
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Index Reduction for
Differential-Algebraic Equations

with Mixed Matrices

Satoru IWATA, Taihei OKI and Mizuyo TAKAMATSU

METR 2017–23 December 2017

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Index Reduction for Differential-Algebraic Equations
with Mixed Matrices∗

Satoru Iwata† Taihei Oki† Mizuyo Takamatsu‡

Abstract
Differential-algebraic equations (DAEs) are widely used for modeling of dynamical systems. The

difficulty in numerically solving a DAE is measured by its differentiation index. For highly accurate
simulation of dynamical systems, it is important to convert high index DAEs into low index DAEs.
Most of existing simulation software packages for dynamical systems are equipped with an index
reduction algorithm given by Mattsson and Söderlind. Unfortunately, this algorithm fails if there
are unlucky numerical cancellations.

These numerical cancellations are often caused by accurate numbers in structural equations.
Distinguishing those accurate numbers from inaccurate ones that represent physical characteristics,
Murota and Iri introduced the notion of a mixed matrix as a mathematical tool for faithful model
description in structural approach to systems analysis. For DAEs described with the use of mixed
matrices, efficient algorithms to compute the index have been developed by exploiting matroid theory.

This paper presents an index reduction algorithm for linear DAEs whose coefficient matrices are
mixed matrices. Our algorithm detects numerical cancellations between accurate constants, and
transforms a DAE into an equivalent DAE to which Mattsson–Söderlind’s index reduction algorithm
is applicable. The algorithm is based on the combinatorial relaxation approach, which is a framework
to solve a linear algebraic problem by iteratively relaxing it into an efficiently solvable combinatorial
optimization problem. The algorithm relies not on symbolic manipulations but on fast combina-
torial algorithms on graphs and matroids. Our algorithm is proved to work for any linear DAEs
whose coefficient matrices are mixed matrices, and is expected to preserve the sparsity of DAEs.
We further provide an improved algorithm under an assumption based on dimensional analysis of
dynamical systems. Our algorithms can be applied to nonlinear DAEs by regarding nonlinear terms
as inaccurate numbers.

1 Introduction
An l-th order differential-algebraic equation (DAE) for x : R→ Rn is a differential equation in the form
of

F
(
t, x(t), ẋ(t), . . . , x(l)(t)

)
= 0, (1)

where F : R× Rn × · · · × Rn → Rn is a sufficiently smooth function. DAEs have aspects of both ordinary
differential equations (ODEs) ẋ(t) = ϕ(t, x(t)) and algebraic equations G(t, x(t)) = 0. DAEs are widely
used for modeling of dynamical systems such as mechanical systems, electrical circuits and chemical
reaction plants.

A DAE (1) can be rewritten as a first order DAE

F (t, x(t), ẋ(t)) = 0 (2)

by replacing higher order derivatives of x with newly introduced variables. The difficulty in numerically
solving the DAE (2) is measured by its differentiation index [1], which is defined as the minimum
nonnegative integer ν such that the system of equations

F (t, x(t), ẋ(t)) = 0, d
dtF (t, x(t), ẋ(t)) = 0, . . . ,

dν

dtν F (t, x(t), ẋ(t)) = 0

∗This work was supported in part by JST CREST, Grant Number JPMJCR14D2, Japan.
†Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of

Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: {iwata, taihei_oki}@mist.i.u-tokyo.ac.jp
‡Department of Information and System Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551,

Japan. E-mail: takamatsu@ise.chuo-u.ac.jp

1

iwata@mist.i.u-tokyo.ac.jp
taihei_oki@mist.i.u-tokyo.ac.jp
takamatsu@ise.chuo-u.ac.jp

can determine ẋ as a continuous function of t and x. In other words, ν is the number of times one has
to differentiate the DAE (2) to get an ODE. Intuitively, the differentiation index represents how far the
DAE is from ODEs.

A common approach for solving a high (≥ 2) index DAE is to convert it into a low (≤ 1) index
DAE. This process is called an index reduction, which is important for accurate simulation of dynam-
ical systems. Most of existing simulation software packages for dynamical systems, such as Dymola,
OpenModelica, MapleSim and Simulink, are equipped with the index reduction algorithm given by
Mattsson–Söderlind [10] (MS-algorithm). The MS-algorithm uses Pantelides’ method [21] as preprocess-
ing. Pantelides’ method constructs a bipartite graph from structural information of a given DAE, and
solves an assignment problem on the bipartite graph efficiently. The MS-algorithm then differentiates
equations in the DAE with the aid of the information obtained by Pantelides’ method, and replaces some
derivatives with dummy variables. The MS-algorithm returns a sparse DAE if a given DAE is sparse,
and thus the algorithm can be applied to large scale DAEs.

Pantelides’ method, however, does not work even for the following simple DAE
ẋ1 + ẋ2 + x3 = 0,
ẋ1 + ẋ2 = 0,

x2 + ẋ3 = 0.

Pantelides’ algorithm reports that the index is zero whereas it is indeed two. This is because the method

cannot detect the singularity of the coefficient matrix

1 1 0
1 1 0
0 0 1

 of

ẋ1
ẋ2
ẋ3

. As this toy example shows,

Pantelides’ method, which ignores numerical information, may fail on some DAEs due to numerical
cancellations. This kind of failure can also occur in other methods to reduce the index or to analyze
DAEs such as a structural algorithm of Unger et al. [25] and the Σ-method of Pryce [22].

Some index reduction algorithms address this problem. One example is the σν-method by Chowdhry
et al. [2], which is based on the algorithm by Unger et al. [25]. The method performs the Gaussian
elimination on the Jacobian matrix ∂F/∂ẋ under the assumption that nonlinear or time-varying terms
do not cancel out. Tan et al. [24] presented two methods called LC-method and ES-method, which
improve the Σ-method of Pryce. Their methods identify numeric or symbolic cancellations and modify
the DAE if necessary.

Pantelides’ method [21] and the Σ-method [22] discard numerical information, which sometimes leads
to a failure of the methods. In dynamical systems, specific numbers in structural equations such as the
conservation laws should be treated numerically, while we can deal with physical characteristic values as
nonzero parameters without reference to their nominal values. For a faithful model of a dynamical system,
it is natural to distinguish accurate and inaccurate numbers. This led Murota–Iri [18] to introduce the
notion of a mixed matrix, which is a matrix consisting of the following two kinds of entries:

Accurate Constants, which represent precise values such as coefficients of conservation laws. We
assume that arithmetic operations of these constants can be performed in constant time.

Independent Parameters, which are algebraically independent over the field of accurate constants.
These parameters often represent physical quantities such as masses, lengths or electric resistances
since their nominal values are inaccurate by measurement noises and other errors. These parameters
should be treated combinatorially without reference to their nominal values.

For example, consider an electric network consisting of voltage sources, resistances and wires con-
necting them. A linear equation representing the circuit has two kinds of coefficients: the exact ‘±1’s
coming from Kirchhoff’s law, and the resistance values coming from Ohm’s law. Since the nominal val-
ues of resistances are supposed to be inaccurate, it is natural to model the system by a linear equation
with a mixed matrix, where constants and parameters represent the exact ‘±1’s and the resistances,
respectively. See an example in Section 6.2 for modeling of an RLC circuit with a mixed matrix.

Mathematical aspects of mixed matrices are studied by Murota [13]. If all nonzero entries of a matrix
are independent parameters, then its rank is equal to the maximum size of a matching in an associated
bipartite graph. For a mixed matrix, the rank computation corresponds to solving an independent
matching problem on matroids, which is a generalization of the maximum matching problem on bipartite
graphs. An efficient algorithm based on matroid theory is provided for the rank computation of mixed
matrices; see [17] for detail.

