X∗ −X(k)∥F (11)

from easy calculations.
For a given X(k), the above F (k) is locally unique, and the leading prin-

cipal p×p submatrix of F (k) is symmetric matrix. Such a feature is relevant
to the orthogonal Procrustes problem [15, §6.4.1]. In other words, for fixed

X∗
p and X

(k)
p , we consider an optimization problem

min
Q(k)TQ(k)=I

∥X∗
pQ

(k) −X(k)
p ∥F, (12)
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relevant to (9). We can obtain the optimal Q(k) using the polar decomposi-
tion

Q(k)T (k) := X∗
p
TX(k)

p , (13)

where Q(k) is an orthogonal matrix, and T (k) is a positive semi-definite
matrix, as shown in [15, §6.4.1]. Note that T (k) in (13) is independent of the
choice of X∗

p because of the uniqueness of the polar decomposition, while the

solution Q(k) depends on X∗
p . Therefore, for the solution Y (k) = [y1, . . . ,yn]

in (9), we see

Y (k)
p := [y1, . . . ,yp],

Y (k)
p

TX(k)
p = (X∗

pQ
(k))TX(k)

p = T (k),

which implies that the leading principal p × p submatrix of F (k) in (10) is
equal to the symmetric matrix T (k) − Ip (Ip ∈ Rp×p). Note that the above
discussion is easily generalized to an arbitrary set of prescribed eigenvalues.
In summary, we have the next lemma for any eigenvalue distribution λ∗

1 ≤
· · · ≤ λ∗

n.

Lemma 1. For any fixed X(k), suppose that Y (k) and F (k) are defined as (9)
and (10), respectively. Then, F (k) satisfies (11) and [F (k)]ij = [F (k)]ji for
i, j corresponding to multiple eigenvalues λ∗

i = λ∗
j .

Our aim is to obtain F̃ (k) approximating F (k) using the above lemma.
To this end, using Y (k)TY (k) = I in (2), we have

I + F (k) + F (k)T +∆
(k)
1 = X(k)TX(k), ∆

(k)
1 := F (k)TF (k). (14)

Next, noting Y (k)TA(c∗)Y (k) = Λ∗ in (2), we have

Λ∗ + Λ∗F (k) + F (k)TΛ∗ +∆
(k)
2 = X(k)TA(c∗)X(k), ∆

(k)
2 := F (k)TΛ∗F (k).

(15)
Noting the diagonal elements for (14) and (15), we have the following

linearized equations:
[
I + F̃ (k) + F̃ (k)T

]
ii
=
[
X(k)TX(k)

]
ii[

Λ∗ + Λ∗F̃ (k) + F̃ (k)TΛ∗
]
ii
=
[
X(k)TA(c(k+1))X(k)

]
ii

(16)

for i = 1, . . . , n. The linearization for the off-diagonal elements is slightly
different from the basic version for the situation where the eigenvalues are
all distinct. For i ̸= j corresponding to λ∗

i = λ∗
j , on the basis of the above

symmetry of F (k) in Lemma 1, let
[
I + F̃ (k) + F̃ (k)T

]
ij
=
[
X(k)TX(k)

]
ij[

F̃ (k)
]
ij
=
[
F̃ (k)

]
ji

. (17)
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On the other hand, for i ̸= j corresponding to λ∗
i ̸= λ∗

j , let
[
I + F̃ (k) + F̃ (k)T

]
ij
=
[
X(k)TX(k)

]
ij[

Λ∗ + Λ∗F̃ (k) + F̃ (k)TΛ∗
]
ij
=
[
X(k)TA(c(k+1))X(k)

]
ij

(18)

in the same manner as the basic algorithm.
Similarly to the basic algorithm in [1], the above equations can be easily

solved as follows. First, noting the first equation in (16), we see

[F̃ (k)]ii =
x
(k)
i

Tx
(k)
i − 1

2
(1 ≤ i ≤ n). (19)

In addition, for i ̸= j corresponding to multiple eigenvalues λ∗
i = λ∗

j ,

[F̃ (k)]ij =
x
(k)
i

Tx
(k)
j

2
(1 ≤ i, j ≤ n, i ̸= j, λ∗

i = λ∗
j ) (20)

from (17).
Next, we compute c(k+1) as follows. For the left hand-side of the second

equation in (16), we have

[Λ∗ + Λ∗F̃ (k) + F̃ (k)TΛ∗]ii = [Λ∗(I + F̃ (k) + F̃ (k)T)]ii

= λ∗
ix

(k)
i

Tx
(k)
i (21)

for i = 1, . . . , n, where the second equality is due to the first equation in
(16). Here, letting

[J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n), (22)

we have

[X(k)TA(c(k+1))X(k)]ii = [J (k)c(k+1)]i + x
(k)
i

TA0x
(k)
i (1 ≤ i ≤ n). (23)

Therefore, letting

[d(k)]i = λ∗
ix

(k)
i

Tx
(k)
i − x

(k)
i

TA0x
(k)
i (1 ≤ i ≤ n),

we obtain
c(k+1) = (J (k))−1d(k) (24)

by (16), (21), and (23).
Finally, we compute the off-diagonal parts of F̃ (k) corresponding to the

distinct eigenvalues λ∗
i ̸= λ∗

j . Using (24), in each (i, j) element of (18) we
see the following 2× 2 linear system{

