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Abstract

This paper investigates the average distance of two types of homogeneous random graphs
(i.e. random graphs where all the vertices are equivalent in the definition) : an Erdős-Rényi
graph G(n, p) and a random d-regular graph Gn,d. It is widely known that AD(G(n, p)) =
(1 + o(1)) diam(G(n, p)) = (1 + o(1)) log n/ log np holds w.h.p. (with high probability) if
n−1 < p = n−1+o(1), where AD(G(n, p)) and diam(G(n, p)) are the average distance, and
respectively, the diameter of G(n, p). A similar result holds for Gn,d with 3 ≤ d = O(1); one
can easily obtain that (1 − o(1)) logd−1 n ≤ AD(Gn,d) ≤ diam(Gn,d) = (1 + o(1)) logd−1 n
holds w.h.p. from Bollobás and de la Vega (1982).

In this paper, we prove that for p = (β + o(1))n−1+α where α ∈ (0, 1) and β > 0
are arbitrary constants, AD(G(n, p)) is asymptotically concentrated on α−1 + exp(−β1/α)
if α ∈ N, and on ⌈α−1⌉ otherwise. Moreover, we prove that the same concentration result
holds for Gn,d with d = (β + o(1))nα. The result is consistent with an analytical result
due to Katzav et al. (2015) in which they did not present a rigorous proof. Our result
demonstrates a phase transition of AD(G(n, p)) (and AD(Gn,d)) between α−1 ∈ N and
α−1 ̸∈ N. In particular, an asymptotic gap between the average distance and the diameter
can be seen from our result if α−1 ∈ N, whereas such a gap does not appear if α−1 ̸∈ N.
Furthermore, one can observe that the parameter p = βn−1+α with α−1 ∈ N is on a critical
phase of the phase transition.

1 Introduction

The average distance is a principal measure of a graph and plays an important role in net-
work analysis. Since typical real-world networks contain “hub”s and reveal power-law de-
gree distribution, the average distance of inhomogeneous random graphs has been fairly ex-
plored [6, 7, 17, 21, 22]. On the other hand, the average distance of homogeneous random
graphs has attracted a great deal of attention recently [1, 11, 13, 17, 19, 20]. In particular,
regular graphs with low average distance guarantee efficient network topologies in HPC (High
Performance Computing) area, where random regular graphs have been considered to perform
well in the sense of low latency and fault tolerance [11, 19, 20].

It is widely accepted by random graph theorists that the average distance of “sparse” ho-
mogeneous random graphs is with high probability (w.h.p.) the same as the diameter up to a
factor 1 + o(1) [7, 9]. The following explanation provides an intuitive reasoning. Let G be a
sparse homogeneous random graph and assume that G is connected. Consider a breadth first
search on G starting from a fixed vertex. Let ni be the number of vertices we visit in the
ith depth for the first time during the search. All the vertices are equivalent because of the
homogeneousness; and thus every degree of G tends to take one typical value d̃. Therefore, we
obtain ni ≈ d̃(d̃ − 1)i−1 ≈ d̃ i (one might be concerned with the duplication of edges, which
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occurs unlikely because G is sparse). Thus, the average distance of G is likely to be

AD(G) ≈ (n− 1)−1
diam(G)∑

i=1

i · ni

≈ (n− 1)−1
diam(G)∑

i=1

i · d̃i

≈ diam(G).

This paper deals with two types of homogeneous random graphs: an Erdős-Rényi graph
G(n, p) and a random regular graph Gn,d. Chung and Lu [7] investigated the average distance
of a graph generated by the expected degree model, a typical inhomogeneous random graph
model that contains the Erdős-Rényi model as a special case. It follows from [7] that the av-
erage distance of G(n, p) is AD(G(n, p)) = (1 + o(1)) log n/ log np w.h.p. if its mean degree np
satisfies 1 < np = no(1). According to [9], the diameter of such G(n, p) is diam(G(n, p)) = (1 +
o(1)) log n/ log np w.h.p. Therefore, one can observe that AD(G(n, p)) = (1+o(1)) diam(G(n, p))
w.h.p. if 1 < np = no(1).

As for random d-regular graphs, we can evaluate the average distance as follows. Suppose
that we have a connected d-regular graph of order n and diameter D with d ≥ 3. Consider a
breadth first search from a fixed vertex. In the ith depth, one visits at most d(d−1)i−1 vertices.
In other words, the number of vertices at distance exact i from the origin vertex is at most
d(d− 1)i−1 for each i = 1, . . . , D. By summing up over i, we obtain

n ≤ 1 +
D∑

i=1

d(d− 1)i−1.

This upper bound on n is known as the Moore bound in graph theory [15], which immediately
implies the following lower bound D0 on the diameter of any d-regular graph of order n.

D0 = min

{
D ∈ N : n ≤ 1 +

D∑

i=1

d(d− 1)i−1

}

=

⌈
logd−1 n+ logd−1

(
1− 2

d

(
1− 1

n

))⌉
. (1)

Similarly, one can derive the following lower bound AD0 on the average distance of any d-regular
graph of order n.

AD0 =
1

n− 1

(
D0−1∑

i=1

i · d(d− 1)i−1 +D0

(
n− 1−

D0−1∑

i=1

d(d− 1)i−1

))

= D0 −
d(d− 1)D0

(n− 1)(d− 2)2
+

dD0

(n− 1)(d− 2)
+

d

(n− 1)(d− 2)2
. (2)

It should be noted that the bounds (1) and (2) are tight (consider the Petersen graph). A
simple calculation yields

D0 = logd−1 n+O(1),

AD0 = D0 −O(1) = logd−1 n+O(1)

for any d = d(n) ≥ 3. According to [5], diam(Gn,d) = (1 + o(1)) log n/ log(d − 1) holds w.h.p.
for fixed d ≥ 3 (note that Gn,d is not connected w.h.p. if d ≤ 2). Therefore, we have

log n

log(d− 1)
−O(1) = AD0 ≤ AD(Gn,d) ≤ diam(Gn,d) = (1 + o(1))

log n

log(d− 1)
,
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which yields that AD(Gn,d) = (1 + o(1)) log n/ log(d− 1) holds w.h.p. for fixed d ≥ 3.
For d such that d = ω(1) and d = no(1), diam(Gn,d) has not been known explicitly. However,

one would derive that

AD(Gn,d) = (1 + o(1))diam(Gn,d)

= (1 + o(1))
log n

log d

holds w.h.p. for degree d with d = ω(log n) and d = no(1) by combining the breadth first search
argument mentioned above and the embedding theorem due to Dudek et al. [8, 10]. Intuitively
speaking, the embedding theorem states the existence of a coupling (i.e. joint distribution)
of G(n, p) and Gn,d such that d = (1 + o(1))np and G(n, p) ⊆ Gn,d hold for degree d with
d = ω(log n) and d = no(1). As AD(G(n, p)) ≤ log n/ log np + o(1) w.h.p., so does Gn,d.
The proof of our result on AD(Gn,d) also adopts the argument using the embedding theorem.
On the other hand, for d = no(1), the lower bound (2) implies that AD(Gn,d) ≥ AD0 =
(1 + o(1)) log n/ log d holds w.h.p. Therefore, we have AD(Gn,d) = (1 + o(1)) log n/ log d for
d = ω(log n) and d = no(1).