2

In this paper, we provide an index reduction algorithm for a linear DAE

l∑
k=0

Akx
(k)(t) = f(t) (3)

with n× n mixed matrices A0, A1, . . . , Al and a sufficiently smooth function f : R→ Rn.
Modeling dynamical systems by mixed matrices is advantageous for the index reduction as follows.

First, we can resolve numerical cancellations in a mixed matrix by modifying only accurate constants
since the cancellations do not occur involving independent parameters. Thus our algorithm is expected
to preserve the sparsity of the matrix compared to other index reduction algorithms that transform the
entire matrix. Next, since accurate constants arising from typical dynamical systems are integers or
rational numbers, we can avoid arithmetic operations and comparisons of floating-point numbers. This
fact makes the algorithm stable. Finally, if we want to simulate a dynamical system on many different
settings of physical quantities, we can reuse the resulting low-index DAE as long as the values of physical
quantities do not unluckily cancel out.

Our approach for the index reduction is to transform a DAE into an equivalent DAE to which the
MS-algorithm is applicable, based on the combinatorial relaxation method, introduced by Murota [12, 15]
as a framework to solve a linear algebraic problem by iteratively relaxing it into an efficiently solvable
combinatorial optimization problem. Our algorithm does not rely on symbolic manipulations, while it
uses numerical calculations and fast combinatorial optimization algorithms on graphs and matroids. For
an l-th order DAE, our algorithm is proved to run in O

(
l2nω+2) time, where ω is the matrix multiplication

exponent, i.e., the number of arithmetical operations needed to multiply two n × n matrices is O(nω).
The current best known value of ω is almost 2.3728639 due to [9]. In practice, however, one can adopt
ω = 3. Our algorithm is expected to run much faster in most cases because the algorithm terminates
without modifying a DAE unless it has unlucky numerical cancellations.

In addition, we give an improved algorithm for DAEs whose coefficients are dimensionally consistent.
The dimensional consistency, which is introduced by Murota [11], is a mathematical assumption on mixed
matrices reflecting the principle of dimensional homogeneity in physical systems, and DAEs arising from
dynamical systems naturally ensure this assumption. We show that the improved algorithm retains the
dimensional consistency, and that the running time is O

(
ln4 logn

)
. Since the order l of typical DAEs is

not so large, we claim that the algorithm does not significantly increase the computational cost compared
to the MS-algorithm, which costs O

(
n4 + ln2) time by the straightforward matrix multiplication.

Furthermore, though our index reduction algorithm is designed for linear DAEs, the algorithm can be
applied to nonlinear DAEs by regarding nonlinear terms as independent parameters. While the similar
approach is adopted in σν-method of Chowdhry et al. [2], our method is expected to be applicable to
a larger class of nonlinear DAEs than the σν-method because our method does not transform DAEs
involving nonlinear terms.

We describe the relation between the proposed algorithm and related index reduction algorithms. If
all nonzero entries of A(s) are independent parameters, our algorithm just passes a given DAE to the MS-
method as we described above. In contrast, if A(s) has no independent parameter, then our algorithm
coincides with the LC-method by Tan et al. [24]. In addition, our algorithm is similar to the σν-method [2]
in the sense that both methods treat matrices having accurate constants and independent parameters,
yet their approaches are quite different; the σν-method is based on the Gaussian elimination approach
by Gear [5], whereas our algorithm relies on the dummy variable approach by Mattsson–Söderlind [10].

A recent work [6] has proposed an index reduction algorithm which is proved to work for any instances
of first order linear DAEs with constant coefficients. The algorithm directly reduces the index of a given
DAE by row operations, whereas our algorithm only resolves numerical cancellations in a DAE and
eventually relies on the MS-algorithm for the actual index reduction process. Thus our algorithm is
expected to preserve the sparsity of DAEs compared to the algorithm in [6].

This paper is organized as follows. Section 2 reviews the previous index computation and reduction
algorithms for linear DAEs with constant coefficients, including the MS-algorithm and combinatorial
relaxation algorithms. Section 3 explains mixed matrices and their rank identities. Section 4 describes
the proposed algorithm. Section 5 improves our algorithm under the assumption of the dimensional
consistency. Section 6 illustrates two examples. Section 7 discusses an application to nonlinear DAEs.
Finally, Section 8 concludes this paper.

3

2 Index Reduction for Linear DAEs
2.1 Index of Linear DAEs
A linear DAE with constant coefficients is the following DAE:

l∑
k=0

Akx
(k)(t) = f(t), (4)

where A0, A1, . . . , Al are n × n matrices and f : R → Rn is a sufficiently smooth function. We assume
that f is Laplace transformable for simplicity, though this assumption is not essential. By the Laplace
transformation, the DAE (4) is transformed into

A(s)x̃(s) = f̃(s) +
l∑

k=0

k∑
i=1

sk−iAkx
(i−1)(0), (5)

where x̃(s) and f̃(s) are the Laplace transforms of x(t) and f(t), respectively, and A(s) =
∑l
k=0 s

kAk.
We henceforth denote the right-hand side of (5) by f̂(s). The matrix A(s) is a matrix whose entries
are polynomials, called a polynomial matrix. We say that A(s) is nonsingular if its determinant is not
identically zero.

An initial value
(
x0, x

(1)
0 , . . . , x

(l−1)
0

)
∈ Rn × · · · × Rn is said to be consistent if there exists at least

one solution of (4) satisfying

x(0) = x0, ẋ(0) = x
(1)
0 , . . . , x(l−1)(0) = x

(l−1)
0 . (6)

We say that the DAE (4) is solvable if there exists a unique solution of (4) satisfying the initial value
condition (6) for an arbitrary consistent point. The solvability of (4) is characterized by A(s) as follows.
Theorem 2.1 ([1, 23]). A linear DAE (4) is solvable if and only if the associated polynomial matrix
A(s) is nonsingular.

See [1, Theorem 2.3.1] for l = 1 and [23, Theorems 2.22–23] for l ≥ 2. In this paper, we focus on
solvable DAEs (4). In addition, we abuse the term “DAE” and also refer to the equation (5) as a DAE.

The differentiation index of a first order linear DAE (4) with A(s) = A0 + sA1 is known to equal

ν(A) = δn−1(A)− δn(A) + 1. (7)

Here, δk(A) denotes the maximum degree of the determinant of a submatrix in A(s) of size k, i.e.,

δk(A) = max{deg detA(s)[I, J] | |I| = |J | = k},

where A(s)[I, J] is the submatrix in A(s) with row set I and column set J , and deg p(s) designates the
degree of a polynomial p(s) in s. In particular, δn(A) is the degree of the determinant of A(s), and
δn−1(A) is the maximum degree of a cofactor of A(s). For a DAE (4) with l ≥ 2, its index is defined to
be that of a first order DAE obtained by replacing higher order derivatives with new variables [24].

2.2 Assignment Problem
In analysis of DAEs, Pryce [22] introduced an assignment problem as a reinterpretation of Pantelides’
algorithm [21] as follows.

Consider a linear DAE (5) with n×n nonsingular polynomial matrix A(s) with row set R and column
set C. We denote the (i, j) entry of A(s) by Ai,j(s). Let G(A) denote the bipartite graph with vertex
set R ∪ C and edge set E(A) = {(i, j) ∈ R × C | Ai,j(s) 6= 0}. An edge subset M ⊆ E(A) is called a
matching if the ends of edges in M are disjoint. Since A(s) is nonsingular, G(A) has a matching of size
n, called a perfect matching. We set the weight ce of an edge e = (i, j) ∈ E(A) by ce = ci,j = degAi,j(s).

The assignment problem on G(A) is the following problem P(A):

P(A)
maximize

∑
e∈M

ce

subject to M ⊆ E(A) is a perfect matching on G(A).

The dual problem D(A) of P(A) is expressed as follows:

4

D(A)

minimize
∑
j∈C

qj −
∑
i∈R

pi

subject to qj − pi ≥ ci,j ((i, j) ∈ E(A)),
pi ∈ Z (i ∈ R),
qj ∈ Z (j ∈ C).

