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Abstract

There is a tight upper bound on the order (the number of vertices) of d-regular graphs
of diameter D, known as the Moore bound in graph theory. This bound yields the lower
bound D0(n, d) of the diameter of d-regular graphs of order n.

Actually, the diameter diam(Gn,d) of a random d-regular graph Gn,d of order n is known
to be asymptotically “optimal” as n → ∞: It follows from [5] that for fixed d ≥ 3, with high
probability as n → ∞, diam(Gn,d) = (1+ o(1))D0(n, d) = (1+ o(1)) logd−1 n, whereas there
exists a gap diam(Gn,d)−D0(n, d) = Ω(log log n).

In this paper, we investigate the gap diam(Gn,d)−D0(n, d) for d = (β + o(1))nα where
α ∈ (0, 1) and β > 0 are any constants. We show that for such a d, diam(Gn,d) = ⌊α−1⌋+1
with high probability. Our result yields that the gap is 1 if α−1 ∈ N and d ≥ nα, and
is 0 otherwise. The upper bound of diam(Gn,d) follows from the embedding theorem due
to Dudek et al. [7]. We obtain the lower bound of diam(Gn,d) analyzing the shortest path
lengths between fixed vertex pairs.

1 Introduction

The degree/diameter problem is to determine the maximum order of d-regular graphs with
diameter D for given d and D ≥ 2. This is a fundamental problem in graph theory [1, 4, 11, 19].
Since a regular graph often models a network topology (in a network topology, the degree of each
node is limited due to some physical constraints), this problem has an important application to
the designing of network topologies in HPC (High Performance Computing) area [8, 14, 15, 20].

Consider the breadth first search from a fixed vertex on a connected d-regular graph of order
n and diameter D. In the first depth, we visit d new vertices. In the second depth, we visit at
most d(d− 1) new vertices since each of the d vertices we visited in the previous depth have at
most d − 1 unvisited neighbouring vertices, and so on (Figure 1). In the i-th depth, we visit
at most d(d − 1)i−1 new vertices. This procedure continues while i ≤ D. By summing up the
number of visited vertices, we obtain

n ≤ 1 + d
D∑
i=1

(d− 1)i−1. (1)

This upper bound on n is called Moore bound. A d-regular graph of order n and diameter
D is called Moore graph if (1) holds with equality. Moore graphs are very rare: If D = 1,
then Moore graphs are complete graphs. If D = 2, then Moore graphs do not exist unless
(n, d) ∈ {(5, 2), (10, 3), (50, 7), (3250, 57)} and only three Moore graphs are known: (n, d) ∈
{(5, 2), (10, 3), (50, 7)} [1, 11, 19]. The existence of a Moore graph for (n, d,D) = (3250, 57, 2)
is a famous open problem in graph theory. If D ≥ 3, then Moore graphs exist only for (n, d) =
(2D + 1, 2) and are cycles of odd length.
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Figure 1: Breadth first search on a d-regular graph

From (1), one directly obtains a lower bound of the diameter of d-regular graph of order n
for any n and d. That is, every connected d-regular graph of order n has diameter at least

min

{
D ∈ N : n ≤ 1 +

D∑
i=1

d(d− 1)i−1

}
=

{
⌊n2 ⌋ d = 2,⌈
logd−1 n+ logd−1

(
1− 2

d

(
1− 1

n

))⌉
d ≥ 3

Let D0(n, d) denote this lower bound. As Moore graphs exist, D0(n, d) is a tight bound.
Actually, almost all regular graphs have asymptotically “optimal” diameter as the order

n → ∞. To state it more formally, we shall look at a random d-regular graph Gn,d, that is, a
graph selected uniformly at random from the set of all labelled d-regular graphs of order n. Let
diam(Gn,d) denote its diameter (diam(Gn,d) = ∞ if Gn,d is not connected). If the probability
of a random graph G of order n satisfies some graph property P goes to 1 as n → ∞, we say
G satisfies P w.h.p. (with high probability). For n and 1 ≤ d ≤ n− 1 with nd even (nd is even
if d-regular graph of order n exists), Bollobás [2] introduced the following model of Gn,d. Let
U = {1, 2, . . . , nd} denote a set and call an element of U point. Let P1, . . . , Pn ⊆ U denote a
partition of U such that each Pi has exact d points. Since |U | = nd is even, one can generate a
uniformly random perfect matching M on U . Then, by regarding {P1, . . . , Pn} as a vertex set,
M can be seen to form an edge set on the vertex set {P1, . . . , Pn} (i.e. e = {x, y} ∈ M forms
an edge {Pi, Pj} if e connects x and y such that x ∈ Pi and y ∈ Pj). Let Cn,d denote a graph
generated by this procedure. As Cn,d may contain self loops or parallel edges, the probability
that Gn,d satisfies some graph property P is

Pr(Gn,d satisfies P) = Pr(Cn,d satisfies P |Cn,d is simple)

≤
Pr(Cn,d satisfies P)

Pr(Cn,d is simple)
.

Since Pr(Cn,d is simple) → 1 − e−(d2−1)/4 > 0 as n → ∞ if d ≥ 2 is a constant, one can derive
that Pr(Gn,d satisfies P) = o(1) by showing that Pr(Cn,d satisfies P) = o(1). This model is
known as the configuration model.