[F̃ (k)]ij + [F̃ (k)]ji = x
(k)
i

Tx
(k)
j

λ∗
i [F̃

(k)]ij + λ∗
j [F̃

(k)]ji = x
(k)
i

TA(c(k+1))x
(k)
j

(1 ≤ i, j ≤ n, λ∗
i ̸= λ∗

j ).
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Therefore, we obtain

[F̃ (k)]ij =
λ∗
jx

(k)
i

Tx
(k)
j − x

(k)
i

TA(c(k+1))x
(k)
j

λ∗
j − λ∗

i

(1 ≤ i, j ≤ n, λ∗
i ̸= λ∗

j ). (25)

As a result, we can compute the next step

X(k+1) = X(k)(I − F̃ (k)), (26)

where I − F̃ (k) is the first order approximation of (I + F̃ (k))−1 using the
Neumann series. In Algorithm 1, we present the proposed algorithm.

Algorithm 1 The proposed algorithm.

Require: λ∗
1 ≤ · · · ≤ λ∗

n, A0, . . . , An ∈ Rn×n; X(0) ∈ Rn×n

1: for k = 0, 1, . . . do
2: R(k) = X(k)TX(k)

3: [F̃ (k)]ii = ([R(k)]ii − 1)/2 (1 ≤ i ≤ n)

4: [J (k)]ij = x
(k)
i

TAjx
(k)
i (1 ≤ i, j ≤ n)

5: [d(k)]i = λ∗
i [R

(k)]ii − x
(k)
i

TA0x
(k)
i (1 ≤ i ≤ n)

6: c(k+1) = (J (k))−1d(k)

7: S(k+1) = X(k)TA(c(k+1))X(k)

8: if λ∗
i = λ∗

j then

9: F̃
(k)
ij = [R(k)]ij/2 (1 ≤ i, j ≤ n, i ̸= j)

10: else
11: [F̃ (k)]ij = (λ∗

j [R
(k)]ij− [S(k+1)]ij)/(λ

∗
j −λ∗

i ) (1 ≤ i, j ≤ n, i ̸= j)
12: end if
13: X(k+1) = X(k)(I − F̃ (k))
14: end for

In 2017, a similar algorithm is proposed in [19], while the proposed al-
gorithm is based on an approximation of the Cayley transform different
from Algorithm 1. To clarify it, let us introduce the normalizations of

x
(k+1)
i (i = 1, . . . , n) for X(k+1). In other words, if line 13 is replaced with

X̃(k+1)(:= [x̃
(k+1)
1 , . . . , x̃(k+1)

n ]) = X(k)(I − F̃ (k)),

x
(k+1)
i = x̃

(k+1)
i /∥x̃(k+1)

i ∥ (i = 1, . . . , n),

X(k+1) = [x
(k+1)
1 , . . . ,x(k+1)

n ],

then this variant of Algorithm 1 is equivalent to the algorithm in [19] when-
ever the prescribed eigenvalues are all distinct. However, if multiple eigen-
values are present, this variant is also different from the algorithm in [19].
More importantly, we can provide a novel convergence theorem based on
our algorithm design different from existing formulations in the next sec-
tion. The strength of our convergence analysis is described in Section 4. In
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addition, note that the basic idea using the polar decomposition is also found
in [16] that presents an efficient iterative refinement algorithms for symmet-
ric eigenvalue problems. In this sense, our approach to multiple eigenvalues
is straightforward.

3 Convergence analysis

In this section, we prove quadratic convergence of the proposed algorithm
under some assumption that X(k) for some k is sufficiently close to an eigen-
vector matrix of A(c∗).

In the following, we would like to use the spectral norm as usual, though
Y (k) is the optimal matrix in terms of the Frobenius norm as Lemma 1.
Obviously,

∥Y (k) −X(k)∥ ≤ ∥Y (k) −X(k)∥F ≤ ∥X∗ −X(k)∥F ≤
√
n∥X∗ −X(k)∥

for any X∗. Thus, letting {E(k) | X(k) = X∗(I + E(k))}, we have

∥F (k)∥ ≤
√
n∥E(k)∥

for any E(k) in terms of the spectral norm. In fact,
√
n can be replaced with

3 as follows, which is essentially proved in [16, Lemma 4].

Lemma 2. For a given X(k) ∈ Rn×n, let {X∗} be the set of the n × n
eigenvector matrices for A(c∗) and

{E(k) | X(k) = X∗(I + E(k))}. (27)

In addition, F (k) is defined as in Lemma 1. Then, for any E(k),

∥F (k)∥ ≤ 3∥E(k)∥. (28)

Proof. For any E(k) in (27), define a block diagonal matrix E
(k)
diag such that

[E
(k)
diag]ij :=

{
[E(k)]ij (λ∗

i = λ∗
j )

0 (otherwise)
,

related to the block diagonal part of F (k). Here, we consider the polar
decomposition

I + E
(k)
diag =: U (k)H(k), (29)

whereH(k) is a symmetric positive definite matrix, and U (k) is an orthogonal
matrix. Then, noting

X(k) = (X∗U (k))U (k)T(I + E(k)),
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we have