We denote the optimal value of the problem P(A) (and D(A)) by δ̂n(A). Recall that δn(A) denotes
deg detA(s). It is well known that δn(A) ≤ δ̂n(A) holds, and the equality is attained if and only if the
coefficient of sδ̂n(A) in detA(s) does not vanish. In this sense, δ̂n(A) serves as a combinatorial upper
bound on δn(A). We call A(s) upper-tight if δn(A) = δ̂n(A) holds.

For a dual feasible solution (p, q), a tight coefficient matrix A# of A(s) is defined by

A#
i,j := the coefficient of sqj−pi in Ai,j(s)

for each i ∈ R and j ∈ C. Note that A# changes depending on (p, q). This matrix is called a “Σ-Jacobian”
by Pryce [22]; the name “tight coefficient matrix” is due to Murota [14].

2.3 Computing the Index via Combinatorial Relaxation
The tight coefficient matrix plays an important role in the combinatorial relaxation algorithm of Murota [15]
to compute δn(A) for a polynomial matrix A(s) through the following lemma.
Lemma 2.2 ([12, Proposition 6.2]). Let A(s) be an n× n nonsingular polynomial matrix and A# the
tight coefficient matrix of A(s) with respect to an optimal solution of D(A). Then A(s) is upper-tight if
and only if A# is nonsingular.

The combinatorial relaxation method consists of the following three phases.

Phase 1. Compute a combinatorial upper bound δ̂n(A) of δn(A) by solving an assignment problem.

Phase 2. Check whether A(s) is upper-tight using Lemma 2.2. If it is, return the estimation and
halt.

Phase 3. Modify A(s) to improve δ̂n(A) by replacing A(s) with U(s)A(s), where U(s) is a unimodular
matrix. Go back to Phase 2.

Here, a unimodular matrix is a square polynomial matrix whose determinant is a nonzero constant.
The algorithm is designed so that δ̂n(A) decreases in each iteration, while unimodular transformations
preserve δn(A). Thus, after a finite number of iterations, the algorithm terminates with δ̂n(A) = δn(A).

Subsequently, Murota [14] applied the combinatorial relaxation approach to computing δk(A) for
k = 1, . . . , n. In this algorithm, Phase 3 modifies A(s) to U(s)A(s)V (s), where U(s) and V (s) are
biproper Laurent polynomial matrices, i.e., entries are all polynomials in 1/s and the determinants are
nonzero constants. This type of transformation is known to preserve δk(A). The values of δn−1(A) and
δn(A) determine the index ν(A) by (7).

2.4 Mattsson–Söderlind’s Index Reduction Algorithm
We now review Mattsson–Söderlind’s index reduction algorithm applied to a linear DAE (5) with n× n
nonsingular polynomial matrix A(s). Let (p, q) be an optimal solution of D(A). For h ∈ Z, we define

Rh := {i ∈ R | pi = h}, R≥h := {i ∈ R | pi ≥ h},
Ch := {j ∈ C | qj = h}, C≥h := {j ∈ C | qj ≥ h}.

The MS-algorithm applied to the DAE (5) is outlined as follows. The following description is a rewritten
version especially for linear DAEs, though the original MS-algorithm is designed for nonlinear DAEs [10,
Section 3.1].

Mattsson–Söderlind’s Index Reduction Algorithm

Step 1. Compute an optimal solution (p, q) of D(A) satisfying pi, qj ≥ 0 for i ∈ R and j ∈ C. Let
A# denote the tight coefficient matrix of A(s) with respect to (p, q). If A# is singular, then
the algorithm terminates in failure.

5

Step 2. For each h = 0, . . . , η + 1
(
η := max

i∈R
pi
)
, obtain Jh ⊆ C≥h such that A#[R≥h, Jh] is nonsin-

gular and

C = J0 ⊇ J1 ⊇ J2 ⊇ · · · ⊇ Jη ⊇ Jη+1 = ∅.

Step 3. For each j ∈ C, let kj be an integer such that j ∈ Jkj
and j /∈ Jkj+1. Introduce kj

dummy variables z[qj]
j , z

[qj−1]
j , . . . , z

[qj−kj+1]
j corresponding to sqj x̃j , s

qj−1x̃j , . . . , s
qj−kj+1x̃j ,

respectively.

Step 4. For each i ∈ R, return the 0-th, 1-st, ..., pi-th order derivatives of the i-th equation. Replace
variables with the corresponding dummy variables.

The validity of the MS-algorithm is established as follows.
Proposition 2.3 ([10, Section 3.2]). Let A(s) be a polynomial matrix in the DAE (5) and A# the
tight coefficient matrix of A(s) with respect to an optimal solution of D(A). If A# is nonsingular, then
the MS-algorithm correctly returns an equivalent DAE with index at most one.

From Lemma 2.2, the condition in Proposition 2.3 is equivalent to the upper-tightness of A(s) as
follows.
Corollary 2.4. Let A(s) be a polynomial matrix in the DAE (5). If A(s) is upper-tight, then the
MS-algorithm correctly returns an equivalent DAE with index at most one.

The description above is still valid for a nonlinear DAE (1) by redefining A(s) as

the coefficient of sk in Ai,j(s) := the partial derivative of the i-th equation with respect to x(k)
j

for each i = 1, . . . , n, j = 1, . . . , n and k = 0, . . . , l. Then the nonsingularity of A# essentially comes
from the requirement of the implicit function theorem, which is used to convert the DAE into an ODE
by solving the DAE for the highest order derivatives.

2.5 Index Reduction via Combinatorial Relaxation
For a linear DAE (5) that does not satisfy the validity condition of the MS-algorithm, we need to modify
it to apply the MS-algorithm. Here, the modification of DAEs must preserve the sets of their solutions.
We can use unimodular transformations in the form of

U(s)A(s)x̃(s) = U(s)f̂(s),

where U(s) is a unimodular matrix. Since unimodular transformations correspond to the operations of
adding an equation in the DAE or its (higher order) derivative to another equation, the DAEs before
and after the transformation have the same solution set.

Murota’s combinatorial relaxation algorithm [15] for computing δn(A) described in Section 2.3 modi-
fies a given polynomial matrix A(s) into an upper-tight polynomial matrix Ā(s) = U(s)A(s) using some
unimodular matrix U(s). Then from Corollary 2.4, the matrix Ā(s) satisfies the validity condition of
the MS-algorithm. Therefore, we can use Murota’s algorithm as an index reduction algorithm by com-
bining with the MS-algorithm. Note that this modification may change δn−1(A), and hence ν(A). We
also remark that this index reduction algorithm indeed coincides with the LC-method of Tan et al. [24]
applied to the linear DAEs with constant coefficients.

3 DAEs with Mixed Matrices
The algorithms explained in Section 2 work under the assumption that one can exactly perform arithmetic
operations of inaccurate physical quantities, which naturally arise from dynamical systems. In order to
distinguish inaccurate quantities from accurate numbers, we deal with a DAE with mixed matrices.

3.1 Mixed Matrices and Mixed Polynomial Matrices
Let F be a field and K a subfield of F. A typical setting in the context of DAEs is F = R and K = Q.
A matrix T over F is said to be generic if the set of nonzero entries of T is algebraically independent
over K. A mixed matrix with respect to (K,F) is a matrix in the form of Q + T , where Q is a matrix

6

over K and T is a generic matrix. A layered mixed matrix (or LM-matrix) is a mixed matrix such that
nonzero rows of Q and T are disjoint. An LM-matrix A can be expressed as A =

(
Q
T

)
.

A polynomial matrix A(s) =
∑l
k=0 s

kAk is called a mixed polynomial matrix if it is expressed as
Ak = Qk + Tk with Qk and Tk that satisfy the following conditions:

(MP-Q) Each Qk (k = 0, . . . , l) is a matrix over K.