In summary, the average distance is almost equal to the diameter for homogeneous random
graphs of mean degree no(1). On the other hand, the average distance of “dense” homoge-
neous random graphs (i.e. ones with mean degree nΩ(1)) is much less understood, though it is
theoretically interesting in its own right as we shall present. It follows from Bollobás [3] that
diam(G(n, p)) = ⌊α−1⌋+ 1 holds w.h.p. for p = (β + o(1))n−1+α. The author [18] proved that
diam(Gn,d) = ⌊α−1⌋ + 1 holds w.h.p. for d = (β + o(1))nα. Therefore, the diameter of dense
homogeneous random graphs is asymptotically bounded (to O(1)) as well as the average dis-
tance, while that of sparse (i.e. mean degree is no(1)) ones are not. In this paper, we prove that
for p = (β + o(1))n−1+α with arbitrary constants α ∈ (0, 1) and β > 0, AD(G(n, p)) is asymp-
totically concentrated on α−1 + exp(−β1/α) if α−1 ∈ N, and on ⌈α−1⌉ otherwise. Moreover, we
prove that the same concentration result holds for a random d-regular graph Gn,d of order n
and degree d = np = (β + o(1))nα. Actually, a variety of analytical approaches to “compute”
the distance distribution of random graphs have been established in the literature of network
analysis. These results are in good agreement with numerical experiments, though it usually
lacks in mathematical rigor [1, 13, 17]. Katzav et al. [13] and Nitzan et al. [17] presented the
analytical results (but without a rigorous proof) of the average distance of our target random
graphs, which are consistent with our result. The details will be mentioned in Section 1.3.

One can see from our result that there exists a gap 1 − exp(−β1/α) between the diameter
and the average distance if α−1 ∈ N, while there does not if α−1 ̸∈ N. Figure 1 gives a brief
explanation for a possible factor of the gap based on the behaviors of the lower bounds D0 and
AD0.

Fix α−1 ∈ N. The limit of β → 0 establishes AD → α−1 +1, while β → ∞ does AD → α−1.
Therefore, the parameter p = βn−1+α is on a critical phase of the phase transition between
AD(G(n, p)) = α−1 and AD(G(n, p)) = α−1 + 1 (see Figure 2).

1.1 Formal definition

For a finite set X and a positive integer m with 0 < m ≤ |X|, we use
(
X

m

)
= {{x1, . . . , xm} : |{x1, . . . , xm}| = m} ,

(X)m =

{
(x1, . . . , xm) : {x1, . . . , xm} ∈

(
X

m

)}
.

A graph G = (V,E) is a pair of finite sets V and E ⊆
(V
2

)
. We deal with only undirected

simple graphs. Each element v ∈ V is called a vertex and e ∈ E an edge of G. For a graph G,

3



D0

AD0

n ⇡ (d� 1)D

n

Figure 1: D0 and AD0 are plotted with fixed d = 5. The horizontal axes is for the order n.
The gap D0−AD0 gets increment suddenly at “jumping” points, where D0 increases by 1. The
bound (1) indicates that n ≈ (d − 1)D ⇐⇒ d ≈ nα holds at the “jumping” points, where
D = α−1 ∈ N. Hence, the point α−1 ∈ N captures the “jumping” points; and thus we observe
the gap of the diameter and the average distance at α−1 ∈ N (note that the explanation here
only looks at the lower bounds D0 and AD0, which lacks in mathematical rigor).

↵�1

lim
n!1

diam

1 2
↵�1

1 2

lim
n!1

AD

� ! 0

� ! 1

↵�1
+ exp(��1/↵

)

(a)

↵�1

lim
n!1

diam

1 2

(b)

Figure 2: The asymptotic value of (a) AD(G(n, p)) and (b) diam(G(n, p)) for p = βn−1+α. The
plot (a) illustrates the critical phase of the average distance for fixed α−1 ∈ N.

4



we denote by V (G) and E(G), respectively, the vertex set and the edge set of G. The order of
a graph is the number of vertices. Throughout the paper, we refer to n as the order of a graph
and the vertex set is denoted by V = {1, . . . , n}. Note that our graphs are labelled, that is, all
the vertices of a graph are distinguishable. For a graph G, the degree of a vertex v ∈ V (G) is
|{e ∈ E(G) : v ∈ e}|. A graph G is d-regular if each vertex has degree exact d.

For two graphs G and H, we say G contains H if V (H) ⊆ V (G) and E(H) ⊆ E(G). We
write “H ⊆ G ” if G contains G. Two graphs G ∪H and G ∩H are defined as

G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)),

G ∩H = (V (G) ∩ V (H), E(G) ∩ E(H)).

It should be noted that G and H are labelled.
A path is a graph P = ({v0, . . . , vl}, {{v0, v1}, . . . , {vl−1, vl}} ) where v0, . . . , vl are distinct

vertices. For such a path P , the vertices v0 and vl are called endpoints. We refer st-path to a
path of endpoints s and t. The length of a path is the number of edges. For a graph G and its
two distinct vertices s and t, the distance distG(s, t) is the minimum among the length of all
st-paths contained in G. We define distG(s, t) = |V (G)| if G does not contain an st-path. For
a graph G = (V,E) of order n, the average distance AD(G) of G is

AD(G) =

(
n

2

)−1 ∑

{s,t}∈(V2)

distG(s, t).

Throughout the paper, the diameter diam(G) of G is

diam(G) =

{
maxs ̸=t distG(s, t) if G is connected,

∞ otherwise.

We refer dist(s, t) to distG(s, t) if it is clear from the context.
The present definition of diam(G) above follows from [3, 18]. Our definition of distG(s, t)

is due to some technical reason. If we define distG(s, t) = ∞ for unreachable vertex pair (s, t),
then the expected value of distG(n,p)(s, t) and AD(G(n, p)) do not exist (they will be infinity),
where our proof turns out to be invalid. Note that our random graphs are so dense that they
are connected w.h.p. Therefore, the definition of AD(G) captures the usual concept of average
distance in this paper.