Our concern is Gn,d with d ≥ 3 since Gn,2 is disconnected w.h.p. and Gn,d is connected
w.h.p. for d ≥ 3. Bollobás and de la Vega [5] proved that for fixed d ≥ 3 and any constant
ϵ > 0,

⌊logd−1 n⌋+
⌊
logd−1

(d− 2) log n

6d

⌋
≤ diam(Gn,d) ≤

⌈
logd−1 n+ logd−1 ((2 + ϵ)d log n)

⌉
w.h.p. by analyzing the number of visited vertices during the breadth first search on a graph
generated by the configuration model. As D0(n, d) = (1 + o(1)) logd−1 n, one obtains

diam(Gn,d) = (1 + o(1))D0(n, d)
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w.h.p. However, as diam(Gn,d) − D0(n, d) = Ω(logd−1 log n) = Ω(log log n) w.h.p., there still
exist a gap if Gn,d is sparse (i.e. d ≥ 3 is a constant).

As for random regular graphs with growing degree (i.e. the degree d = d(n) → ∞ as n → ∞),
it seems difficult to use the configuration model directly since Pr(Cn,d is simple) → 0 as n → ∞.
For such a degree d, different algorithms generating Gn,d were proposed [10, 13, 18, 22]. McKay
and Wormald [18] proposed an efficient algorithm that generates Gn,d uniformly at random for
d = O(n1/3). Their algorithm is based on the switching method that can be used to analyze
Gn,d with d = d(n) → ∞. Since their work, Hamiltonicity [7], connectivity [9], number of
specified subgraph [12, 16, 17] and many other properties of Gn,d with d = ω(1) were shown
via the switching method (see, e.g. [21]). However, to be best of our knowledge, the diameter
is unexplored.

In this paper, we show that if the degree d is such that d = d(n) = (β + o(1))nα for any
constants α ∈ (0, 1) and β > 0, then

diam(Gn,d) = ⌊α−1⌋+ 1 (2)

w.h.p. In other words, we obtain the exact value of diam(Gn,d) for d = (β+ o(1))nα. Note that
by substituting d = βnα to D0(n, d), we obtain

D0(n, d) =

⌈(
1 +O

(
1

nα log n

))
1

α

(
1 +

log β

α log n

)−1

−O

(
1

nα log n

)⌉

→

{
α−1 if α−1 ∈ N and β ≥ 1,

⌊α−1⌋+ 1 otherwise.
(3)

as n → ∞. This can be explained as follows. Suppose d ≥ nα = n
1
D for α−1 = D ∈ N. Then,

n ≤ dD ≈ 1 + d
D∑
i=1

(d− 1)i−1

and from (1), a d-regular graph of order n possibly has diameter D = α−1. Our result indicates
that this possibility is unlikely. In other words, the diameter of almost all dense (i.e. d =
(β+o(1))nα) random regular graphs do not achieve the lower bound D0(n, d) = α−1 if α−1 ∈ N
and d ≥ nα, whereas it achieves the lower bound D0(n, d) = ⌊α−1⌋+ 1 and hence is optimal.

The upper bound of diam(Gn,d) can be easily obtained by combining the embedding theorem
due to Frieze et al. [7] and the result of the diameter of classical random graphs due to Bollobás
[3]. Moreover, for α−1 ̸∈ N, (3) gives

diam(Gn,d) ≥ D0(n, d) → ⌊α−1⌋+ 1

as n → ∞ and with probability 1. This gives the proof of (2) for α−1 ̸∈ N.
The difficult point of the proof of (2) is to show that diam(Gn,d) ≥ ⌊α−1⌋+ 1 for α−1 ∈ N.

Our strategy for this problem is to analyze the shortest path lengths between fixed vertex pairs
via subgraph counting techniques, a common way to analyze the number of specified subgraphs
contained in a random regular graph. Moreover, our analysis presents the asymptotic behavior
of the shortest path length between fixed two vertices in Gn,d for 1 ≪ d ≪ n.

1.1 Formal definitions

For two positive integers x and m with x < m, let (x)m = x(x − 1) · · · (x −m + 1) denote the
falling factorial. For a finite set X and a positive integer m < |X|, let(

X

m

)
:= {{x1, . . . , xm} ⊆ X : |{x1, . . . , xm}| = m},

(X)m :=

{
(x1, . . . , xm) : {x1, . . . , xm} ∈

(
X

m

)}
.
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A graph G = (V,E) is a pair of two finite sets V and E ⊆
(
V
2

)
(note that we only deal with

undirected, simple and labelled graphs). Each element of V is a vertex and each element of E
is an edge. For a graph G, let V (G) denote its vertex set and E(G) denote its edge set. The
order of G is |V (G)|. Throughout this paper, n denotes the order of graphs and vertex set of
any graph of order n is V = {1, 2, . . . , n}. The degree of a vertex v ∈ V is |{e ∈ E : v ∈ e}|. A
graph G is d-regular if its every vertex has degree d.