(MP-T) The set of nonzero entries of T0, . . . , Tl is algebraically independent over K.

A layered mixed polynomial matrix (or LM-polynomial matrix) is a mixed polynomial matrix such that
nonzero rows of Q(s) =

∑l
k=0 s

kQk and T (s) =
∑l
k=0 s

kTk are disjoint. An LM-polynomial matrix is
expressed as A(s) =

(
Q(s)
T (s)

)
.

3.2 Rank of LM-matrices
For a matrix A, we denote the row set and column set by Row(A) and Col(A), respectively. Consider the
associated bipartite graph G(A) = (R,C;E(A)), where R = Row(A) and C = Col(A). The term-rank
of A is the maximum size of a matching in G(A), and is denoted by t-rankA. It is well known that
rankA ≤ t-rankA holds. The equality is attained if and only if A has a submatrix of size t-rankA with
nonzero determinant. This is analogous to the relation between δn and δ̂n for a polynomial matrix.

Let A =
(
Q
T

)
be an LM-matrix. If A has no accurate constants, i.e., A is a generic matrix T , it holds

that rank T = t-rank T from the independence of nonzero entries. From this equality, we can compute
rank T by solving a maximum matching problem on the associated bipartite graph G(T). For general
LM-matrices, the following holds from the generalized Laplace expansion.
Proposition 3.1 ([19, Theorem 3.1]). For an LM-matrix A =

(
Q
T

)
with RQ = Row(Q), RT = Row(T)

and C = Col(A), the following rank identity holds:

rankA = max{rankQ[RQ, J] + t-rank T [RT , C \ J] | J ⊆ C}. (8)

The problem of maximizing the right-hand side of (8) can be reduced to an independent matching
problem on a matroid; see [17, Section 4.2] for detail. The following identity is obtained from the duality
of the independent matching problem.
Proposition 3.2 ([19, Theorem 3.1]). For an LM-matrix A =

(
Q
T

)
with RQ = Row(Q), RT = Row(T)

and C = Col(A), the following rank identity holds:

rankA = min{rankQ[RQ, J] + t-rank T [RT , J] + |C \ J | | J ⊆ C}. (9)

Similarly, we give the following term-rank identity for LM-matrices, which will be used later in the
proof of Lemma 4.7.
Proposition 3.3. For an LM-matrix A =

(
Q
T

)
with RQ = Row(Q), RT = Row(T) and C = Col(A),

the following term-rank identity holds:

t-rankA = min{t-rankQ[RQ, J] + t-rank T [RT , J] + |C \ J | | J ⊆ C}.

Proof. This immediately follows from the well-known rank formula of a union matroid [4] and the fact
that the union of transversal matroids is also a transversal matroid [20, Corollary 11.3.8].

3.3 Combinatorial Relaxation Algorithm for Mixed Polynomial Matrices
Murota [16] described the first algorithm to compute δk(A) for a mixed polynomial matrix A(s) through
a reduction to a valuated independent assignment problem. A combinatorial relaxation algorithm for the
computation of δk(A) is given in [7]. This algorithm first converts a mixed polynomial matrix into an
LM-polynomial matrix A(s) =

(
Q(s)
T (s)

)
, and modifies A(s) to

Ā(s) =
(
UQ(s) O
O I

)(
Q(s)
T (s)

)
,

where I is an identity matrix of appropriate size and UQ(s) is a Laurent polynomial matrix. With the
use of (7), we can obtain the index ν(A) by computing δn(A) and δn−1(A).

In order to devise an index reduction algorithm for DAEs with mixed matrices, we need to make use of
unimodular transformations instead of Laurent polynomial transformations, as explained in Section 2.5.

7

4 Combinatorial Relaxation Algorithm for Index Reduction
with Mixed Polynomial Matrices

This section presents our index reduction algorithm for a DAE

A(s)x̃(s) = f̂(s) (10)

with a nonsingular mixed polynomial matrix A(s), which is the Laplace transform of the DAE (3). From
Corollary 2.4, our goal is to find a unimodular matrix U(s) such that Ā(s) = U(s)A(s) is upper-tight.
Then applying the MS-algorithm to the DAE U(s)A(s)x̃(s) = U(s)f̂(s), we obtain a resultant low-index
DAE.

We cannot perform row operations on A(s) involving rows containing independent parameters. Our
first step is to convert a given DAE (10) into another DAE whose coefficient matrix A(s) is an LM-
polynomial matrix expressed as A(s) =

(
Q(s)
T (s)

)
. Then we can transform A(s) to

Ā(s) =
(
UQ(s) O
O I

)(
Q(s)
T (s)

)
, (11)

where UQ(s) is a unimodular matrix. Note that we are allowed to perform row operations only on Q(s)
even for an LM-polynomial matrix A(s) =

(
Q(s)
T (s)

)
, and thus we cannot always reduce the index to one

only by row operations on Q(s). We describe this conversion process from mixed polynomial matrices
into LM-polynomial matrices in Section 4.1.

After the conversion, we find a unimodular matrix UQ(s) in (11) such that A(s) is upper-tight based
on the combinatorial relaxation approach. The outline of our algorithm is shown as follows.

Algorithm for Tightness

Phase 1. Construct an optimal solution (p, q) of D(A).

Phase 2. If the tight coefficient matrix A# with respect to (p, q) is nonsingular, then return A(s) and
halt.

Phase 3. Modify A(s) into Ā(s) such that δ̂n
(
Ā
)
≤ δ̂n(A)− 1 and δn(A) = δn

(
Ā
)
. Update (p, q) to

an optimal solution of D
(
Ā
)
, and go back to Phase 2.

Section 4.2 describes an algorithm to find (p, q) in Phase 1. The condition in Phase 2, which is equivalent
to the upper-tightness of A(s) by Lemma 2.2, can be checked by solving an independent matching
problem [19]. The matrix modification and an update procedure of (p, q) in Phase 3 is explained in
Sections 4.3 and 4.4, respectively. In Section 4.5, we analyze the time complexity of our algorithm.

4.1 Reduction to LM-polynomial Matrices
We first convert the DAE (10) with a mixed polynomial coefficient matrix A(s) = Q(s) + T (s) into the
following augmented DAE (

I Q(s)
−D DT (s)

)(
ỹ(s)
z̃(s)

)
=
(
f̂(s)

0

)
, (12)

where D is a diagonal matrix whose diagonal entries are independent parameters τ1, . . . , τn. Note that
the coefficient matrix of the augmented DAE (12) is an LM-polynomial matrix as the set of nonzero
coefficients of entries in −D and DT (s) is algebraically independent over K.
Proposition 4.1. Let

(
ỹ(s)
z̃(s)
)
be a solution of the DAE (12). Then z̃(s) is a solution of the DAE (10).

Proof. By left-multiplying both sides of (12) by a nonsingular constant matrix
(
I O
I D−1

)
, we obtain

(
I Q(s)
O A(s)

)(
ỹ(s)
z̃(s)

)
=
(
f̂(s)
f̂(s)

)
,

where O is a zero matrix. Thus it holds A(s)z̃(s) = f̂(s), which implies that z̃(s) is a solution of the
DAE (10).

8

Example 4.2. Consider an index-3 DAEs s α1
s s 0
0 α2 α3s

2 − 2s+ α4

x̃1(s)
x̃2(s)
x̃3(s)

 =

f̂1(s)
f̂2(s)
f̂3(s)

 , (13)

where α1, . . . , α4 are independent parameters. Following (12), we convert this DAE into
1 0 0 s s 0
0 1 0 s s 0
0 0 1 0 0 −2s
−τ1 0 0 0 0 α′1

0 −τ2 0 0 0 0
0 0 −τ3 0 α′2 α′3s

2 + α′4




ỹ1(s)
ỹ2(s)
ỹ3(s)
z̃1(s)
z̃2(s)
z̃3(s)

 =


f̂1(s)
f̂2(s)
f̂3(s)

0
0
0

 , (14)

where τ1, τ2, τ3 are independent parameters, α′1 = τ1α1 and α′i = τ3αi for i = 2, 3, 4. Then we can obtain
a solution (x̃1(s), x̃2(s), x̃3(s)) of (13) by solving the augmented DAE (14). While the index of (14) is
also three, in general this conversion does not preserve the index of DAEs.