Y (k) = X∗U (k) (30)

from the definition of Y (k) as in Lemma 1, and

F (k) = Y (k)TX(k) − I

= U (k)TX∗TX(k) − I

= U (k)T(E(k) + I)− I

= U (k)T(E(k) − E
(k)
diag + U (k)H(k))− I

= U (k)T(E(k) − E
(k)
diag) +H(k) − I, (31)

where the first, second, third, and fourth equalities are consequences of (10),
(30), (27), and (29), respectively. In addition, we see that

∥H(k) − I∥ ≤ ∥E(k)
diag∥ (32)

because all eigenvalues of H(k) range over the interval [1 − ∥E(k)
diag∥, 1 +

∥E(k)
diag∥] from (29). Moreover, note that

∥E(k)
diag∥ ≤ ∥E(k)∥. (33)

Therefore, we obtain

∥F (k)∥ ≤ ∥U (k)T(E(k) − E
(k)
diag)∥+ ∥H(k) − I∥ ≤ 3∥E(k)∥

from (31), (32), and (33), giving us (28).

Next, we focus on the relationship between F (k) and F̃ (k). From (14),
(15), (16), (17), and (18), we have

∆
F̃ (k) := F (k) − F̃ (k),

∆
F̃ (k) +∆

F̃ (k)
T +∆

(k)
1 = O, (34)

[
∆

F̃ (k)

]
ij
=
[
∆

F̃ (k)

]
ji

(if i ̸= j and λ∗
i = λ∗

j )[
Λ∗∆

F̃ (k) +∆
F̃ (k)

TΛ∗ +∆
(k)
2

]
ij
=
[
X(k)TA

(k)
∆ X(k)

]
ij

(otherwise)
(35)

A
(k)
∆ := A(c∗)−A(c(k+1)), ∥∆(k)

1 ∥ ≤ ∥F (k)∥2, ∥∆(k)
2 ∥ ≤ ∥Λ∗∥∥F (k)∥2

For the convergence analysis, define J̄ (k) as [J̄ (k)]ij = y
(k)
i

TAjy
(k)
i in a

similar manner as line 4 in Algorithm 1. Suppose that J̄ (k) is nonsingular.
Then, we have

∥J̄ (k)−1∥

√√√√ n∑
j=1

∥Aj∥2 ≥ 1

9



because

∥J̄ (k)−1∥−1 ≤

√√√√ n∑
j=1

|y(k)
i

T
Ajy

(k)
i |2 ≤

√√√√ n∑
j=1

∥Aj∥2

for any i = 1, . . . , n. Using J̄ (k), we introduce

α(k) :=
√
n∥J̄ (k)−1∥

√√√√ n∑
ℓ=1

∥Aℓ∥2 ≥
√
n. (36)

If all the prescribe eigenvalues are distinct, J̄ (k) and α(k) are independent of
k. As a result, a condition of the convergence is written as

∥E(k)∥ ≤
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

6n∥Λ∗∥(1 + α)

in [1, Theorem 1], where α = α(k) (k = 0, 1, . . .). In the following, we
prove the convergence under a similar condition, where the right-hand side
is changed to

1

3
·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

6n∥Λ∗∥(1 + α(k))
,

depending on a constant 3 in (28). First, we prove the next lemma analo-
gously to [1, §4].

Lemma 3. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 ≤

· · · ≤ λ∗
n be prescribed eigenvalues. Suppose that Algorithm 1 is applied to

X(0) ∈ Rn×n. Moreover, for some k, suppose that

∥F (k)∥ ≤
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k))
, (37)

where F (k) is defined as Lemma 1, and α(k) is defined as (36). For the
computed X(k+1), define G(k+1) such that

X(k+1) = Y (k)(I +G(k+1)). (38)

Then, we obtain

∥G(k+1)∥ ≤

(
2n∥Λ∗∥(1 + α(k))(1 + ∥F (k)∥)

β(k)mini̸=j |λ∗
i − λ∗

j |
+ 1

)
∥F (k)∥2, (39)

∥F (k+1)∥ ≤ 3∥G(k+1)∥, (40)

where

β(k) := 1− α(k)(2 + ∥F (k)∥)∥F (k)∥ ≥ ρ1 :=
575

648
. (41)
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Proof. Noting (38) and

X(k+1) = X(k)(I − F̃ (k)) = Y (k)(I + F (k))(I − F̃ (k)),

we see

G(k+1) = F (k) − F̃ (k) + F (k)(F (k) − F̃ (k)) + F (k)2. (42)

It then follows that

∥G(k+1)∥ ≤ (1 + ∥F (k)∥)∥F̃ (k) − F (k)∥+ ∥F (k)∥2. (43)

Hence, to prove (39), we estimate ∥F̃ (k) − F (k)∥.
First, we estimate the diagonal elements of F̃ (k) − F (k). We see

|[∆
F̃ (k) ]ii| = |[F̃ (k)]ii − [F (k)]ii| =

|[∆(k)
1 ]ii|
2

≤ ∥F (k)∥2

2
(i = 1, . . . , n) (44)

from the diagonal elements in (34). In addition, for the off-diagonal elements
corresponding to multiple eigenvalues λ∗

i = λ∗
j , we have

|[∆
F̃ (k) ]ij | = |[F̃ (k)]ij − [F (k)]ij | =

|[∆(k)
1 ]ij |
2

≤ ∥F (k)∥2

2
(i ̸= j, λ∗

i = λ∗
j )(45)

from (34) and the first equation in (35).
Next, we discuss c(k+1) using the second equation in (35). In the left-

hand side, we have

|[Λ∗(F (k) − F̃ (k)) + (F (k)T − F̃ (k)T)Λ∗ +∆
(k)
2 ]ii| ≤ ∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥

from (44). It then follows that√√√√ n∑
i=1

|[Λ∗(F (k) − F̃ (k)) + (F (k)T − F̃ (k)T)Λ∗ +∆
(k)
2 ]ii|2

≤
√
n(∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥).