An Erdős-Rényi graph is a graph G(n, p) of order n, where each vertex pair is connected
with probability p and independently to all other pairs. A random d-regular graph Gn,d is a
graph selected uniformly at random from the set of all labelled d-regular graphs of order n
(where nd is even). Throughout the paper, p = p(n) ∈ [0, 1] and d = d(n) ∈ N can be functions
of n ∈ N.

Let Gn be a random graph of order n (either G(n, p) or Gn,d throughout the paper) and P
be a graph property (e.g., being connected, being planar). We say P holds with high probability
(w.h.p.) if limn→∞ Pr(Gn satisfies P) = 1.

1.2 Main result

Theorem 1. Suppose p = (β + o(1))n−1+α ∈ [0, 1] where α ∈ (0, 1) and β > 0 are arbitrary
constants and let

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
⌈α−1⌉ otherwise

be a constant.
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Then for every ϵ > 0,

lim
n→∞

Pr(|AD(G(n, p))− µ| > ϵ) = 0.

In other words, it holds w.h.p. that

AD(G(n, p)) = µ+ o(1).

The following result states that one can replace G(n, p) by Gn,d with d = np as follows.

Theorem 2. Suppose d = (β+ o(1))nα ∈ N where α ∈ (0, 1) and β > 0 are arbitrary constants
and let

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
⌈α−1⌉ otherwise.

be a constant.
Then for every ϵ > 0,

lim
n→∞

Pr(|AD(Gn,d)− µ| > ϵ) = 0.

In other words, it holds w.h.p. that

AD(Gn,d) = µ+ o(1).

As illustrated in Figure 2, our result implies that AD(G(n, p)) is on the critical phase for
p = (β + o(1))n−1+α with α−1 ∈ N. To see this, fix α ∈ (0, 1) be such that α−1 ∈ N. From
Theorem 1, it holds w.h.p. that

AD(G(n, p)) →
{
α−1 + o(1) if β → ∞,

α−1 + 1 + o(1) if β → 0,

which reveal the critical phase between AD = α−1 and AD = α−1 + 1. This observation leads
us to the following corollary.

Corollary 3. Suppose p = βn · n−1+α ∈ [0, 1] where α ∈ (0, 1) is an arbitrary constant and βn
satisfies | log(βn)| = o(log n) (i.e. n−o(1) ≤ βn ≤ no(1)).

(i) If α−1 ̸∈ N, it holds w.h.p. that

AD(G(n, p)) = ⌈α−1⌉+ o(1).

(ii) If α−1 ∈ N, it holds w.h.p. that

AD(G(n, p)) =

⎧
⎪⎨

⎪⎩

α−1 + 1 + o(1) if βn → 0,

α−1 + exp(−β1/α) + o(1) if βn → β,

α−1 + o(1) if βn → ∞,

where β > 0 is an arbitrary constant.
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1.3 Related work

As mentioned earlier, the average distance is the same as the diameter up to a factor 1 + o(1)
w.h.p. if the homogeneous random graph is so sparse that its mean degree is no(1). However, as
shown in Section 1.2, this is not the case if the random graph is so dense that its mean degree
is nΩ(1). Such random graphs have asymptotically bounded diameter as well as the average
distance w.h.p. [3, 18]. In this paper, we consider G(n, p) and Gn,d with np = (β + o(1))nα,
d = (β + o(1))nα.

Katzav et al. [13] presented an analytical approach to compute the distance distribution
of G(n, p) with p = βn−1+α approximately. They consider the distance between two random
vertices i, j of such G(n, p) and derived that if α−1 ∈ N,

Pr(dist(i, j) = k) ≈

⎧
⎪⎨

⎪⎩

1− exp(−β1/α) if k = α−1,

exp(−β1/α) if k = α−1 + 1,

0 otherwise

holds as n → ∞. Moreover, they also presented the concentration of the average distance,
which is in consistent with our result. Note that the results are derived from calculations based
on “heuristic” assumptions, though they are in good agreement with the numerical experiment
result.

Nitzan et al. [17] investigates the distance distribution of a graph generated by configuration
model, a common model for inhomogeneous random graphs. The configuration model C(d)
with given degree sequence d = (di)ni=1 is a graph generated as follows. We assume that di ∈ N
and

∑
i di is even. Consider a finite set U of cardinality

∑
i di and let (Pi)ni=1 be a partition of

U such that |Pi| = di for each i = 1, . . . , n (i.e.
⋃

i Pi = U and Pi ∩ Pj = ∅ for every i ̸= j).
As
∑

i di is even, one can generate a uniformly random matching on U , which we denoted by
M . The matching M can be regarded to form edges of a graph whose vertex set is {1, . . . , n}
(i.e. a pair ij ∈ M forms an edge {x, y} if i ∈ Px and j ∈ Py) hold. Let C(d) denote a graph
generated by this procedure. Note that C(d) may contain self loops or multiple edges, which
hardly affects the distance property such as the diameter. The analytical result due to Nitzan et
al. [17] is similar to that in [13]. It can be expected from (46) in [17] that the average distance
of C(d) is α−1 + exp(−β1/α) for di = (β + o(1))nα with α−1 ∈ N, which is consistent with
Theorem 2. However, C(d) differs from Gn,d because C(d) may contain self loops or multiple
edges.

We now explain a brief background of random regular graph theorem related to this paper.
The configuration model can be applied to analyze random d-regular graphs Gn,d by setting
di = d for each i = 1, . . . , n. For a graph property P, one can see

Pr(Gn,d satisfies P) = Pr(C(d) satisfies P |C(d) is simple)

=
Pr(C(d) satisfies P ∧ C(d) is simple)

Pr(C(d) is simple)

≤ Pr(C(d) satisfies P)

Pr(C(d) is simple)
.