A path P is a graph (V,E) with V = {v0, . . . , vl} and E = {{v0, v1}, {v1, v2}, . . . , {vl−1, vl}}.
We note that all vertices v0, . . . , vl are distinct. The length of a path P is the number of edges.
The endpoints of a path P are the two vertices in P of degree 1. For a path P with endpoints
s and t, we say P connects s and t. A complete graph Kn is a graph (V,E) with E =

(
V
2

)
and

|V | = n.
For two graphs G and H, we say “H is a subgraph of G” or “G contains H” if V (H) ⊆ V (G)

and E(H) ⊆ E(G). We write “H ⊆ G” if G contains H. Recall that both G and H are labelled
graphs. For two graphs G and H, we denote a graph (V (G) ∪ V (H), E(G) ∪ E(H)) by G ∪H
and a graph (V (G) ∩ V (H), E(G) ∩ E(H)) by G ∩H.

For a graph G and two distinct vertices u, v ∈ V (G), u and v are reachable in G if G contains
a path connecting u and v. We say u and v are reachable if G is clear from the context. For two
reachable vertices u and v, a shortest path between u and v is a path with minimum length that
connects u and v. The distance distG(u, v) is the length of a shortest path between u and v in
G if u and v are reachable. If u and v are not reachable in G, we define distG(u, v) = ∞. The
diameter diam(G) is the maximum distance among all vertex pairs. Note that diam(G) = ∞ if
G contains a vertex pair that is not reachable.

Let d = d(n) ∈ N denote a function on n. In this paper, we consider a graph Gn,d selected
uniformly at random from the set of all d-regular graphs of order n. If nd is odd, then no
d-regular graphs of order n exist and hence we always assume that nd is even.

Throughout this paper, we write f ≪ g rather than f(n) = o(g(n)).
Let Ωn denote the sample space of graphs of order n (e.g. the set of planar graphs of order

n, the set of 3-regular graphs of order n) . Let G denote a graph selected uniformly at random
from Ωn. For some graph property P (e.g. being connected, being planar), we say Ωn satisfies
the property P with high probability (w.h.p.) if the probability of G satisfies P goes to 1 as n
goes to ∞.

1.2 Our contributions (formally stated)

Our main contribution is the following theorem.

Theorem 1. For any constants α ∈ (0, 1) and β > 0, set d = d(n) = (β + o(1))nα. Then,

diam(Gn,d) = ⌊α−1⌋+ 1

w.h.p.

In the proof, we obtain the asymptotic distribution of the length of a shortest path between
two fixed vertices, which might be interesting in its own right. Our proof of Theorem 1 use
this result. Throughout the paper, we denote distGn,d

(u, v) by dist(u, v) if it is clear from the
context.

Theorem 2. Set d = d(n), l = l(n) ∈ N be such that 1 ≪ d ≪ n and l ≪ min(n1/3, n/d).
(i) If (d− 1)l = o(n), then

Pr(dist(s, t) ≤ l) = o(1).

(ii) If (d− 1)l = ω(n), then

Pr(dist(s, t) ≤ l) = 1− o(1).

4



1.3 Related works

Let G(n,m) denote a graph selected uniformly at random from the set of all graphs of order
n and m edges. Intuitively speaking, G(n,m) is a graph of order n having m random edges.
Let G(n, p) denote an Erdős-Rényi graph of order n, a graph obtained by drawing an edge with
probability p ∈ [0, 1] for every vertex pair.

For dense random graphs, Bollobás [3] proved the following two theorems that we shall use
later.

Theorem 3. (Corollary 8(ii) [3]) Suppose the functions l = l(n) ≥ 3 and m = m(n) satisfy

log n

l
− 3 log log n → ∞,

2l−1mln−l−1 − log n → ∞,

2l−2ml−1n−l − log n → −∞

as n → ∞. Then diam(G(n,m)) = l w.h.p.

Theorem 4. (Corollary 7(ii) [3]) Suppose the function m = m(n) <
(
n
2

)
satisfies

m2

n3
− 1

2
log n → ∞

as n → ∞. Then diam(G(n,m)) = 2 w.h.p.

Moreover, Bollobás [4] proved that⌊
log n+ log log n

log d

⌋
≤ diam

(
G

(
n,

nd

2

))
≤
⌈
log n+ log log n+ 1

log d

⌉
w.h.p., for log n ≪ d = d(n) ≤ (log n)4 such that nd

2 ∈ N.
For sparse random graphs, Chung and Lu [6] proved that diam(G(n, p)) = (1 + o(1)) logn

lognp

w.h.p. and some concentration results of the value diam(G(n, p)) with p ≥ c logn
n for various

range of constant c (in their paper, the diameter of a graph is defined to be the maximum
diameter of its connected component).

For random regular graphs Gn,d, as mentioned above, Bollobás and de la Vega [5] proved
that for any fixed d ≥ 3 and ϵ > 0,

⌊logd−1 n⌋+
⌊
logd−1

(d− 2) log n

6d

⌋
≤ diam(Gn,d) ≤

⌈
logd−1 n+ logd−1 ((2 + ϵ)d log n)

⌉
w.h.p. Their theorem indicates that diam(Gn,d) = (1 + o(1)) logd−1 n for fixed d ≥ 3.