Therefore, using J (k) as in (22) and the diagonal elements of the second
equation in (35), we obtain

∥c(k+1) − c∗∥ ≤ ∥J (k)−1∥
√
n(∥Λ∗∥∥∆(k)

1 ∥+ ∥∆(k)
2 ∥)

≤ 2∥J (k)−1∥
√
n∥Λ∗∥∥F (k)∥2. (46)

Concerning ∥J (k)−1∥, noting x
(k)
i = y

(k)
i +

∑n
ℓ=1[F

(k)]ℓiy
(k)
ℓ from the defini-

tion in (10), we see

|[J̄ (k)]ij − [J (k)]ij | = |y(k)
i

TAjy
(k)
i − x

(k)
i

TAjx
(k)
i |

= |2y(k)
i

TAj

n∑
ℓ=1

[F (k)]ℓiy
(k)
ℓ +

n∑
ℓ=1

[F (k)]ℓiy
(k)
ℓ

TAj

n∑
ℓ=1

[F (k)]ℓiy
(k)
ℓ |

≤ (2 + ∥F (k)∥)∥F (k)∥∥Aj∥

11



from ∥
∑n

ℓ=1[F
(k)]ℓiy

(k)
ℓ ∥ ≤ ∥F (k)∥. Using the Weyl’s inequality for singular

values, we have

∥J (k)−1∥−1 ≥ ∥J̄ (k)−1∥−1 −
√ ∑

1≤i,j≤n

|[J̄ (k)]ij − [J (k)]ij |2

≥ ∥J̄ (k)−1∥−1 −
√
n(2 + ∥F (k)∥)∥F (k)∥

√√√√ n∑
ℓ=1

∥Aℓ∥2

= ∥J̄ (k)−1∥−1
(
1− α(k)(2 + ∥F (k)∥)∥F (k)∥

)
.

We prove here that 1 − α(k)(2 + ∥F (k)∥)∥F (k)∥ in the right-hand side is
positive. Since we assume (37), we have

∥F (k)∥ ≤ 1

n
· 1

9(1 + α(k))
≤ min(1/36, 1/18α(k)) (47)

for n ≥ 2 and α(k) ≥ 1. Hence, we see

1− α(k)(2 + ∥F (k)∥)∥F (k)∥ ≥ 1− (2 + 1/36)/18 =
575

648
.

Thus, we obtain (41) and

∥J (k)−1∥ ≤ ∥J̄ (k)−1∥
(
1− α(k)(2 + ∥F (k)∥)∥F (k)∥

)−1
=

∥J̄ (k)−1∥
β(k)

. (48)

Using the inequalities (46) and (48), we estimate the off-diagonal ele-
ments of F̃ (k) − F (k) corresponding to λ∗

i ̸= λ∗
j (1 ≤ i, j ≤ n). Similarly to

(25), we have

|[F̃ (k)]ij − [F (k)]ij |

≤
|λ∗

j ||[∆
(k)
1 ]ij |+ |[∆(k)

2 ]ij |+ |
∑n

ℓ=1(c
(k+1)
ℓ − c∗ℓ)x

(k)
i

TAℓx
(k)
j |

|λ∗
i − λ∗

j |
(49)

from (34) and the second equation in (35). In addition,

|
n∑

ℓ=1

(c
(k+1)
ℓ − c∗ℓ )x

(k)
i

TAℓx
(k)
j |

≤
n∑

ℓ=1

|c(k+1)
ℓ − c∗ℓ |∥Aℓ∥(1 + ∥F (k)∥)2

≤ (1 + ∥F (k)∥)2∥c(k+1) − c∗∥

√√√√ n∑
ℓ=1

∥Aℓ∥2. (50)

12



Therefore, we have

|[F̃ (k)]ij − [F (k)]ij |

≤
2∥Λ∗∥∥F (k)∥2 + (1 + ∥F (k)∥)2∥c(k+1) − c∗∥

√∑n
ℓ=1 ∥Aℓ∥2

|λ∗
i − λ∗

j |

≤
2∥Λ∗∥∥F (k)∥2(1 +

√
n∥J (k)−1∥(1 + ∥F (k)∥)2

√∑n
ℓ=1 ∥Aℓ∥2)

|λ∗
i − λ∗

j |

≤ 2∥Λ∗∥
mini̸=j |λ∗

i − λ∗
j |

(
1 +

α(k)(1 + ∥F (k)∥)2

1− α(k)(2 + ∥F (k)∥)∥F (k)∥

)
∥F (k)∥2

≤ 2∥Λ∗∥(1 + α(k))

β(k)mini̸=j |λ∗
i − λ∗

j |
∥F (k)∥2,

where the first inequality is due to (49) and (50), the second inequality
is due to (46), the third inequality is due to (36) and (48), and the last
inequality is due to the definition of β(k) in (41). Using (44), (45), and

∥F̃ (k) − F (k)∥ ≤
√∑

i,j |[F̃ (k)]ij − [F (k)]ij |2, we have

∥F̃ (k) − F (k)∥ ≤ 2n∥Λ∗∥(1 + α(k))

β(k)minλ∗
i ̸=λ∗

j
|λ∗

i − λ∗
j |
∥F (k)∥2.