Bollobás [2] proved that, for 3 ≤ d = O(1),

lim
n→∞

Pr(C(d) is simple) = 1− exp

(
−(d− 1)2

4

)
> 0

as n → ∞. Therefore, in order to prove that Gn,d does not satisfy P w.h.p., it suffices to show
Pr(C(d) satisfies P) = o(1). The asymptotic behavior of the diameter [5], the connectivity [10]
and several other properties of Gn,d are obtained via the analysis of configuration models for
fixed d ≥ 3. See [16] for details.
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As for Gn,d with growing degree d = d(n) = ω(1), it seems difficult to apply the configuration
model argument directly because Pr(C(d) is simple) = o(1). However, it has recently been
noticed that Gn,d and G(n, p) are “similar” if d = np = ω(log n). Haber and Krivelevich [12]
proved that Gn,d and G(n, p) are “equivalent” in the sense of first order logic property for
p = n−α and d = (1 + o(1))n1−α for an irrational α ∈ (0, 1). More precisely, they proved that

lim
n→∞

Pr(G(n, p) satisfies A) = lim
n→∞

Pr(Gn,d satisfies A)

holds where A is any property that can be captured by a first order logic sentence. Kim
and Vu [14] conjectured the existence of a coupling of G(n, p′), Gn,d and G(n, p) such that
G(n, p′) ⊆ Gn,d ⊆ G(n, p) with p′ = (1 − o(1)) d/n and p = (1 + o(1)) d/n for d = ω(log n). In
other words, the conjecture asserts that Gn,d can be “approximated” by G(n, p) with d = np
if d = ω(log n). Dudek et al. [8] proved the embedding theorem, which states the existence of
coupling of G(n, p) and Gn,d such that G(n, p) ⊆ Gn,d for d = (1 + o(1))np, d = ω(log n) and
d = o(n). By using several results concerning to the similarity, one might analyze Gn,d by
considering G(n, p) with p = (1 + o(1) d/n. The author [18] investigated the the diameter of
Gn,d with d = (β + o(1))nα by using the embedding theorem [8, 10]. However, to the best of
our knowledge, AD(Gn,d) and AD(G(n, p)) for d = (1 + o(1))np = (β + o(1))nα is unexplored.
Our result adds an evidence to the “similarity” of G(n, d/n) and Gn,d for d = (β + o(1))nα.

1.4 Proof outline

The average distance AD(G) of a graph G = (V,E) can be rewritten as

AD(G) = E
s,t
(distG(s, t))

=
n∑

l=1

Pr
s,t

(distG(s, t) ≥ l)

=

(
n

2

)−1 n∑

l=1

∑

{s,t}∈(V2)
[ distG(s,t)≥l ](G), (3)

where [X](G) is the indicator defined as

[X](G) =

{
1 if G satisfies the property X,

0 otherwise.

Note that the expectation Es,t(·) and the probability Prs,t(·) are concerned with a random

vertex pair {s, t} ∈
(V
2

)
.

For two constants α ∈ (0, 1) and β > 0, set

µ =

{
⌈α−1⌉ if α−1 ̸∈ N,
α−1 + exp(−β1/α) if α−1 ∈ N.

Fix ϵ > 0. Let G be an Erdős-Rényi graph G(n, p) and AD = AD(G(n, p)) be a random variable.
Then, from the Markov inequality, we have

Pr(|AD− µ| > ϵ) = Pr((AD− µ)2 > ϵ2)

≤ E(AD2)− 2µE(AD) + µ2

ϵ2
.

Therefore, it suffices to show E(AD) = µ+ o(1) and E(AD2) = µ2 + o(1) to prove Theorem 1.
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From the expression (3) of AD, we see

E(AD) =

(
n

2

)−1 n∑

l=1

∑

{s,t}∈(V2)

Pr(dist(s, t) ≥ l),

E(AD2) =

(
n

2

)−2 n∑

l,l′=1

∑

{s,t}, {s′,t′}∈(V2)

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′).

We now go on to the evaluation of the expectations above. The random variable dist(s, t) =
distG(n,p)(s, t) denoting the distance is considered, where s and t are fixed vertices. We will
show that the random variable w.h.p. satisfies

⌈α−1⌉ ≤ dist(s, t) ≤ ⌊α−1⌋+ 1.

The proof of “⌈α−1⌉ ≤ dist(s, t)” is based on the first order method, a typical proof technique
known in random graph theory (see, e.g., [4, 10]). The statement “dist(s, t) ≤ ⌊α−1⌋+1” follows
from the proof of Theorem 7.1 in [10].

Suppose α−1 ̸∈ N. Then, dist(s, t) = ⌊α−1⌋ + 1 = ⌈α−1⌉ holds w.h.p. Actually, the
probability Pr(dist(s, t) > ⌊α−1⌋+ 1) is O(n−3), and thus we have

Pr(dist(s, t) ≥ l) =

{
1− o(1) if l ≤ ⌈α−1⌉,
O(n−3) otherwise,

which implies

E(AD) = ⌈α−1⌉+ o(1) = µ+ o(1).

Moreover, for fixed {s, t}, {s′, t′} ∈
(V
2

)
with {s, t} ∩ {s′, t′} = ∅, it holds that

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′) =

{
1− o(1) if l ≤ ⌈α−1⌉ and l′ ≤ ⌈α−1⌉,
O(n−3) otherwise.

These facts implies that E(AD2) = ⌈α−1⌉2 + o(1) = µ2 + o(1) holds, which completes the proof
of Theorem 1 in the case where α−1 ̸∈ N.

Suppose α−1 ∈ N. Then dist(s, t) ∈ {α−1, α−1+1} holds w.h.p. as α−1 = ⌈α−1⌉ ≤
dist(s, t) ≤ ⌊α−1⌋ + 1 = α−1 + 1 holds w.h.p. Let X be the number of st-paths of length α−1

contained in G(n, p). Then it holds that

Pr(dist(s, t) = α−1 + 1) = Pr(X = 0) + o(1).

An argument similar to the one presented in [5] renders that the random variable X is asymp-
totically Poisson distributed of mean β1/α, which yields

Pr(dist(s, t) = α−1 + 1) = Pr(X = 0) + o(1) = exp(−β1/α) + o(1).

Therefore, we have

E(AD) = α−1 + exp(−β1/α) + o(1) = µ+ o(1).

Fix two pairs {s1, t1}, {s2, t2} ∈
(V
2

)
with {s1, t1} ∩ {s2, t2} = ∅. Let X(i) be the number of

siti-paths and of length α−1 contained in G(n, p). Actually, it holds that the joint distribution
of X(1) and X(2) tends to be that of two independent and identical Poisson random variables
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of mean β1/α. The proof of this fact is done by carrying over Lemma 3.2 in [18], which states
that the same result holds for Gn,d, into G(n, p) with p = d/n. The fact implies

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− o(1) if l ≤ α−1 and l′ ≤ α−1,

exp(−β1/α) if l < l′ = α−1 + 1 (and vice versa),

exp(−2β1/α) if l = l′ = α−1,

O(n−3) otherwise,

and thus, we obtain

E(AD2) = (α−1 + exp(−β1/α))2 + o(1) = µ2 + o(1),

which completes the proof of Theorem 1.
Indeed, the argument described above requires Pr(dist(s, t) > ⌊α−1⌋ + 1) to be so small

that the expected value E(AD) converges. For G(n, p), it can be shown that Pr(dist(s, t) >
⌊α−1⌋+ 1) = O(n−3) holds, which the probability is small enough for our proof. On the other
hand, it seems to be difficult to prove the same result for Gn,d. However, we can obtain

AD(Gn,d) ≥ µ− o(1)

holds w.h.p. by evaluating E(AD(Gn,d)) and E(AD(Gn,d)2) using (3). Thus, it suffices to show
that AD ≤ µ + o(1) holds w.h.p. To this end, we use the embedding theorem due to Dudek et
al. [8, 10].