After the index reduction process, we need to fill independent parameters by real numbers to start
numerical methods. Indeed, we can substitute 1 for each diagonal entry τi of D, i.e., D = I. To explain
this fact, let

B(s) =
(
Q1(s) Q2(s)
−D DT (s)

)
(15)

be the coefficient matrix of a DAE that our algorithm returns for the augmented DAE (12), where Q1(s)
and Q2(s) are some polynomial matrices. By substituting the identity matrix to D, we obtain

B̄(s) =
(
Q1(s) Q2(s)
−I T (s)

)
. (16)

Though B̄(s) is no longer an LM-polynomial matrix, the following lemma guarantees the upper-tightness
of B̄(s).
Lemma 4.3. Let Q1(s), Q2(s) and T (s) are polynomial matrices and D a nonsingular diagonal matrix.
Then B(s) in (15) is upper-tight if and only if B̄(s) in (16) is upper-tight.

Proof. Using P =
(
I O
O D−1

)
, we have B̄(s) = PB(s). Since P is a nonsingular constant matrix,

δn(B) = δn
(
B̄
)
holds. In addition, since P is nonsingular, diagonal and constant, the row transformation

by P does not change the bipartite graph G(B) and its edge weight ce associated with B(s). This fact
implies that δ̂n(B) = δ̂n

(
B̄
)
. Thus the upper-tightness of B(s) and B̄(s) are equivalent.

From this lemma, we can “forget” the existence of D in the augmented DAE (12). That is, to reduce
the index of the DAE (10), it suffices to apply our algorithm to a DAE(

I Q(s)
−I T (s)

)(
ỹ(s)
z̃(s)

)
=
(
f̂(s)

0

)
as if the set of nonzero coefficients of entries in

(
−I T (s)

)
were independent.

4.2 Construction of Dual Optimal Solution
For an LM-polynomial matrix A(s) =

(
Q(s)
T (s)

)
, an optimal solution (p, q) of D(A) is constructed as follows.

First, we obtain a maximum-weight perfect matching M in G(A) by the Hungarian method [8]. Next,
construct a residual graph GM = (W,EM) with W = R ∪ C ∪ {r} and EM = E(A) ∪M◦ ∪ Z, where
R = Row(A), C = Col(A), r is a new vertex, M◦ = {(j, i) | (i, j) ∈ M}, and Z = {(r, i) | i ∈ R}. The
arc length γ : EM → Z of GM is defined by

γ(i, j) =


−ci,j ((i, j) ∈ E(A)),
cj,i ((i, j) ∈M◦),
0 ((i, j) ∈ Z),

for each (i, j) ∈ EM .

9

Lemma 4.4. For a residual graph GM defined above, the following hold.

(1) All vertices are reachable from r on GM .

(2) There is no negative-weight directed cycle with respect to the arc length γ in GM .

Proof. (1) Every vertex i ∈ R is reachable from r through an edge (r, i) ∈ Z. In addition, since G(A)
has a perfect matching M , every vertex j ∈ C is also reachable from r via i ∈ R through edges (r, i) ∈ Z
and (i, j) ∈M ⊆ E(A).

(2) Suppose that GM has a simple directed cycle C ⊆ EM of negative weight. By the construction of
the residual graph GM , we can express C as

C = {(i0, j1), (j1, i1), (i1, j2), . . . , (iL−1, jL), (jL, iL)},

where L = |C|/2, i0, . . . , iL ∈ R, j1, . . . , jL ∈ C and i0 = iL. Notice that (ik−1, jk) /∈M and (jk, ik) ∈M
hold for k = 1, . . . , L. Let

M ′ := (M \ {(j1, i1), . . . , (jL, iL)}) ∪ {(i0, j1), . . . , (iL−1, jL)}.

Now M ′ is a perfect matching of G(A), and since

∑
e∈C

γ(e) = −
L∑
k=1

cik−1,jk
+

L∑
k=1

cjk,ik < 0,

the weight ofM ′ is greater than the weight ofM . This contradicts the assumption thatM is a maximum-
weight perfect matching.
This lemma guarantees the existence of a shortest path from r to each vertex with respect to the arc
length γ in GM . Let d(i, j) be the length of a shortest path from i ∈W to j ∈W . Using d, we define

pi := −d(r, i) + max
i∗∈R

d(r, i∗), (17)

qj := −d(r, j) + max
i∗∈R

d(r, i∗) (18)

for each i ∈ R and j ∈ C.
Lemma 4.5. Let (p, q) be defined in (17) and (18). Then (p, q) is an optimal solution of D(A) satisfying
0 ≤ pi ≤ ln for each i ∈ R and 0 ≤ qj ≤ ln for each j ∈ C, where n = |R| = |C| and l is the maximum
degree of an entry in A(s).
Proof. First, we prove that (p, q) is a feasible solution of D(A). By the definition of (p, q), every
pi (i ∈ R) and qj (j ∈ C) are clearly integer. For each (i, j) ∈ E(A), it holds d(r, j) ≤ d(r, i)− ci,j . Thus

qj − pi = −d(r, j) + d(r, i) ≥ ci,j

and this implies that (p, q) is a feasible solution of D(A).
We second show the optimality of (p, q). For each (i, j) ∈ M , since (i, j) ∈ EM and (j, i) ∈ EM , we

obtain

qj − pi = −d(r, j) + d(r, i) = ci,j .

Thus it holds that∑
j∈C

qj −
∑
i∈R

pi = −
∑
j∈C

d(r, j) +
∑
i∈R

d(r, i) =
∑

(i,j)∈M

(−d(r, j) + d(r, i)) =
∑

(i,j)∈M

ci,j

which implies that (p, q) is optimal to D(A).
Finally, we give the lower and upper bounds of each pi and qj . The non-negativity of pi clearly holds

from the definition of pi. In addition, since G(A) has a perfect matching, each j ∈ C is incident to at
least one vertex i ∈ R. Thus we obtain qj ≥ pi + ci,j ≥ 0 by pi ≥ 0 and ci,j ≥ 0. Let i∗ ∈ R denote a
vertex such that d(r, i∗) ≥ d(r, i) for each i ∈ R. Fix j ∈ C. Let Pj ⊆ EM and Pi∗ ⊆ EM be shortest
paths from r to j and i∗, respectively. Let v ∈ W be the last common vertex in Pj and Pi∗ . Note that
it holds

qj = −d(r, j) + d(r, i∗) = −d(v, j) + d(v, i∗).

10

Let Qj ⊆ Pj and Qi∗ ⊆ Pi∗ be subpaths from v to j and i∗, respectively. From the definition of the arc
lengths, −d(v, j) ≤ l|Qj ∩ E(A)| and d(v, i∗) ≤ l|Qi∗ ∩M◦| hold. If v = r, we obtain

qj ≤ l(|Qj ∩ E(A)|+ |Qi∗ ∩M◦|)

= l

(
|Qj |

2 + |Qi
∗ | − 1
2

)
< ln.

The last inequality holds since |Qj |+ |Qi∗ | ≤
∣∣W \ {r}∣∣ = 2n. Otherwise, it holds

qj ≤ l(|Qj ∩ E(A)|+ |Qi∗ ∩M◦|)

≤ l
(⌊
|Qj |+ 1

2

⌋
+
⌊
|Qi∗ |+ 1

2

⌋)
≤ ln,

where |Qj | + |Qi∗ | ≤
∣∣W \ {r, v}∣∣ = 2n − 1 is used in the last inequality. Thus qj ≤ ln holds for each

j ∈ C. In addition, for each i ∈ R, we have pi ≤ qj − ci,j ≤ qj ≤ ln, where j ∈ C is incident to i in
M .