In view of (43), we obtain (39). We see (40) from Lemma 2.

From (39) and (40) in the above lemma, it is easy to see that

∥F (k+1)∥ ≤ 3

(
2n∥Λ∗∥(1 + α(k))(1 + ∥F (k)∥)

β(k)minλ∗
i ̸=λ∗

j
|λ∗

i − λ∗
j |

+ 1

)
∥F (k)∥2.

If α(k) for k = 0, 1, . . . are fixed as in the situation where all the eigenvalues
are distinct, the asymptotic quadratic convergence as ∥F (k)∥ → 0 is obvious.
Otherwise, we require a rigorous analysis of {α(k)}∞k=0. For this purpose, we
show a key lemma to estimate an upper bound of {α(k)}∞k=0.

Lemma 4. Under the same assumptions as in Lemma 3, we have

α(k+1) ≤ α(k)

1− α(k)(2 + 4∥G(k+1)∥) · 4∥G(k+1)∥
. (51)

In addition,

ρ2 :=
3239

20700
, ∥G(k+1)∥ ≤ ρ2∥F (k)∥. (52)

13



Proof. Let

Y (k+1) = Y (k)(I + G̃(k+1)).

Combined this with the estimation in (48) for X(k) = Y (k)(I + F (k)), we
have

∥J̄ (k+1)−1∥ ≤ ∥J̄ (k)−1∥
(
1− α(k)(2 + ∥G̃(k+1)∥)∥G̃(k+1)∥

)−1
. (53)

To estimate ∥G̃(k+1)∥, we use the relations in Lemma 3:

X(k+1) = Y (k)(I +G(k+1)) = Y (k+1)(I + F (k+1)),

which implies

∥G̃(k+1)∥ = ∥Y (k+1) − Y (k)∥ ≤ ∥F (k+1)∥+ ∥G(k+1)∥ ≤ 4∥G(k+1)∥. (54)

Therefore, noting (53) and the definition of α(k) in (36), we obtain (51).
Moreover, we see (52) from

∥G(k+1)∥ ≤

(
2n∥Λ∗∥(1 + α(k))∥F (k)∥

minλ∗
i ̸=λ∗

j
|λ∗

i − λ∗
j |

· (1 + ∥F (k)∥)
β(k)

+ ∥F (k)∥

)
∥F (k)∥

≤
(
1

9
· 648
575

· (1 + 1

36
) +

1

36

)
∥F (k)∥,

where the first inequality is due to (39), and the second inequality is due to
(37), (41), and (47), respectively.

Using the above lemmas, we have the next lemma that states a crucial
relationship between F (k) and α(k).

Lemma 5. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 ≤

· · · ≤ λ∗
n be prescribed eigenvalues. Suppose that Algorithm 1 is applied to

X(0) ∈ Rn×n. Moreover, suppose that there exist k and γ(k) such that

0 ≤ γ(k) ≤ 1, ∥F (k)∥ = γ(k) ·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k))
. (55)

Then, we obtain

ρ3 :=
3ρ2
ρ1

, ∥F (k+1)∥ < ρ3 · γ(k) ·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k+1))
, (56)

where ρ3 = 0.529 · · · < 1.
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Proof. Similarly to (47), we have

∥F (k)∥ ≤ γ(k) · 1
n
· 1

9(1 + α(k))
≤ γ(k) ·min(1/36, 1/18α(k)). (57)

From Lemma 4, we have

α(k+1) ≤ α(k)

β(k)
≤ α(k)

ρ1
,

where β(k) and ρ1 are defined in (41). It then follows that

1

α(k) + 1
<

1

ρ1
· 1

α(k+1) + 1
,

which implies

γ(k) ·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k))
<

γ(k)

ρ1
·

minλ∗
i ̸=λ∗

j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k+1))
.

Therefore, noting (40), (52), and (55), we have

∥F (k+1)∥ ≤ 3ρ2∥F (k)∥ <
3ρ2
ρ1

· γ(k) ·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k+1))
,

which shows (56).

Using the above lemmas, we prove the quadratic convergence of the
proposed algorithm as follows.