As for random d-regular graphs with d = ω(1), the Hamiltonicity [7], the connectivity [21],
the number of specified subgraphs [16, 17, 12] and many other properties are known [21]. Very
recently, Dudek et al. [7, 9] proved that the existence of coupling of G(n,m) and Gn,d such that
G(n,m) ⊆ Gn,d, where m = (1 + o(1))nd2 .

2 Upper bound of diam(Gn,d)

Dudek et al. [7, 9] gave the following useful theorem.

Theorem 5. (Theorem 1 [7]) There is a constant C > 0 such that if for some real γ = γ(n)
and positive integer d = d(n),

C

((
d

n
+

log n

d

)1/3

+
1

n

)
≤ γ < 1, (4)
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and m = (1− γ)nd2 is an integer, then there is a joint distribution of G(n,m) and Gn,d with

lim
n→∞

Pr (G(n,m) ⊆ Gn,d) = 1.

One derive the following corollary directly from Theorem 5.

Corollary 6. Let d and m be as in Theorem 5. If diam(G(n,m)) ≤ l w.h.p. then diam(Gn,d) ≤ l
w.h.p.

For d = (β + o(1))nα where α ∈ (0, 1) and β > 0 are any constants, we derive the upper
bound of the diameter of random d-regular graphs by combining Theorem 3, Theorem 4 and
Corollary 6.

Let γ = γ(n) be such that (4) holds and let m = m(n) = (1 − γ)nd/2 ∈ N. For α ≤ 1
2 ,

l = ⌊α−1⌋+ 1 and m satisfy the conditions of Theorem 3. For α > 1
2 , m satisfies the condition

of Theorem 4. Here, we used the fact that m = m(n) = Θ(n1+α) and ⌊α−1⌋+ 1 > α−1 for any
α ∈ (0, 1). Thus diam(G(n,m)) = l w.h.p. and from Corollary 6, diam(Gn,d) ≤ l = ⌊α−1⌋+ 1.

3 Lower bound of diam(Gn,d)

3.1 Proof outline

In this paper, we analyze the shortest path length between fixed vertex pairs, which yields
Theorem 1 and Theorem 2. We give a proof outline of Theorem 2. Let d = d(n) be such that
1 ≪ d ≪ n and l = l(n) be such that l ≪ min(n1/3, n/d). Fix two vertices s and t and consider
the number Xl of paths of length l connecting s and t. By using subgraph counting techniques,
we show that if (d − 1)l = o(n), then X1 + · · · + Xl = 0 w.h.p., implying dist(s, t) > l w.h.p.
Moreover, we show that if (d− 1)l = ω(n) then X1 + · · ·+Xl > 0 w.h.p., implying dist(s, t) ≤ l
w.h.p.

By using Theorem 2, the proof of Theorem 1 for α ̸∈ N is straightforward. Let d = d(n) =
(β + o(1))nα where α ∈ (0, 1) and β > 0 are any constants. In Section 2, we have shown that
diam(Gn,d) ≤ ⌊α−1⌋ + 1 w.h.p. Hence, it suffices to show that diam(Gn,d) ≥ ⌊α−1⌋ + 1 w.h.p.
For l = ⌈α−1⌉ − 1 < α−1, we have (d− 1)l = o(n). Then, it follows that dist(s, t) ≥ ⌈α−1⌉ from
Theorem 2(i). If α ̸∈ N, then ⌈α−1⌉ = ⌊α−1⌋+ 1 and we are done.

Note that, as mentioned in Section 1, if either α−1 ̸∈ N or d < nα, it follows from (3) that

diam(Gn,d) ≥ D0(n, d) → ⌊α−1⌋+ 1.

This also gives the proof of Theorem 1 for α−1 ̸∈ N (and for the case of both α−1 ∈ N and
d < nα holds).

However, for α−1 ∈ Z, we need a further analysis. In this case, we fix 2k vertices of Gn,d:
S = {s1, . . . , sk} and T = {t1, . . . , tk} with S ∩ T = ∅, where k ∈ N is any fixed constant. In
the previous discussion, we consider only one vertex pair (s, t). But now, we consider k vertex
pairs (s1, t1), . . . , (sk, tk). Let X(i) denote the number of paths of length α−1 ∈ N connecting
si and ti that is contained in Gn,d. By using the subgraph counting technique and the Poisson
approximation theorem, we show that X(1), . . . , X(k) are asymptotically identically independent
Poisson random variables with mean β1/α. Then, we obtain Pr(diam(Gn,d) ≤ α−1) ≤ (1 +

o(1))(1− e−β1/α
)k. Since k can be arbitrary large, it follows that diam(Gn,d) ≥ α−1 +1 w.h.p.

3.2 Subgraph counting technique

In this subsection we introduce the subgraph counting technique that will be used in the proof
of Theorem 2. For l = l(n) ∈ N, we consider the number of paths of length l connecting two
fixed vertices s and t contained in Gn,d. The following theorem due to McKay [16] is useful.
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Theorem 7. (Theorem 2.10 [16]) Let J ⊆ Kn denote a labelled graph and m = |E(J)|. For a
vertex i ∈ V (Kn), let ji denote the number of edges in J that is incident to i.