Theorem 4 ([8], Theorem 1). There is a constant C > 0 such that if for some real γ = γ(n)
and positive integer d = d(n),

C

((
d

n
+

log n

d

)1/3

+
1

n

)
≤ γ < 1,

and m = (1− γ)nd2 is an integer, then there exists a joint distribution of G(n,m) and Gn,d with

lim
n→∞

Pr (G(n,m) ⊆ Gn,d) = 1.

We have the following corollary immediately from Theorem 4.

Corollary 5. Let d and m be as described in Theorem 4 with d = ω(log n) and d = o(n). If
AD(G(n,m)) ≤ A holds w.h.p. then AD(Gn,d) ≤ A holds w.h.p.

As noted in [8], one can replace G(n,m) by G(n, p) with p = (1 − 2γ) d
n−1 . For d =

(β + o(1))nα with α−1 ∈ N, one can take γ described in Theorem 4 such that γ = o(1) and let
p = (1− 2γ) d

n−1 = (β + o(1))n−1+α be a function. Then we obtain that

AD(Gn,d) ≤ AD(G(n, p)) = α−1 + exp(−β1/α) + o(1) (4)

holds w.h.p.
Intuitively speaking, the embedding theorem states the existance of a coupling of Gn,d and

G(n, p) such that d = (1 + o(1))np and G(n, p) ⊆ Gn,d hold w.h.p. As AD(G(n, p)) ≤ µ+ o(1)
holds w.h.p., so does Gn,d. This completes the proof of Theorem 2.
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2 Average distance of dense Erdős-Rényi graphs

Proof of Theorem 1. Set p = (β + o(1))n−1+α and

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
⌈α−1⌉ otherwise,

where α ∈ (0, 1) and β > 0 are arbitrary constants. If E(AD2) < ∞ exists, we have

Pr(|AD− µ| > ϵ) = Pr((AD− µ)2 > ϵ2)

≤ E(AD2)− 2µE(AD) + µ2

ϵ2
. (5)

Remark that the expectation E(·) and probability Pr(·) are concerned with G(n, p). From (5),
it suffices to show that E(AD) = µ+ o(1) and E(AD2) = µ2 + o(1) hold.

As mentioned in Section 1.4, we have

AD(G) =

(
n

2

)−1 n∑

l=1

∑

{s,t}∈(V2)
[ dist(s,t)≥l ](G),

AD(G)2 =

(
n

2

)−2 n∑

l,l′=1

∑

{s,t}, {s′,t′}∈(V2)
[ dist(s,t)≥l ∧ dist(s′,t′)≥l′ ](G), (6)

where

[X](G) =

{
1 if G satisfies X,

0 otherwise.

We use the following lemmas as we shall prove later.

Lemma 6. Suppose p = (β + o(1))n−1+α for α ∈ (0, 1) and β > 0 are arbitrary constants. Let
s and t be two fixed distinct vertices. Then it holds w.h.p. that

dist(s, t) ≥ ⌈α−1⌉.

Lemma 7. Suppose p = (β + o(1))n−1+α for α ∈ (0, 1) and β > 0 are arbitrary constants. Let
s and t be two fixed distinct vertices. Then, it holds that

Pr(dist(s, t) > ⌊α−1⌋+ 1) = O(n−3).

Lemma 8. Suppose p = (β + o(1))n−1+α for α−1 ∈ N and β > 0. Let k ∈ {1, 2} and
s1, . . . , sk, t1, . . . , tk be fixed 2k distinct vertices. Then, it holds that

Pr

(
k∧

i=1

[dist(si, ti) ≥ α−1 + 1]

)
= exp(−kβ1/α) + o(1).

It should be noted that these results are immediately obtained from existing works [10, 18].
Indeed, Lemma 8 can be extended to every k ∈ N, though we do not use the fact in this paper.

Rest of the proof of Theorem 1. Assuming Lemma 6 to 8, it is straightforward to see

E(AD) =

(
n

2

)−1 n∑

l=1

∑

{s,t}∈(V2)

Pr(dist(s, t) ≥ l)

=
n∑

l=1

Pr(dist(1, 2) ≥ l)

= µ+ o(1).
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Here, V = {1, . . . , n} denotes the vertex set. Note that Pr(dist(s, t) ≥ l) does not depend on
the label “s” and “t”.

We evaluate Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′).
If max(l, l′) > ⌊α−1⌋+ 1, from Lemma 7, we obtain

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′) ≤ Pr(dist(s, t) > ⌊α−1⌋+ 1)

= O(n−3).

If max(l, l′) ≤ ⌈α−1⌉, Lemma 6 implies

1 ≥ Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′)

≥ 1− Pr(dist(s, t) < l)− Pr(dist(s′, t′) < l′)

= 1− o(1).

Suppose α−1 ̸∈ N. Then µ = ⌈α−1⌉ and we have

E(AD2) =

(
n

2

)−2 n∑

l,l′=1

∑

{s,t}, {s′,t′}∈(V2)

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′)

=
∑

1≤l,l′≤⌈α−1⌉

(1 + o(1)) (terms correspond to max(l, l′) ≤ ⌈α−1⌉)

+O(n−4 · n2 · n4 · n−3) (terms correspond to max(l, l′) > ⌈α−1⌉)
= µ2 + o(1).

Suppose α−1 ∈ N. If l = α−1 + 1 and l′ < α−1 (or l′ = α−1 + 1 and l < α−1), then it holds
that

Pr(dist(s, t) ≥ l) ≥ Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′)

≥ 1− Pr(dist(s, t) < l)− Pr(dist(s′, t′) < l′)

= Pr(dist(s, t) ≥ l)− o(1),

and thus, Lemma 8 with letting k = 1 implies

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′) = Pr(dist(s, t) ≥ l)− o(1)

= exp(−β1/α) + o(1).

If l = l′ = α−1 + 1, from Lemma 8 with letting k = 2, we obtain

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′) = exp(−2β1/α) + o(1).