Theorem 1. Let A0, . . . , An be real symmetric n × n matrices and λ∗
1 ≤

· · · ≤ λ∗
n be prescribed eigenvalues. Suppose that Algorithm 1 is applied to

X(0) ∈ Rn×n. In addition, F (k) (k = 0, 1, . . .) are defined as in Lemma 1.
Moreover, for some k, suppose that F (k) satisfies (37). Then, we obtain

∥F (k+ℓ)∥ ≤ (3ρ2)
ℓ∥F (k)∥ (ℓ = 0, 1, . . .) (58)

lim sup
ℓ→∞

∥F (k+ℓ+1)∥
∥F (k+ℓ)∥2

≤ 3

(
2n∥Λ∗∥(1 + ρ4α

(k))

minλ∗
i ̸=λ∗

j
|λ∗

i − λ∗
j |

+ 1

)
, (59)

where ρ2 is defined as in (52) and

ρ4 := exp

(
73

575
· 1

1− ρ3

)
(= 1.309 · · · )

for ρ3 defined as in (56).
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Proof. Define γ(k+ℓ) (ℓ = 1, 2, . . .) such that

∥F (k+ℓ)∥ = γ(k+ℓ) ·
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k+ℓ))

in the same manner as (55). Then, we see

γ(ℓ+k) ≤ ρ3
ℓγ(k) ≤ ρ3

ℓ ≤ 1 (ℓ = 0, 1, . . .) (60)

from Lemma 5. Therefore, noting

∥F (k+ℓ)∥ ≤
minλ∗

i ̸=λ∗
j
|λ∗

i − λ∗
j |

18n∥Λ∗∥(1 + α(k+ℓ))
(ℓ = 0, 1, . . .)

and Lemmas 3 and 4, we obtain (58). In addition, we see

∥F (k+ℓ)∥ ≤ ρ3
ℓ

36
, α(k+ℓ)∥F (k+ℓ)∥ ≤ ρ3

ℓ

18
(ℓ = 0, 1, . . .) (61)

from (57) and (60). Hence, we have

α(k+ℓ+1) ≤ α(k+ℓ)

1− α(k+ℓ)(2 + 4∥G(k+ℓ+1)∥) · 4∥G(k+ℓ+1)∥

≤ α(k+ℓ)

1− α(k+ℓ)(2 + ∥F (k+ℓ)∥)∥F (k+ℓ)∥

= α(k+ℓ)

(
1 +

α(k+ℓ)(2 + ∥F (k+ℓ)∥)∥F (k+ℓ)∥
1− α(k+ℓ)(2 + ∥F (k+ℓ)∥)∥F (k+ℓ)∥

)

≤ α(k+ℓ)

(
1 +

648

575
· (2 + 1

36
) · 1

18
ρ3

ℓ

)
≤ α(k+ℓ) exp

(
73

575
ρ3

ℓ

)
≤ α(k) exp

(
73

575
· 1− ρ3

ℓ+1

1− ρ3

)
,

where the first inequality is due to (51), the second inequality is due to
4∥G(k+ℓ+1)∥ ≤ ∥F (k+ℓ)∥ from (52), and the third inequality is due to (41)
and (61), respectively. It then follows that

α(k+ℓ) ≤ α(k) exp

(
73

575
· 1

1− ρ3

)
, exp

(
73

575
· 1

1− ρ3

)
= 1.309 · · ·

for all ℓ = 0, 1, . . . . Therefore, using (39) and (40), we obtain (59).

Here, we prove that there exist limℓ→∞ Y (k+ℓ) and limℓ→∞X(k+ℓ). From (54),
we see ∥Y (k+ℓ) − Y (k+ℓ+1)∥ is quadratically convergent as ℓ → ∞. In other
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words, {∥Y (k+ℓ)∥}∞ℓ=0 is the Cauchy sequence, and hence there exists Y (∞).
In addition, there exists X(∞) from X(k) = Y (k)(I + F (k)) and ∥F (∞)∥ = 0.

Finally, noting the above convergence analysis, we show a simple exten-
sion of our result to inverse Hermitian eigenvalue problems. LetA0, A1, . . . , An ∈
Cn×n be Hermitian matrices. The purpose is to find a real vector c∗ ∈ Rn

such that A(c∗) has prescribed real eigenvalues. If we replace the trans-
pose with the conjugate transpose in Algorithm 1, this generalized version
can be applied to the above inverse Hermitian eigenvalue problems. How-
ever, we must note that, for any diagonal unitary matrix U , X∗U is also an
eigenvector matrix; there is a continuum of X∗ even if all the eigenvalues
are distinct. Since this property is completely different from the real case,
below we analyze the details. For simplicity, let us consider the situation
where the prescribed eigenvalues are all distinct. As shown above, since X∗

is not unique, E(k) is not unique for a fixed X(k) for any k. The lack of the
uniqueness is relevant the diagonal elements for Ẽ(k) given by

Ẽ(k)H + Ẽ(k) = X(k)HX(k) − I

corresponding to (5), where the symbol H denotes the conjugate transpose.
It is easy to see that the diagonal elements for Ẽ(k) are not uniquely deter-
mined in C. However, Algorithm 1 computes

[F̃ (k)]ii =
[X(k)HX(k) − I]ii

2
∈ R (62)

for i = 1, . . . , n in line 3. Recall that we introduce Y (k) ∈ {X∗} in Section 2.

Analogously, for any x
(k)
i for i = 1, . . . , n, we consider an optimization

problem:

min ∥x∗
i − x

(k)
i ∥ such that x∗

i ∈ Cn with ∥x∗
i ∥ = 1

for every i = 1, . . . , n. Similarly to the optimization problem in (12), the so-

lution vectors y
(k)
i (i = 1, . . . , n) of the above problems satisfy y

(k)
i

Hx
(k)
i ∈ R

for all i = 1, . . . , n. Hence, for the eigenvector matrix Y (k) = [y
(k)
1 , . . . ,y

(k)
n ],

we introduce F (k) as in Lemma 1. Note that the diagonal elements of F (k)

are real from y
(k)
i

Hx
(k)
i ∈ R for all i = 1, . . . , n. Thus, we see that the gener-

alized version of Algorithm 1 computes F̃ (k) approximating F (k) as in (62).
Therefore, the convergence results in Section 3 can be extended to the above
Hermitian case. Moreover, the above discussion can be easily generalized to
an arbitrary set of prescribed eigenvalues λ∗

1 ≤ · · · ≤ λ∗
n.