(i) If m+ 2d2 ≤ nd
2 , then

Pr(J ⊆ Gn,d) ≤
∏n

k=1(d)jk
2m
(
nd
2 − 2d2

)
m

.

(ii) If 2m+ 4d(d+ 1) ≤ nd
2 , then

Pr(J ⊆ Gn,d) ≥
∏n

k=1(d)jk
2m
(
nd
2 − 1

)
m

(
n− 2d− 2

n+ 2d

)m

.

Let l = l(n) ≪ min(n/d,
√
nd) for n and d = d(n). Suppose J is a path of length l.

Then, J satisfies both the conditions of (i) and (ii) in Theorem 7 for sufficiently large n. Let
M = nd

2 − 2d2. From (i),

Pr(J ⊆ Gn,d) ≤
dl+1(d− 1)l−1

2l(M)l

≤ d

d− 1

(
d− 1

n

)l (
1− 4d

n

)−l (
1− l

M

)−l

≤ d

d− 1

(
d− 1

n

)l

exp

(
4dl

n− 4d

)
exp

(
l2

M − l

)
= (1 + o(1))

(
d− 1

n

)l

.

Moreover, from (ii),

Pr(J ⊆ Gn,d) ≥
dl+1(d− 1)l−1

(nd)l

(
n− 2d− 2

n+ 2d

)l

≥ d

d− 1

(
d− 1

n

)l

exp

(
− l(4d+ 2)

n− 2d− 2

)
= (1 + o(1))

(
d− 1

n

)l

.

Here, we use the following fact

1− x ≥ exp

(
− x

1− x

)
for x ∈ [0, 1).

Therefore,

Pr(J ⊆ Gn,d) = (1 + o(1))

(
d− 1

n

)l

. (5)

Especially, for l = o(d),

Pr(J ⊆ Gn,d) = (1 + o(1))

(
d

n

)l (
1− 1

d

)l

= (1 + o(1))

(
d

n

)l

. (6)

As for |J | = O(1), Kim et al. [12] gave the following result.

Theorem 8. (Lemma 2.1 [12]) Let J ⊆ Kn be a fixed graph with |E(J)| = O(1). Then,

Pr(J ⊆ Gn,d) = (1 + o(1))

(
d

n

)|E(J)|
.

7



3.3 Proof of Theorem 2

The goal of this subsection is to prove Theorem 2. For two fixed vertices s, t of Gn,d and l ∈ N,
let P denote the set of paths of length l connecting s and t contained in the complete graph
Kn. For a random d-regular graph Gn,d of order n, let Xl = Xl(Gn,d) denote the number of
paths P ∈ P contained in Gn,d. We prove the following lemma.

Lemma 9. Let d = d(n), l = l(n) ∈ N be such that 1 ≪ d ≪ n and l ≪ min(n1/3, n/d).
(i) If (d− 1)l = o(n), then

Pr(Xl > 0) ≤ E(Xl) = (1 + o(1))
(d− 1)l

n
= o(1).

(ii) If (d− 1)l = ω(n), then

Pr(Xl > 0) = 1− o(1).

Proof. We show (i) by using the first order method (see, e.g. [9]). Let l = l(n) ∈ N be such
that l ≪ min(n1/3, n/d) and (d− 1)l = o(n). Xl can be written as the following.

Xl(Gn,d) =
∑
P∈P

1P⊆Gn,d
, (7)

where

1P⊆Gn,d
=

{
1 if P ⊆ Gn,d

0 otherwise

Note that |P| = (n− 2)l−1 = (1 + o(1))nl−1 since l = o(
√
n). It follows from (5) that

Pr(Xl > 0) ≤ E(Xl)

=
∑
P∈P

Pr(P ⊆ Gn,d)

= (1 + o(1))nl−1

(
d− 1

n

)l

= (1 + o(1))
(d− 1)l

n
= o(1).

We show (ii) by using the second order method (see, e.g. [9]). Let l = l(n) ∈ N be such that
l ≪ min(n1/3, n/d) and (d− 1)l = ω(n). We evaluate the second moment of Xl. From (7),

E((Xl)2) =
∑

(P,Q)∈(P)2

Pr (P ∪Q ⊆ Gn,d) . (8)

First, we give a lower bound of (8) by considering the summation over P,Q ∈ P such that
V (P ) ∩ V (Q) = {s, t}. For such P,Q,

|V (P ∪Q)| = 2l − 2,

|E(P ∪Q)| = 2l

and hence, from Theorem 7,∑
(P,Q)∈(P)2

Pr (P ∪Q ⊆ Gn,d) ≥ (1 + o(1))

(
d− 1

n

)2
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Figure 2: Generate of P ∪Q by identifying m couples of subpath in P and Q.

We give an upper bound of (8). For two different paths P,Q ∈ P, P ∩Q consists of disjoint
paths. Let m = m(P,Q) denote the number of such paths and p = p(P,Q) = |E(P ∩Q)|. Note
that m ≥ 2 since P ̸= Q and s, t ∈ V (P ∩ Q). We transform the summation (8) over (P,Q)
into a summation over (m, p). For fixed m ≥ 2 and p ≥ 0, let

Am,p = {(P,Q) ∈ (P)2 : m(P,Q) = m, p(P,Q) = p}.