4.3 Matrix Modification
Let A(s) =

(
Q(s)
T (s)

)
be an n×n nonsingular LM-polynomial matrix that is not upper-tight. Let A# =

(
Q#

T#

)
be the tight coefficient matrix with respect to an optimal solution (p, q) of D(A). Without loss of
generality, we assume that Row(Q) = RQ = {1, . . . ,mQ} and p1 ≤ · · · ≤ pmQ

, where mQ = |RQ|.
Recall the rank identity (9). Let J∗ ⊆ C be a column subset that minimizes the right-hand side of

the identity for A#, i.e., it holds

rankA# = rankQ#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|. (19)

Such J∗ is called a minimizer of (9). By the row transformation of Q#, we obtain a matrix Q̄# = UQ#

such that

rank Q̄#[RQ, J∗] = t-rank Q̄#[RQ, J∗]. (20)

In particular, this transformation can be accomplished only by operations of adding a scalar multiple of
a row i ∈ RQ to another row j ∈ RQ with pi > pj . Then the matrix U is upper-triangular due to the
order of rows in RQ. This is known as the backward elimination of Q̄#[RQ, J∗]. Consider

UQ(s) = diag(s−p1 , . . . , s−pmQ)Udiag(sp1 , . . . , spmQ), (21)

where diag(a1, . . . , an) denotes a diagonal matrix with diagonal entries a1, . . . , an. Note that each entry
in UQ(s) is a polynomial because U is upper-triangular. In addition, since detUQ(s) = detU is a non-zero
constant, UQ(s) is unimodular.

We define Dp(s) = diag(sp1 , . . . , spn) and Dq(s) = diag(sq1 , . . . , sqn). Using UQ(s), we update A(s)
to Ā(s) as in (11):

Ā(s) =
(
UQ(s) O
O I

)
A(s) = D−1

p (s)
(
U O
O I

)
Dp(s)A(s). (22)

To show that (p, q) is not an optimal solution of D
(
Ā
)
, we use the following lemma, which is given

by Murota [12] as a combinatorial counterpart to Lemma 2.2.
Lemma 4.6 ([12, Proposition 6.2]). Let A(s) be an n× n nonsingular polynomial matrix and A# the
tight coefficient matrix of A(s) with respect to a feasible solution (p, q) of D(A). Then (p, q) is optimal
if and only if t-rankA# = n.
Lemma 4.7. Let A(s) =

(
Q(s)
T (s)

)
be an n×n nonsingular LM-polynomial matrix that is not upper-tight,

and A# =
(
Q#

T#

)
the tight coefficient matrix with respect to an optimal solution (p, q) of D(A). Then for

the LM-polynomial matrix Ā(s) defined in (22), the value (p, q) is feasible on D
(
Ā
)
but not optimal.

11

Proof. Consider a rational function matrix

H(s) = Dp(s)Ā(s)D−1
q (s). (23)

For each i ∈ R and j ∈ C, it holds that degHi,j(s) = c̄i,j + pi − qj , where c̄i,j = deg Āi,j(s). By
substituting (22) into (23), we obtain

H(s) =
(
U O
O I

)
Dp(s)A(s)D−1

q (s) =
(
U O
O I

)(
A# +A∞(s)

)
,

where A∞(s) is a matrix whose nonzero entries are polynomials in s−1. Hence for each i ∈ R and j ∈ C,
it holds degHi,j(s) ≤ 0, which implies c̄i,j ≤ qj − pi. Therefore (p, q) is feasible on D

(
Ā
)
.

Next, we show that (p, q) is not optimal on D
(
Ā
)
. From (22), the tight coefficient matrix Ā# of Ā(s)

with respect to (p, q) is

Ā# =
(
U O
O I

)
A# =

(
Q̄#

T#

)
, (24)

where Q̄# = UQ#. From Proposition 3.3 and (20), it holds

t-rank Ā# = min
{

t-rank Q̄#[RQ, J] + t-rank T#[RT , J] + |C \ J |
∣∣ J ⊆ C}

≤ t-rank Q̄#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|
= rank Q̄#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|.

Now since Q#[RQ, J∗] and Q̄#[RQ, J∗] = UQ#[RQ, J∗] have the same rank, we obtain

t-rank Ā# ≤ rankQ#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗| = rankA#,

where the last equality comes from (19). In addition, since rank Ā# = rankA# from (24), we have
t-rank Ā# ≤ rank Ā#, which implies t-rank Ā# = rank Ā# = rankA#. Furthermore, since A(s) is not
upper-tight, we have rankA# < n by Lemma 2.2. Thus, t-rankA# = rankA# < n holds. It then follows
from Lemma 4.6 that (p, q) is not optimal on D

(
Ā
)
.

From Lemma 4.7 and the unimodularity of UQ(s), we obtain the following.

Corollary 4.8. Let A(s) =
(
Q(s)
T (s)

)
be an n × n nonsingular LM-polynomial matrix that is not upper-

tight, and Ā(s) the LM-polynomial matrix defined in (22). Then δ̂n
(
Ā
)
≤ δ̂n(A)− 1 and δn(A) = δn

(
Ā
)

hold.

4.4 Dual Updates
Let (p, q) be a feasible solution of D

(
Ā
)
. We obtain an optimal solution of D

(
Ā
)
by iterating the following

procedure.
Let Ā# be the tight coefficient matrix of Ā(s) with respect to (p, q). First we check t-rank Ā# = n

or not. If it is, (p, q) is an optimal solution of D
(
Ā
)
from Lemma 4.6 and we are done. Otherwise, we

construct a feasible solution (p′, q′) of D
(
Ā
)
such that the difference

∆ :=
∑
j∈C

(
q′j − qj

)
−
∑
i∈R

(p′i − pi) (25)

of the objective values is negative. Let G# =
(
R,C;E#) be a bipartite graph defined by

E# :=
{

(i, j) ∈ R× C
∣∣ Ā#

i,j 6= 0
}

=
{

(i, j) ∈ E
(
Ā
) ∣∣ qj − pi = c̄i,j

}
.

Since (p, q) is not optimal, there is no perfect matching of G#. Thus G# has a vertex cover S ⊆ R ∪ C
with |S| < n by König–Egerváry’s theorem. Using this S, we define (p′, q′) as follows:

p′i =
{
pi (i ∈ R ∩ S)
pi + 1 (i ∈ R \ S)

, q′j =
{
qj + 1 (j ∈ C ∩ S)
qj (j ∈ C \ S)

(26)

for i ∈ R and j ∈ C.

12

Lemma 4.9. Let (p, q) be a feasible but not optimal solution of D
(
Ā
)
and (p′, q′) defined in (26). Then

the difference ∆ of the objective values in (25) is negative, and (p′, q′) is a feasible solution of D
(
Ā
)
.

Proof. The difference of the objective values is ∆ = |C ∩ S| − |R \ S| = |S| − |R| < 0. Next, we show
the feasibility of (p′, q′). For every (i, j) ∈ E(Ā), it holds qj − pi ≥ c̄i,j since (p, q) is feasible. If i ∈ S
or j ∈ S, it holds

(
q′j − qj

)
− (p′i − pi) ≥ 0, which imply q′j − p′i ≥ qj − pi ≥ c̄i,j . If i /∈ W and j /∈ W ,

then (i, j) is not an edge of G# since (i, j) is not covered by W . Hence it holds qj − pi > c̄i,j , and thus
q′j − p′i = qj − pi − 1 ≥ c̄i,j .