4 Comparison with previous work

In this section, to clarify the strength of our convergence analysis, we first
review some previous work.
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More precisely, we discuss convergence analysis for various quadratically
convergent methods originally presented in [14, §2]; see [2, 3, 4, 5, 6, 7, 8] for
the details of their algorithm developments and the corresponding conver-
gence theory. All of the existing quadratically convergent methods require to
solve linear systems. The coefficient matrices J(X(k)) ∈ Rn×n (k = 0, 1, . . .)
are defined as

[J(X(k))]ij := x
(k)
i

TAjx
(k)
i (k = 0, 1, . . .),

where X(k) := [x
(k)
1 , · · · ,x(k)

n ] for k = 0, 1, . . . are approximated eigenvector
matrices in the iterative methods. Hence, one may think

[J(X∗)]ij := x∗
i
TAjx

∗
i , sup

X∗
∥J(X∗)−1∥

for the convergence analysis. However, in general, the above supremum does
not exist as shown in [14, §3.1]. Since the convergence proof is not easy due
to the above singularity of J(X∗) for some X∗, the following inequalities

∥J(X(k))−1∥ < ∞ (k = 0, 1, . . .), lim sup
k→∞

∥J(X(k))−1∥ < ∞ (63)

are always assumed for the proof of the quadratic convergence also in recent
papers [17, 18, 19]. One may think that the above conditions as in (63)
are not so restrictive because the set of the singular matrices are almost
surely avoided in the iterative process. In fact, the quadratic convergence is
usually observed in numerical tests even if multiple eigenvalues are present.
Hence, from the mathematical point of view, many efforts have been made
to remove the assumptions in (63) that must be satisfied automatically. For
example, noting that X∗TA(c∗)X∗ = Λ∗ can be considered an overdeter-
mined system of equations, Friedland, Nocedal, and Overton proposed the
modified versions in [14, §3.2] applied to multiple eigenvalues. The idea is
to reduce the number of the specified eigenvalues depending on the num-
ber of multiple eigenvalues. The quadratic convergence is proved under more
natural assumptions in [14, §3.3] as in the problem where the specified eigen-
values are all simple, i.e., λ∗

1 < · · · < λ∗
n. However, one difficulty remains

as shown in [14, §3.2]. If some eigenvalues that are not specified are actu-
ally multiple, a tolerance parameter is required for avoiding the divergence
of ∥X(k)∥ (k = 0, 1, . . .). In addition, recall that the assumptions in (63)
cannot be removed for the proof of the quadratic convergence of unmodified
methods.

With such a background, we provide a different formulation for the proof
of quadratic convergence in the previous section. Intuitively, if X(k) for some
k is close to some X∗ associated with J(X∗) whose condition number is not
so large, then {X(k+ℓ)}∞ℓ=0 should converge to some neighborhood of X∗.
From such a perspective, we first construct an ideal matrix Y (k) ∈ {X∗}
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depending on X(k) as in Lemma 1. Next, we suppose that ∥F (k)∥, defined
as in Lemma 1, is sufficiently small compared with ∥J(Y (k))−1∥ as in (37). In
other words, our convergence proof only requires the assumption on some k
as in (37), resulting in Theorem 1 that ensures quadratic convergence. This
formulation is the crucial strength of our convergence analysis. Note that,
if we assume (63), the quadratic convergence is immediately proved from
(39) and (40) in Lemma 3 without Lemmas 4 and 5 that state important
properties of ∥F (k)∥ and ∥J(Y (k))−1∥ for k = 0, 1, . . ..

From the above mathematical discussion, one may notice that a concept
of relative generalized Jacobian matrices is introduced in [20]. On the basis
of the relative generalized Jacobian matrices, the quadratic convergence for
some existing algorithms is proved as follows. Let

D = {c ∈ Rn | Eigenvalues of A(c) are all distinct}.

In addition, let X∗(c) = [x∗
1(c), . . . ,x

∗
n(c)] denote an eigenvector matrix of

A(c) for c ∈ D. Moreover, let [J∗(c)]ij := x∗
i (c)

TAjx
∗
i (c) for all 1 ≤ i, j ≤ n.

Then, the relative generalized Jacobian matrices in [20] are defined as

{J∗ := lim
k→∞

J∗(c(k)) with {c(k)}k=0,1,... ⊂ D and c(∞) = c∗}. (64)

According to [17, 19, 20], quadratic convergence for some methods is proved
if all of {J∗} are nonsingular, where such assumptions appear to be almost
surely satisfied.