Then ∑
(P,Q)∈(P)2

Pr(P ∪Q ⊆ Gn,d) =
∑
m≥2
p≥0

∑
(P,Q)∈Am,p

Pr(P ∪Q ⊆ Gn,d)

=
∑
m≥2
p≥0

|Am,p| · (1 + o(1))

(
d− 1

n

)2l−p

.

since |P ∪Q| = 2l − p.
We evaluate |Am,p| for fixed m and p. First, we count the isomorphic types in P ∪ Q. We

note that our counting technique is based on that in [17]. A graph P ∪ Q can be generated
as follows: Select edge-disjoint m subpaths that are contained in P and do the same for Q
(circulated area in Figure 2). Then, identify each subpaths in P to a path in Q in some way.
The sizes of m subpaths can be varied in at most

(
p+m−1
m−1

)
ways (this is equal to the number

of ways of distributing p unlabelled balls into m labelled boxes). The places of m subpaths
in P are in at most

(
l

m−2

)
ways (this is the same for Q). Note that the place of the subpath

containing either s or t is uniquely determined and hence “m− 2”.
The identification can be determined by the correspondence relation (dotted line in Figure 2)

and the orientation (arrows in Figure 2). The identification correspondence of subpaths can be
selected in at most (m−2)! ways. Moreover, there at at most 2m−2 orientations of each subpath
in Q.

Therefore, the number of isomorphic types of P ∪Q can be bounded from above by(
p+m− 1

m− 1

)(
l

m− 2

)2

(m− 2)!2m−2 ≤ (4l3)m−2(p+ 1)

(m− 2)!

9



since 2 ≤ m ≤ l − 1 and 0 ≤ p ≤ l.
Finally, the number of ways of assigning vertex labels on the graph P ∪Q is at most n2l−p−m

and hence

|Am,p| ≤ n2l−p−m (4l3)m−2(p+ 1)

(m− 2)!
.

Therefore, since l = o(n1/3),

∑
(P,Q)∈(P)2

Pr (P ∪Q ⊆ Gn,d) =
l∑

m=2

l∑
p=0

|Am,p|(1 + o(1))

(
d− 1

n

)2l−p

≤ (1 + o(1))

l∑
m=2

l∑
p=0

(4l3)m−2(p+ 1)

(m− 2)!
n2l−p−m

(
d− 1

n

)2l−p

≤ (1 + o(1))
(d− 1)2l

n2

l−2∑
m=0

1

m!

(
4l3

n

)m l∑
p=0

p+ 1

(d− 1)p

≤ (1 + o(1))
(d− 1)2l

n2
exp

(
4l3

n

)(
1− 1

d− 1

)−2

= (1 + o(1))
(d− 1)2l

n2
.

According to the second moment method,

Pr(Xl = 0) ≤
E(X2

l )

(E(Xl))2
− 1

=
E((Xl)2)

(E(Xl))2
+

1

E(Xl)
− 1

= o(1).

This completes the proof of Lemma 9.

Proof of Theorem 2. Take l and d such that 1 ≪ d ≪ n, l ≪ min(n1/3, n/d). If (d − 1)l =
o(n),

Pr(dist(s, t) ≤ l) ≤ Pr(X1 + · · ·+Xl > 0)

≤
l∑

i=1

E(Xi)

= (1 + o(1))
l∑

i=1

(d− 1)i

n

= o(1)

from Lemma 9.
On the other hand, if (d− 1)l = ω(n),

Pr(dist(s, t) > l) ≤ Pr(Xl = 0) = o(1)

from Lemma 9.
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3.4 Poisson approximation theorem

In this subsection we introduce Poisson approximation theorem (see, e.g. [9, 21]).
Fix k ∈ N. Consider a finite set Ωn index by n ∈ N with some probability measure and

let Ai,j ⊆ Ωn denote an event for some indices i and j. For a random element ω ∈ Ωn, let
Xi(ω) = |{j : ω ∈ Ai,j}| be a random variable. For example, let Ωn denote the set of d-regular

graphs of order n for some fixed d ≥ 3. Let (C
(i)
1 , C

(i)
2 , . . .) be the ordered set of cycles of

length i contained in the complete graph Kn and let Ai,j ⊆ Ωn denote the set of graphs in Ωn

containing the j-th cycle C
(i)
j . Then, for a graph Gn,d ∈ Ωn, Xi(Gn,d) denotes the number of

cycles of length i contained in Gn,d.
Poisson approximation theorem states that Xis are asymptotically independent Poisson

random variables if Xis satisfy some condition [9, 21].

Theorem 10. (Poisson approximation theorem) Fix k ≥ 1 and define Xi (i = 1, . . . , k) as
above. Suppose there exists positive numbers λ1, . . . , λk such that for any positive integers
r1, . . . , rk ∈ N,

lim
n→∞

E

(
k∏

i=1

(X
(n)
i )ri

)
=

k∏
i=1

λri
i .