Finally, we have

E(AD2) =

(
n

2

)−2 n∑

l,l′=1

∑

{s,t}, {s′,t′}∈(V2)

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l′)

=
∑

1≤l,l′≤α−1

(1 + o(1)) (terms correspond to max(l, l′) ≤ α−1)

+ 2
∑

l′≤α−1

(exp(−β1/α) + o(1)) (terms correspond to max(l, l′) = α−1 + 1)

+ exp(−2β1/α) + o(1) (a term corresponds to l = l′ = α−1 + 1)

+O(n−4 · n2 · n4 · n−3) (terms correspond to max(l, l′) > α−1 + 1)

= µ2 + o(1),

which completes the proof of Theorem 1.
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2.1 Proof of the Lemmas

Proof of Lemma 6. The proof of Lemma 6 is obtained by just applying the first order method
(see, e.g., [10, 4]). Fix two distinct vertices s and t. Let Pl be the set of all st-paths of length
l in a complete graph Kn and Xl = |{p ∈ Pl : p ⊆ G(n, p)| be a random variable. In other
words, Xl denotes the number of elements of Pl contained in G(n, p).

From the Markov inequality, we have

Pr(dist(s, t) < ⌈α−1⌉) = Pr
(
X1 + · · ·+X⌈α−1⌉−1 > 0

)

≤
⌈α−1⌉−1∑

l=1

E(Xl)

=

⌈α−1⌉−1∑

l=1

∑

P∈Pl

Pr(P ⊆ G(n, p))

≤
⌈α−1⌉−1∑

l=1

nl−1pl

≤ O(n−α).

which completes the proof.

Proof of Lemma 7. Our proof is almost same as a part of the proof of Theorem 7.1 in [10].
We check the validity of the proof for p = (β + o(1))n−1+α. In this paper, we render the proof
clear and more rigorous.

Consider a random graph G = G(n, p) where p = (β + o(1))n−1+α. Set l = ⌊α−1⌋ + 1.
We begin with the analysis of the spread process of a breadth first search on G(n, p) from a
fixed vertex. For a vertex v and k ∈ N, define Nk(v) = {w ∈ V : distG(v, w) = k} and

let F (v)
k = Fk =

{
|Nk(v)| ≥

(np
2

)k}
be an event. The degree of v by deg(v) is denoted by

deg(v). The random variable ∆ = ∆(G(n, p)) is denoted by the maximum degree of G(n, p).
Let Bin(m, q) be a binomial distributed random variable with m trials and probability q.

The Markov inequality and the Chernoff-Hoeffding bound lead to

Pr(∆ ≥ 1.1np) = Pr

(
∨

w∈V
[ deg(w) ≥ 1.1np ]

)

≤ nPr(Bin(n− 1, p) ≥ 1.1np)

≤ n exp(−Θ(np))

= O(n−3).

Assuming ∆ ≤ 1.1np, we have

n−
k−1∑

i=0

|Nk(v)| ≥ n−
k−1∑

i=0

(1.1np)i

= n− o(n)

≥ 0.9n,

for sufficiently large n because |Ni(v)| ≤ (1.1np)i.
Also, with the assumption of Fk−1, we obtain

1− (1− p)|Nk−1(v)| ≥ 1− exp

(
−p
(np

2

)k−1
)

≥ 1

1.8n

(np
2

)k
,
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for sufficiently large n because |Nk(v)| ≥
(np

2

)k−1
.

Therefore, we obtain

Pr(Fk | F1, . . . ,Fk−1)

≤ Pr(Fk | F1, . . . ,Fk−1, ∆ ≤ 1.1np) + Pr(∆ > 1.1np)

= Pr

(
Bin

(
n−

k−1∑

i=0

|Nk(v)|, 1− (1− p)|Nk(v)|

)
<
(np

2

)k
∣∣∣∣∣F1, . . . ,Fk−1, ∆ ≤ 1.1np

)
+O(n−3)

≤ Pr

(
Bin

(
0.9n,

1

1.8n

(np
2

)k)
<
(np

2

)k)
+O(n−3)

≤ exp (−Θ(np)) +O(n−3)

= O(n−3)

for every k = 1, . . . , ⌈ l
2⌉. Now, we have

Pr

⎛

⎝
⌈l/2⌉⋂

i=1

Fi

⎞

⎠ = Pr(F1)

⌈l/2⌉∏

i=2

Pr(Fi | F1, . . . ,Fi−1)

= 1−O(n−3). (7)

In other words, a breadth first search on G(n, p) from a fixed vertex v likely spreads as |Nk(v)| ≥(np
2

)k−1
until k ≤

⌈
l
2

⌉
.

Fix two distinct vertices s and t and let X = N⌊l/2⌋(s) and Y = N⌈l/2⌉(t) be the sets of
vertices. Define E(X,Y ) = {e ∈ E(G(n, p)) : e ∩ X ̸= ∅, e ∩ Y ̸= ∅}. If dist(s, t) > l, it
obviously holds that E(X,Y ) = ∅. Then, we have

Pr
(
E(X,Y ) = ∅ | F (s)

1 , . . . ,F (s)
⌊l/2⌋,F

(t)
1 , . . . ,F (t)

⌈l/2⌉

)
≤ (1− p)(

np
2 )

l

≤ exp

(
−p
(np

2

)l)

= O(n−3). (8)

We now look at the probability Pr(dist(s, t) > l). From (7) and (8), we obtain

Pr(dist(s, t) > l) ≤ Pr(E(X,Y ) = ∅)

≤ Pr
(
E(X,Y ) = ∅ | F (s)

1 , . . . ,F (s)
⌊l/2⌋,F

(t)
1 , . . . ,F (t)

⌈l/2⌉

)

+ Pr

(
F (s)
1 ∩ · · · ∩ F (s)

⌊l/2⌋ ∩ F (t)
1 ∩ · · · ∩ F (t)

⌈l/2⌉

)

≤ O(n−3) + 2− 2Pr

⎛

⎝
⌈l/2⌉⋂

i=1

Fi

⎞

⎠

= O(n−3).

Proof of Lemma 8. For k ∈ {1, 2}, fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk. For each
i = 1, . . . , k, let P(i) be the set of all siti-paths of length α−1 + 1 contained in a complete
graph Kn. We denote by X(i) the number of paths of P(i) contained in G(n, p), that is,
X(i) := |{q ∈ P(i) : q ⊆ G(n, p)|.