The question then arises: in general, all of {J∗} are nonsingular indeed?
The answer with mathematical rigor is not explicitly written in [20]. Alter-
natively, the following example is shown. To see the example, let

A0 = O, A1 = I, A2 =

[
0 1
1 0

]
, λ∗

1 = λ∗
2 = 1,

where the solution is c∗ = [1, 0]T. Obviously, D = {c ∈ R2 | c2 ̸= 0}. Thus,
the relative Jacobian matrices {J∗} are{[

1 −1
1 1

]
,

[
1 1
1 −1

]}
,

which are nonsingular.
To more deeply investigate the features of the relative Jacobian matrices,

let us consider the following inverse eigenvalue problem:

A0 = O, A1 =

[
1 0
0 t

]
, A2 =

[
0 1
1 0

]
, λ∗

1 = λ∗
2 = 0,

where the solution is c∗ = [0, 0]T. If t = 1, the relative Jacobians are the
same as the previous example. Otherwise, D = {c ∈ R2 | c ̸= c∗}. Thus,
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for c = [c1, 0]T (c1 ̸= 0), {J∗(c)} are{[
1 0
t 0

]
,

[
t 0
1 0

]}
, (65)

which implies that some relative generalized Jacobian matrices are singular.
Here, to consider any eigenvector matrix, let

q1 =

[
cos(θ)
sin(θ)

]
, q2 =

[
− sin(θ)
cos(θ)

]
, Q = [q1, q2].

Noting

J∗(Q) :=

[
qT1 A1q1 qT1 A2q1
qT2 A1q2 qT2 A2q2

]
=

[
cos2(θ) + t sin2(θ) 2 cos(θ) sin(θ)
t cos2(θ) + sin2(θ) −2 cos(θ) sin(θ)

]
,

we see

det(J∗(Q)) = −2(1 + t) cos(θ) sin(θ).

If t = −1, then J∗(Q) is always singular. Otherwise, in general, J∗(Q) is
nonsingular, unless cos(θ) sin(θ) = 0 associated with c = [c1, 0]T (c1 ̸=
0). In other words, if we chose a vector c = [c1, c2]

T (c2 ̸= 0), J∗(Q) is
nonsingular, and hence the convergence from such a direction c is expected,
even though some relative Jacobian matrices are singular as in (65). This
indicates that the above assumption for the relative Jacobian matrices {J∗}
in (64) might be too strong to ensure (63) for some fixed {X(k)}∞k=0. It is not
required that all of {J∗} in (64) concerning any sequence of {c(k)}k=0,1,...

are assumed to be nonsingular.
After all, from the mathematical point of view, the actual convergence

behavior should be verified using a distance between an approximate solution
X(k) and some exact solution, such as Y (k) ∈ {X∗} in the previous section.
In this sense, our convergence analysis is straightforward and convincing.
Theorem 1 ensures the quadratic convergence under the assumption on some
k as in (37) concerning X(k), Y (k) ∈ {X∗}, and J̄ (k). Again we stress that
this formulation is the crucial strength of our convergence analysis.

5 Numerical test

In this section, we report a numerical result to illustrate the convergence
theory for the proposed algorithm. The following test was performed in
MATLAB. We used a typical problem in [14, Example 2], where the target
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Table 1: Convergence of ∥F (k)∥ and ∥c(k) − c∗∥
k ∥F (k)∥ ∥c(k) − c∗∥
0 9.41E−02 1.22E−02
1 1.66E−02 1.77E−02
2 4.29E−04 3.69E−04
3 6.45E−07 6.63E−07
4 1.15E−12 1.03E−12

matrix A(c∗) has multiple eigenvalues. First, let

V :=



1 −1 −3 −5 −6
1 1 −2 −5 −17
1 −1 −1 5 18
1 1 1 2 0
1 −1 2 0 1
1 1 3 0 −1
2.5 0.2 0.3 0.5 0.6
2 −0.2 0.3 0.5 0.8


.

Next, we generate B = I + V V T that has 3 multiple eigenvalues λ∗
1 = λ∗

2 =
λ∗
3 = 1. The other eigenvalues are all simple. In addition, let A0 = O, and

define Ai for i = 1, 2, . . . , 8 as

Ai = [B]iieie
T
i +

i−1∑
j=1

[B]ij(eie
T
j + eje

T
i ) (i = 1, 2, . . . , 8),

where ei are the ith columns of I ∈ R8×8 for i = 1, 2, . . . , 8. We suppose
c∗ = [1, 1, . . . , 1]T and use an initial guess c(0) = c∗+ ξ, where each element
of ξ is chosen by a random number uniformly distributed between −10−2 and
10−2. Let the corresponding initial matrix X(0) be an eigenvector matrix of
A(c(0)), which is computed by the MATLAB build-in function eig.

The numerical result is displayed in Table 1. The quadratic convergence
can be observed in some neighborhood of the exact solutions.

6 Concluding remarks

In this paper, improving the latest algorithm in [1], we have derived the
new algorithm adapted to an arbitrary set of prescribed eigenvalues, and
then proved the quadratic convergence under a technical assumption. More
specifically, we have shown a straightforward and sophisticated approach to
multiple eigenvalues using the orthogonal Procrustes problem [15, §6.4.1].
Such an idea based on the polar decomposition is found in [16] that presents
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an efficient iterative refinement algorithm for symmetric eigenvalue prob-
lems. As shown in Section 4, it is worth noting that the quadratic con-
vergence is theoretically guaranteed under a natural assumption on some
iteration number k as in Theorem 1. It is a different formulation from the
previous work for the other quadratically convergent methods in the research
fields of inverse eigenvalue problems.
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