Then, for any non-negative integers m1, . . . ,mk,

lim
n→∞

Pr(X
(n)
1 = m1, . . . , X

(n)
k = mk) =

k∏
i=1

e−λi
λmi
i

mi!
.

In the example mentioned above, for i = O(1), λi =
(d−1)i

2i and Xi(Gn,d) (the number of
cycles of length i contained in Gn,d) satisfy the condition in Theorem 10 if d ≥ 3 is a constant.
Therefore, for constant d ≥ 3 and i = O(1), Xis are asymptotically independent Poisson random

variables with means λi =
(d−1)i

2i .

3.5 Proof of Theorem 1 for α−1 ∈ N

As mentioned in Section 3.1, Theorem 1 is straightforward from Theorem 2 if α−1 ̸∈ N. So it
remains to prove the case when α−1 ∈ N. It suffices to show that diam(Gn,d) ≥ α−1 + 1.

For any constants α ∈ (0, 1) and β > 0 with α−1 ∈ N, set d = (β + o(1))nα. Let µ =

limn→∞
(d−1)1/α

n = β1/α > 0. Fix k ∈ N, and 2k vertices: S = {s1, . . . , sk} ⊆ V and T =

{t1, . . . , tk} ⊆ V with S ∩ T = ∅. For i = 1, . . . , k, let X(i) = X(i)(Gn,d) denote the number of
paths of length α−1 between si and ti contained in Gn,d.

The following lemma states that X(i)s satisfy the condition of Theorem 10.

Lemma 11. For any fixed non-negative integers r1, . . . , rk,

lim
n→∞

E

(
k∏

i=1

(X(i))ri

)
= µr1+···+rk .

Then, Theorem 10 gives

Pr

(
k∧

i=1

{X(i) > 0}

)
= (1 + o(1))(1− e−µ)k.
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Therefore, we obtain

Pr(diam(Gn,d) ≤ α−1) ≤ Pr

(
k∧

i=1

{dist(si, ti) ≤ α−1}

)

= Pr

(
k∧

i=1

{dist(si, ti) ≤ α−1}, ∃j : dist(sj , tj) < α−1

)
+ Pr

(
k∧

i=1

{dist(si, ti) = α−1}

)

≤
k∑

j=1

Pr(dist(sj , tj) < α−1) + Pr

(
k∧

i=1

{X(i) > 0}

)

= o(1) + Pr

(
k∧

i=1

{X(i) > 0}

)
= (1 + o(1))(1− e−µ)k.

Here, we used the fact dist(si, ti) ≥ α−1 w.h.p., which follows from Theorem 2. Pr(diam(Gn,d) ≤
α−1) can be arbitrary small since k can be arbitrary large (but independent of n). Thus, to
complete the proof of Theorem 1, it remains to prove Lemma 11.

3.6 Proof of Lemma 11

Let Pi denote the set of all paths connecting si and ti of length l = α−1 contained in the
complete graph Kn. Note that |Pi| = (n−2)l−1 = (1+o(1))nl−1 since l = α−1 = O(1). Clearly,
X(i)(Gn,d) = |{P ∈ Pi : P ⊆ Gn,d}|.

Fix non-negative integers k, r1, . . . , rk. Let A = A(r1, · · · , rk) = (P1)r1 × · · · × (Pk)rk . Each
element A ∈ A can be represented as

A = ((P
(1)
1 , . . . , P (1)

r1 ), . . . , (P
(k)
1 , . . . , P (k)

rk
))

where P
(i)
j ∈ Pi is a path connecting si and ti and P

(i)
j ̸= P

(i)
j′ for every j ̸= j′. For such an

A, let A[i][j] = P
(i)
j and union(A) =

∪k
i=1

∪ri
j=1A[i][j]. Let H =

∪
A∈A{(V (union(A)) ∪ S ∪

T, E(union(A)))} be the set of graphs represented by the union of paths. Note that if ri = 0,
every H ∈ H contains isolated (i.e. degree is 0) vertices si and ti.

We consider “isomorphic” types of H having labels only on the endpoints in S ∪ T . Define
an equivalence relation ∼ on H as follows: For two graphs G1, G2 ∈ H, G1 ∼ G2 if there exists
a bijection π : V (G1) → V (G2) satisfying both

• π(x) = x for every x ∈ S ∪ T , and

• {u, v} ∈ E(G1) ⇐⇒ {π(u), π(v)} ∈ E(G2) for every {u, v} ∈
(
V (G1)

2

)
.

Clearly ∼ is an equivalence relation and let H/ ∼ denote the quotient set. In other words, H/ ∼
denotes the set of graphs having labels only on the endpoints in S ∪ T . We write [H] ∈ H/ ∼
as the equivalence class of H ∈ H.

For each i = 1. . . . , k, X(i) can be written as

X(i) = X(i)(G) =
∑
P∈Pi

1P⊆G

12



Figure 3: A graph in [H ′]. Endpoints (black vertices) are labelled and the others (white vertices)
are unlabelled.

and we obtain

E

(
k∏

i=1

(X(i))ri

)
=
∑
A∈A

Pr(union(A) ⊆ Gn,d)

=
∑
H∈H

|{A ∈ A : union(A) = H}| · Pr(H ⊆ Gn,d)

=
∑

[H]∈H/∼

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d). (9)

Let vH = |V (H)\(S ∪ T ))| = |V (H)| − 2k and eH = |E(H)| for H ∈ H. In other words, vH
denotes the number of unlabelled vertices of H.