We update (p, q) to (p′, q′), and go back to the optimality checking. From Lemma 4.9, it is guaranteed
that (p, q) becomes an optimal solution of D

(
Ā
)
by iterating the update process above.

4.5 Complexity Analysis
This section is devoted to complexity analysis. The dominating part in our algorithm is the matrix
multiplications in (22).

Let A(s) be an n × n nonsingular LM-polynomial matrix and A# the tight coefficient matrix with
respect to an optimal solution (p, q) of D(A). From the definition of A#, we can express A(s) as

A(s) = D−1
p (s)

(
A# +

K∑
k=1

s−kVk

)
Dq(s) (27)

for some K matrices V1, V2, . . . , VK with VK 6= O. By (22) and (27), we have

Ā(s) = D−1
p (s)

(
U O
O I

)(
A# +

K∑
k=1

s−kVk

)
Dq(s).

Therefore, we can compute Ā(s) by performing K + 1 constant matrix multiplications.
By VK 6= O, there exist i ∈ R and j ∈ C such that the (i, j) entry in VK is nonzero. Then the degree

of the corresponding term in Ai,j(s) is equal to qj − pi − K. Since Ai,j(s) is a polynomial, we have
qj − pi−K ≥ 0, which implies K ≤ qj − pi ≤ qj . The following lemma bounds pi and qj at any iteration
of our algorithm.
Lemma 4.10. During the algorithm, the values pi and qj are at most 2ln for i ∈ R and j ∈ C, where
l is the maximum degree of an entry in A(s).
Proof. From Lemma 4.5, the initial values of pi and qj are bounded by ln. In every update of (p, q),
the values pi and qj increases by at most one from the update rule (26). In addition, (p, q) is updated
at most δ̂n(A) − δn(A) ≤ ln times because the objective value

∑
j∈C qj −

∑
i∈R pi of the dual problem

decreases by at least one in every update. Therefore, at any iteration of the algorithm, it holds pi, qj ≤
ln+ δ̂n(A) ≤ ln+ ln = 2ln.

The time complexity of our algorithm is as follows.
Theorem 4.11. Let A(s) be an n× n nonsingular LM-polynomial matrix and l the maximum degree
of an entry in A(s). Then Algorithm for Tightness runs in O

(
l2nω+2) time, where 2 < ω ≤ 3 is the

matrix multiplication exponent.
Proof. Phase 1 can be done in O

(
n3) time by the Hungarian method [8] and shortest path algorithms

such as the Bellman–Ford algorithm. Consider the time complexity in every iteration of Phases 2 and 3.
In Phase 2, the nonsingularity of the tight coefficient matrix A# can be checked via the rank identity (9).
Thus an efficient way is to obtain a minimizer J∗ of (9) before Phase 2, and then check the nonsingularity
of A# by (9). The minimizer J∗ can be found from a residual graph constructed by an augmenting path
type algorithm [19], which runs in O

(
n3 logn

)
time [3]. The computation of Ā(s) in Phase 3 can be

done in O(Nnω) = O
(
maxj∈C qjnω

)
= O

(
lnω+1) time from Lemma 4.10, where (p, q) is a dual optimal

solution of D(A) and N is in (27). In addition, since the number of iterations of Phases 2 and 3 is at most
δ̂n(A)− δn(A) ≤ ln, the running time in Phases 2 and 3 is O

(
l2nω+2). Finally, the updates of (p, q) run

in O
(
ln4) time: (p, q) is updated at most δ̂n(A) ≤ ln times, and in every update, we can find a vertex

cover in O
(
n3) time by Ford–Fulkerson’s algorithm. Thus the total running time is O

(
l2nω+2).

Theorem 4.12. For a DAE (10) with n×n nonsingular mixed polynomial matrix A(s), our algorithm
returns an equivalent DAE of index zero or one in O

(
l2nω+2) time, where 2 < ω ≤ 3 is the matrix

multiplication exponent and l is the maximum degree of entries in A(s).

13

Proof. First we convert the DAE into an equivalent DAE with LM-polynomial matrix ALM(s) of size
2n × 2n. Note that the maximum degree of an entry in ALM(s) is equal to l by (12). Hence it follows
from Theorem 4.11 that Algorithm for Tightness for ALM(s) runs in O

(
l2nω+2) time. The resulting

DAE has a coefficient matrix such that the maximum degree of an entry is at most 4ln, because it holds
that

degALM
i,j (s) ≤ qj − pi ≤ qj ≤ 4ln

with a feasible solution (p, q) of D
(
ALM), where the last inequality is due to Lemma 4.10.

Next we analyze the complexity of the MS-algorithm described in Section 2.4. In Step 1, we can
reuse a dual optimal solution (p, q) obtained at the termination of Algorithm for Tightness, or compute
a new (p̃, q̃) such that p̃i ≤ pi for i ∈ R to decrease the number of dummy variables, in O

(
n3) time. The

nonsingularity of the corresponding tight coefficient matrix can be verified by solving an independent
matching problem in O

(
n3 logn

)
time [3, 19]. Step 2 runs in O

(
n4 logn

)
time since we solve independent

matching problems at most 2n times. We now consider the resultant DAE returned in Step 4. The
number of original (non-dummy) variables is 2n, and from Lemma 4.10, the orders of their derivatives
are at most

4ln+ max
i∈R

pi ≤ 4ln+ 4ln = O(ln).

In contrast, the number of dummy variables is
∑
i∈R pi = O

(
ln2), and there is no derivative of dummy

variables in the resultant DAE. Therefore, the number of terms in the resultant DAE is O
(
ln2), and

thus Step 4 runs in O
(
ln2) time. Therefore the MS-algorithm costs O

(
n4 logn+ ln2) time.

Since the bottleneck in the entire algorithm is Algorithm for Tightness, the total running time of our
algorithm is O

(
l2nω+2).

5 Exploiting Dimensional Consistency
5.1 Dimensional Consistency
The principle of dimensional homogeneity claims that any equation describing a physical phenomenon
must be consistent with respect to physical dimensions. In order to reflect the dimensional consistency
in conservation laws of dynamical systems, Murota [11] introduced a class of mixed polynomial matrices
A(s) = Q(s) + T (s) that satisfy the following condition.

(MP-DC) Every nonvanishing subdeterminant of Q(s) is a monomial in s.

A mixed polynomial matrix satisfying (MP-DC) is said to be dimensionally consistent. We abbreviate a
dimensionally consistent mixed polynomial matrix and a dimensionally consistent LM-polynomial matrix
to a DCM-polynomial matrix and a DCLM-polynomial matrix, respectively. It is known that an m × n
polynomial matrix Q(s) satisfies (MP-DC) if and only if Q(s) is written as

Q(s) = diag(s−λ1 , . . . , s−λm)Q(1)diag(sµ1 , . . . , sµn) (28)

for some integers λ1, . . . , λm and µ1, . . . , µn.

5.2 Improved Algorithm
This section improves the matrix modification procedure in Phase 3 for DCLM-polynomial matrices
preserving their dimensional consistency.

Let A(s) =
(
Q(s)
T (s)

)
be a DCLM-polynomial matrix with RQ = Row(Q), RT = Row(T) and C =

Col(A). Let A# =
(
Q#

T#

)
denote the tight coefficient matrix with respect to an optimal solution (p, q) of

D(A). For an integer k ∈ Z, let

Rk = {i ∈ RQ | pi − λi = k}, Ck = {j ∈ C | qj − µj = k}. (29)

If Q#
i,j 6= 0, then we have ci,j = qj − pi from the definition of A# and ci,j = µj − λi by (28). Hence

qj − pi = µj − λi follows, which implies i ∈ Rk if and only if j ∈ Ck. Thus, it holds A#[Rh, Ck] = O for

14

distinct h, k ∈ Z. Namely, Q# forms a block diagonal matrix as

Q# =

· · · C−1 C0 C1 C2 · · ·



...
. . .