Lemma 6 and Lemma 7 yields that dist(si, ti) ∈ {α−1,α−1 +1} holds w.h.p. Thus, we have

Pr(dist(si, ti) ≥ α−1 + 1) = Pr(X(i) = 0) + o(1).
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With the notation (x)r = x(x− 1) · · · (x− r + 1), we will show later that

E

(
k∏

i=1

(X(i))ri

)
= (β1/α)

∑k
i=1 ri + o(1) (9)

holds for every k ∈ {1, 2} and every fixed nonnegative integers r1, . . . , rk. On the assumption of
(9), the Poisson approximation theorem (see, e.g., [4, 10, 16]) implies that the random variables
X(1) and X(2) are asymptotically independent Poisson distributed with means β1/α. Therefore
we have

Pr

(
k∧

i=1

[dist(si, ti) ≥ α−1 + 1]

)
= Pr

(
k∧

i=1

[
X(i) = 0

])
+ o(1)

= exp(−kβ1/α) + o(1),

which completes the proof of Lemma 8.
Actually, the author [18] deals with Gn,d and proved the following lemma which is the same

as (9) and derived the same result as Lemma 8 for general k ∈ N.

Lemma 9 (Lemma 3.2, [18]). Suppose d = (β + o(1))nα with two constants α ∈ (0, 1) and
β > 0 where α−1 ∈ N. For k ∈ N, fix 2k vertices S = {s1, . . . , sk} and T = {t1, . . . , tk} with
S ∩ T = ∅ and let X(i) denote the number of siti-paths of length α−1. Then, it holds that

E

(
k∏

i=1

(X(i))ri

)
= (β1/α)

∑k
i=1 ri + o(1),

where the expectation E is taken over random regular graphs Gn,d.

His proof for Lemma 9 above works for our goal (9) by replacing Gn,d by G(n, d/n). This
paper presents a brief version of the proof, since it suffices to see the special case k ∈ {1, 2}
here.

Setting r2 = 0, we can assume k = 2 without loss of generality and do so. As each X(i) can
be rewritten as the sum of indicators [ q⊆G(n,p) ] over q ∈ P(i), we have

E

(
2∏

i=1

(X(i))ri

)
=

∑

P=(P1,...,Pr1 )∈(P
(1))r1

Q=(Q1,...,Qr2 )∈(P
(2))r2

Pr (U(P,Q) ⊆ G(n, p)) ,

where

U(P,Q) =
r1⋃

i=1

r2⋃

j=1

(Pi ∪Qj)

for two tuples of paths P = (P1, . . . , Pr1) and Q = (Q1, . . . , Qr2). In other words, U(P,Q)
denotes a graph represented by the union of r1 paths P connecting s1 and t1, and r2 ones Q
connecting s2 and t2.

For a fixed graph H, let

NH :=
∣∣∣
{
(P,Q) ∈ (P(1))r1 × (P(2))r2 : U(P,Q) = H

}∣∣∣

=

{
O(n|V (H)|−4) if ∃P,Q such that H = U(P,Q)

0 otherwise.
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s2 t2

t1

(a)

r1
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s1

s2 t2

t1

(b)

Figure 3: Candidates for H, which is the union of paths of length α−1 and having label only
on red vertices. (a) illustrates the union of “disjoint paths” and (b) illustrates the union of
“crossing paths”.

be the number of ways for representing H as the union of s1t1-paths and s2t2-paths. Then it is
straightforward to see

E

(
2∏

i=1

(X(i))ri

)
=
∑

H

NH · p|E(H)|.

The summation above is over every graph H having label only on the endpoints (i.e. s1, s2, t1
and t2, as shown in Figure 3).

If |V (H)| = (r1 + r2)(α−1 − 1) + 4 (intuitively speaking, such H is represented as the union
of “disjoint paths”, as shown in Figure 3(a)), it holds that NH = (1 + o(1))n(r1+r2)(α−1−1) and
|E(H)| = (r1 + r2)α−1. Thus, we have

NH · p|E(H)| = (1 + o(1)) = (1 + o(1)) (β1/α)r1+r2 .

Otherwise (in this case, the graph H is represented as the union of “crossing paths”, as
shown in Figure 3(b)), we have

NH · peH = O(n|V (H)| · n−|E(H)|+α|E(H)|)

= o(1),

which follows from Lemma 3.4 in [18].
Therefore, we obtain

E

(
2∏

i=1

(X(i))ri

)
=
∑

H

NH · peH = (β1/α)r1+r2 + o(1).

Note that the number of H with NH > 0 is O(1) because such an H has order at most
2(α−1 + 1).
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3 Average distance of dense random regular graphs

3.1 Lower bound from the Moore bound argument

The Moore bound implies the lower bound (1) of the diameter of any d-regular graph of order n.
For d = (β + o(1))nα, it is straightforward see

lim
n→∞

D0 =

⎧
⎪⎨

⎪⎩

⌊α−1⌋+ 1 either α−1 ̸∈ N, or α−1 ∈ N and β < 1,

α−1 α−1 ∈ N and β > 1,

depends on the term o(1) otherwise,

(10)

as we shall show in Section A.1.
Similarly, we have the lower bound (2) of the average distance of any d-regular graph of

order n. For d = (β + o(1))nα, a simple calculation shows

lim
n→∞

AD0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌊α−1⌋+ 1 if α−1 ̸∈ N,
α−1 if α−1 ∈ N and β > 1,

α−1 − β1/α + 1 if α−1 ∈ N and β < 1,

depends on the term o(1) otherwise,

(11)

as we shall show in Section A.2.
From (11), we have the following result that gives a proof of Theorem 2 in the case where

α−1 ̸∈ N.

Proposition 10. Set d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are arbitrary constants. If
α−1 ̸∈ N,

AD(Gn,d) = ⌈α−1⌉ − o(1).

holds w.h.p.

Proof. Suppose α−1 ̸∈ N. It is obvious that

⌈α−1⌉ − o(1) = ⌊α−1⌋+ 1− o(1) = AD0(Gn,d) ≤ AD(Gn,d) ≤ diam(Gn,d).

Proposition 10 follows from the fact that diam(Gn,d) = ⌊α−1⌋+ 1 = ⌈α−1⌉ holds w.h.p. shown
in [18]. Note that AD0(G) ≤ AD(G) still holds for a disconnected graph G.

3.2 Upper bound from the embedding theorem

The previous section indicates that the lower bound AD0 is asymptotically the same as diam(Gn,d)
for d = (β+o(1))nα with α−1 ̸∈ N. However, If α−1 ∈ N, a gap between diam(Gn,d) = ⌊α−1⌋+1
and AD0 exists. Theorem 4 (the embedding theorem) enables us to obtain a sharper upper
bound on AD, as we introduced in Section 1.4. That is, we have AD ≤ α−1 + exp(−β1/α) by
combining Theorem 1 and 4. Still, there exists a gap between AD0 and the sharp upper bound.
We present a sharp lower bound for the AD(Gn,d) in the next section.