Lemma 12. For every [H] ∈ H/ ∼, the following statements hold:

(i). |[H]| = (n− 2k)vH = (1 + o(1))nvH ,

(ii). |{A ∈ A : union(A) = H}| ≤ v
(r1+···+rk)(l−1)
H = O(1),

(iii). Pr(H ⊆ Gn,d) = (1 + o(1))
(
d−1
n

)eH = (1 + o(1))
(
d
n

)eH ,
(iv). |H/ ∼ | ≤ 2(r1+···+rk)l = O(1).

Proof. The statement (i) can be checked by counting the number of vertex label assignments for
[H] (we have vH unlabelled vertices in [H]). The statement (ii) can be checked by considering
assigning labels of given H to each path that compose H. The statement (iii) follows from
Theorem 8. The statement (iv) is bounding the number of |H/ ∼ | from above by the number
of labelled graphs of order at most (r1 + · · ·+ rk)l), that is O(1).

Let H′ = {H ∈ H : vH = (r1 + · · · + rk)(l − 1), eH = (r1 + · · · + rk)l}. Every graph in
H′ consists of disjoint paths (except for the endpoints), as shown in Figure 3. For any fixed
H ′ ∈ H′, |{A ∈ A : union(A) = H ′}| = 1 and |H′/ ∼ | = 1. Therefore, the summation (9) over

13



H′/ ∼ will be∑
[H]∈H′/∼

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d) = (1 + o(1))n(r1+···+rk)(l−1)

(
d

n

)(r1+···+rk)l

= (1 + o(1))µr1+···+rk .

On the other hand, we can show that the summation (9) over (H/ ∼)\(H′/ ∼) is o(1) by
using the following lemma.

Lemma 13. Fix any k, r1, . . . , rk and define H and H′ as above. For every H ∈ H,

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d) = O(1).

Moreover, for every H ∈ H\H′,

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d) = o(1).

Proof. From the statements in Lemma 12,

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d) = O(1) · nvH · Pr(H ⊆ Gn,d)

= O

(
nvH

(
d

n

)eH
)
.

For H ∈ H′,

nvH

(
d

n

)eH

= (1 + o(1))µr1+···+rk = O(1)

from the argument above.
Therefore, it is sufficient to show that

nvH

(
d

n

)eH

= o(1)

for H ∈ H\H′. We show this by the induction on R := r1 + · · · + rk. When R ≤ 1 then
H\H′ = ∅ and the lemma holds.

Set R ≥ 2. From the argument above,

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d) = (1 + o(1))µR = O(1)

for H ∈ H′. For H ∈ H\H′, we can write H = union(A) = H0 ∪ P where P is a path appeared
in A ∈ A and H0 = union(A′) and A′ is obtained by deleting P from A. Then,

vH = |V (H0 ∪ P )| − 2k = vH0 + (l + 1)− |V (H0 ∩ P )|,
eH = |E(H0 ∪ P )| = eH0 + l − |E(H0 ∩ P )|.

Therefore,

nvH

(
d

n

)eH

= nvH0

(
d

n

)eH0

· nl+1−|V (H0∩P )|
(
d

n

)l−|E(H0∩P )|

= O(1) · d−|E(H0∩P )|n|E(H0∩P )|+2−|V (H0∩P )|.

Here, we use the induction assumption for H0 and the fact that dl = (1 + o(1))(β · nα)1/α =
O(1) · n. Now, consider a graph H0 ∩ P . This graph consists of several paths and the number
m of such paths is m = |V (H0 ∩ P )| − |E(H0 ∩ P )|. Hence

nvH

(
d

n

)eH

= O(1) · d−|E(H0∩P )|n2−m.
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Figure 4: Decomposition of H ∈ H\H′ into H0 and P such that either H0∩P has at least three
connected components or |E(H0 ∩ P )| > 0. Circulated area denotes H0 ∩ P .
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If P ⊆ H0 then the statement holds for H = H0 from the induction assumption. Hence we may
assume that P ̸⊆ H0.

Since H ∈ H\H′ and P ̸⊂ H0, one can take H0 and P such that either |E(H0 ∩ P )| > 0 or
m > 2 (see Figure 4). Therefore,

nvH

(
d

n

)eH

= o(1)

for H ∈ H\H′.

Proof of Lemma 11. The summation over (H/ ∼)\(H′/ ∼) of (9) has at most |H/ ∼ | = O(1)
terms from Lemma 12(iv) and each of these terms is o(1) from Lemma 13. Finally, we obtain

E

(
k∏

i=1

(X(i))ri

)
=

∑
[H]∈(H/∼)\(H′/∼)

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d)

+
∑

[H]∈H′/∼

|{A ∈ A : union(A) = H}| · |[H]| · Pr(H ⊆ Gn,d)

= O(1) · o(1) + (1 + o(1))µr1+···+rk

= (1 + o(1))µr1+···+rk .

This also completes the proof of Theorem 1.
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