3.3 Sharp lower bound

Suppose d = (β+o(1))nα where α ∈ (0, 1) and β > 0 are arbitrary constants such that α−1 ∈ N.
The following lemma implies the sharp lower bound on AD(Gn,d).
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Lemma 11. Suppose d = (β+ o(1))nα where α ∈ (0, 1) and β > 0 are arbitrary constants with
α−1 ∈ N. Set µ = α−1 + exp(−β1/α). Then for every ϵ > 0,

lim
n→∞

Pr(AD(Gn,d) ≤ µ− ϵ) = 0.

In other words, it holds w.h.p. that

AD(Gn,d) ≥ µ− o(1).

Proof. The average distance AD(Gn,d) satisfies

AD(Gn,d) =
n∑

l=1

Pr
s,t

(dist(s, t) ≥ l)

≥
α−1+1∑

l=1

Pr
s,t

(dist(s, t) ≥ l) .

Here, the probability Prs,t(·) is concerned with a random vertex pair {s, t} ∈
(V
2

)
.

Let pl = pl(Gn,d) = Prs,t (dist(s, t) ≥ l) be random variable on Gn,d. The random variables
pl can be rewritten as

pl =

(
n

2

)−1 ∑

{s,t}∈(V2)
[ dist(s,t)≥l ] ,

p2l =

(
n

2

)−2 ∑

{s,t}, {s′,t′}∈(V2)
[ dist(s,t)≥l ∧ dist(s′,t′)≥l ] .

Hence, as n → ∞, we obtain

E(pl) =

(
n

2

)−1 ∑

{s,t}∈(V2)

Pr(dist(s, t) ≥ l)

= Pr(dist(1, 2) ≥ l)

→
{
1 if 1 ≤ l ≤ α−1,

exp(−β1/α) if l = α−1 + 1,

and

E(p2l ) =

(
n

2

)−2 ∑

{s,t}, {s′,t′}∈(V2)

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l)

=

(
n

2

)−2
⎛

⎝O(n3) +
∑

{s,t}∩{s′,t′}=∅

Pr(dist(s, t) ≥ l ∧ dist(s′, t′) ≥ l)

⎞

⎠

= Pr(dist(1, 2) ≥ l ∧ dist(3, 4) ≥ l) + o(1)

→
{
1 if 1 ≤ l ≤ α−1,

exp(−2β1/α) if l = α−1 + 1.

Remark that the expectations E(·) above are concerned with Gn,d. Here, we have used the fact

Pr(dist(1, 2) ≥ α−1 + 1 ∧ dist(3, 4) ≥ α−1 + 1) = exp(−2β1/α) + o(1),
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which follows from the Poisson approximation theorem (see, e.g., [4, 10, 16]) and Lemma 9 with
letting k = 2. We also note that each term in the summation (e.g., “Pr(dist(s, t) ≥ l)”) does
not depend on the label of the vertices.

Set

µl =

{
1 if 1 ≤ l ≤ α−1,

exp(−β1/α) if l = α−1 + 1,

for l = 1, . . . ,α−1 + 1, and µ = α−1 + exp(−β1/α). For every fixed ϵ > 0, we have

Pr(|pl − µl| > ϵ) = Pr((pl − µl)
2 > ϵ2)

≤
E(p2l )− 2µl E(pl) + µ2

l

ϵ2

= o(1),

and thus

Pr

⎛

⎝

∣∣∣∣∣∣

α−1+1∑

l=1

pl − µ

∣∣∣∣∣∣
> ϵ

⎞

⎠ ≤ Pr
(
∃l, |pl − µl| > ϵ/(α−1 + 1)

)

≤
α−1+1∑

l=1

o(1)

= o(1).

Therefore, it holds w.h.p. that

AD(Gn,d) ≥
α−1+1∑

l=1

pl

≥ µ− o(1).

Proof of Theorem 2. If α−1 ̸∈ N, apply Proposition 10. Otherwise, combine (4) and Lemma 11.
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A Analysis of the asymptotic behavior of the Moore bound

A.1 Diameter

The asymptotic behavior (10) of D0 is proved in this section. Set d = (β + o(1))nα. We shall
look at D0 defined as (1). A simple calculation implies

log(d− 1) = log d+ log

(
1− 1

d

)

= log(β + o(1)) + α log n−O
(
d−1
)

= α log n

(
log(β + o(1))−O (n−α)

α log n
+ 1

)
,

and

logd−1

(
1− 2

d

(
1− 1

n

))
= −O

(
1

d log d

)

= −O

(
1

nα log n

)
.

Therefore, substitution of d = (β + o(1))nα into (1) yields

D0 =

⌈
α−1

(
1 +

log(β + o(1))−O(n−α)

α log n

)−1

−O

(
1

nα log n

)⌉

=

⌈
α−1 − ϵ(n)

1 + ϵ(n)
−O

(
1

nα log n

)⌉
,

where ϵ(n) = log(β+o(1))−O(n−α)
α logn .

Suppose α−1 ̸∈ N and let δ = ⌈α−1⌉−α−1 ∈ (0, 1) be a constant. Since ϵ(n) = o(1), we have

D0 =
⌈
⌈α−1⌉ − δ ± o(1)

⌉
→ ⌈α−1⌉ = ⌊α−1⌋+ 1.

Here, “±” means that either “+” or ”−“ (whether “+” or not does not matter because the
term o(1) above is much less than the constant δ > 0).

If α−1 ∈ N and β > 1 then log(β + o(1)) > 0 holds, which implies

D0 =

⌈
α−1 −O

(
1

log n

)
± o

(
1

log n

)⌉
→ α−1.

Similarly, if α−1 ∈ N and β < 1, we have

D0 =

⌈
α−1 +O

(
1

log n

)
± o

(
1

log n

)⌉
→ α−1 + 1.

If α−1 ∈ N and β = 1, then D0 depends on the term o(1) in d = (β + o(1))nα.

A.2 Average distance

We show (11). Set d = (β + o(1))nα with two arbitrary constants α ∈ (0, 1) and β > 0. Since
D0 ≤ ⌊α−1⌋+ 1 = O(1) holds, the equality (2) yields

AD0 = D0 −
dD0−1

n
+ o(1). (12)
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If α−1 ̸∈ N, it holds that D0 = ⌊α−1⌋+ 1 and ⌊α−1⌋ < α−1; thus we have

AD0 = D0 −
d1/α

n
· 1

d1/α−⌊1/α⌋ + o(1) = D0 + o(1).

If α−1 ∈ N and D0 = α−1, substitution of D0 = α−1 into (12) shows

AD0 = D0 −
d1/α−1

n
+ o(1) = D0 + o(1).

Similarly, if α−1 ∈ N and D0 = α−1 + 1, we obtain

AD0 = D0 −
d1/α

n
+ o(1) = α−1 + 1− β1/α + o(1).
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