R−1 Q#
−1

R0 Q#
0

R1 Q#
1

R2 Q#
2

...
. . .

,

where Q#
k = Q#[Rk, Ck] for k ∈ Z, and empty blocks indicate zero submatrices.

Let J∗ ⊆ C be a minimizer of the rank identity (9) for A#. Sorting rows in ascending order of p, the
matrix modification process described in Section 4.3 finds a nonsingular upper-triangular matrix U such
that

rankUQ#[RQ, J∗] = t-rankUQ#[RQ, J∗]. (30)

For a DCLM-polynomial matrix, supposing that rows in Rk is sorted in ascending order of p, we find a
nonsingular upper-triangular matrix Uk such that

rankUkQ#
k [Rk, Ck ∩ J∗] = t-rankUkQ#

k [Rk, Ck ∩ J∗]

for k ∈ Z. Then U = block-diag(. . . , U−1, U0, U1, U2, . . .) satisfies (30), where block-diag(B1, B2, . . . , BN)
is a block diagonal matrix of diagonal blocks B1, B2, . . . , BN .

For k ∈ Z, let Pk(s) be a diagonal polynomial matrix with Row(Pk) = Col(Pk) = Rk whose (i, i) entry
is spi for each i ∈ Rk. Let Dp(s) = block-diag(. . . , P−1(s), P0(s), P1(s), P2(s), . . .). Now the unimodular
matrix UQ(s) defined in (21) can be written as

UQ(s) = D−1
p (s)block-diag(. . . , U−1, U0, U1, U2, . . .)Dp(s)

= D−1
p (s)block-diag(. . . , U−1P−1(s), U0P0(s), U1P1(s), U2P2(s), . . .). (31)

Then we update A(s) into Ā(s) =
(UQ(s)Q(s)

T (s)
)
as written in (22).

Lemma 5.1. Let A(s) =
(
Q(s)
T (s)

)
be an n×n DCLM-polynomial matrix. Then Ā(s) =

(UQ(s)Q(s)
T (s)

)
is also

dimensionally consistent.
Proof. Let λ1, . . . , λmQ

and µ1, . . . , µn defined in (28) for A(s), wheremQ = |Row(Q)|. For k ∈ Z, let Rk
and Ck defined in (29), and let Λk(s) denote a diagonal polynomial matrix with Row(Λk) = Col(Λk) = Rk
whose (i, i) entry is sλi for each i ∈ Rk, and Dµ(s) = diag(sµ1 , . . . , sµn). Then the condition (28) for
dimensional consistency is written as

Q(s) = block-diag(. . . ,Λ−1
−1(s),Λ−1

0 (s),Λ−1
1 (s),Λ−1

2 (s), . . .)Q(1)Dµ(s). (32)

Combining (31) and (32), we obtain

UQ(s)Q(s) = P−1(s)block-diag(. . . , U−1P−1(s)Λ−1
−1(s), U0P0(s)Λ−1

0 (s), U1P1(s)Λ−1
1 (s), . . .)Q(1)Dµ(s)

= P−1(s)block-diag(. . . , s−1U−1, U0, sU1, s
2U2, . . .)Q(1)Dµ(s)

= block-diag(. . . , s−1P−1
−1 (s), P−1

0 (s), sP−1
1 (s), s2P−1

2 (s), . . .)UQ(1)Dµ(s), (33)

where we used Pk(s)Λ−1
k (s) = skI for k ∈ Z. From (33), Ā(s) is also dimensionally consistent.

5.3 Complexity Analysis
For a DCLM-polynomial matrix A(s), we can compute Ā(s) = U(s)A(s) only by one constant matrix
multiplication UQ(1) from (33), whereas a general LM-polynomial matrix needs O(ln) multiplications.
This improves the total running time as follows.
Theorem 5.2. Let A(s) be an n×n nonsingular DCLM-polynomial matrix and l the maximum degree
of an entry in A(s). Then Algorithm for Tightness runs in O

(
ln4 logn

)
time.

15

Proof. For each iteration of Phases 2 and 3, the computation of Ā(s) in Phase 3 can be done in
O(nω) time, where 2 < ω ≤ 3 is the matrix multiplication exponent. The most expensive part is the
nonsingularity checking for a tight coefficient matrix in Phase 2, which requires O

(
n3 logn

)
time [3, 19].

Since the number of iterations of Phases 2 and 3 is at most δ̂n(A) − δn(A) ≤ ln, the running time of
Phases 2 and 3 is O

(
ln4 logn

)
. We can check that other computations run in O

(
ln4 logn

)
time as in the

proof of Theorem 4.11.
Theorem 5.3. For a DAE (10) with n× n nonsingular DCM-polynomial coefficient matrix A(s), our
algorithm returns an equivalent DAE of index zero or one in O

(
ln4 logn

)
time, where l is the maximum

degree of entries in A(s).
Proof. We can easily check that the coefficient LM-polynomial matrix of the augmented DAE described
in Section 4.1 is also dimensionally consistent. Algorithm for Tightness runs in O

(
ln4 logn

)
time from

Theorem 5.2. In addition, the MS-algorithm runs in O
(
n4 logn+ ln2) time as discussed in the proof of

Theorem 4.12. Thus the total running time is O
(
ln4 logn

)
.

6 Examples
We give two examples below. The first example is a simple index-4 DAE and the second example is a DAE
representing an electrical network. Throughout the execution of our algorithm, it is emphasized that: (i)
we only use combinatorial operations and numerical calculations over rational numbers (especially over
integers in the following examples), and (ii) we do not reference nominal values of physical quantities.

6.1 Example of High-index DAE
The first example is the following index-4 DAE

ẍ1 − ẋ1 + ẍ2 − ẋ2 + x4 = f1(t),
ẍ1 + ẍ2 + x3 = f2(t),

α1x2 + α2ẍ3 + α3ẋ4 = f3(t),
α4x3 + α5ẋ4 = f4(t),

(34)

with independent parameters α1, . . . , α5 and smooth functions f1, . . . , f4. The coefficient matrix A(s) =(
Q(s)
T (s)

)
corresponding to (34) is an LM-polynomial matrix given by

A(s) =


s2 − s s2 − s 1
s2 s2 1

α1 α2s
2 α3s

α4 α5s

 , (35)

where empty cells indicate zero. The row sets RQ of Q(s) and RT of T (s) correspond to the first and
last two rows in A(s), respectively. Since δn(A) = deg

(
−α1α5s

3−α1α4s
2 +α1α5s

2) = 3 and δ̂n(A) = 7,
the MS-algorithm is not applicable to the DAE, which is shown in our algorithm.

Let us apply our algorithm to (35). First, we find a dual optimal solution p = (0, 0, 0, 0) and
q = (2, 2, 2, 1). The corresponding tight coefficient matrix A# =

(
Q#

T#

)
is

A# =


1 1
1 1

α2 α3
α5

 .

A minimizer J∗ of (9) for A# is a set of the first two columns as follows:

A# =

J∗︷︸︸︷ C\J∗︷ ︸︸ ︷


1 1
}
RQ1 1

α2 α3
}
RTα5

.

16

Then we can check that rankA# = Q#[RQ, J∗] + T#[RT , J∗] + |C \ J∗| = 1 + 0 + 2 = 3 < 4, which

implies that A(s) is not upper-tight. We convert Q#[RQ, J∗] =
(

1 1
1 1

)
by the backward elimination

into

Q̄#[RQ, J∗] = UQ#[RQ, J∗] =
(

1 1

)
,

where U =
(

1 −1
1

)
. Using UQ(s) = U , the LM-polynomial matrix A(s) is modified to

A′(s) =


1 −1

1
1

1

A(s) =


−s −s −1 1
s2 s2 1

α1 α2s
2 α3s

α4 α5s

 .

The dual solution is updated to p′ = (1, 0, 0, 1) and q′ = (2, 2, 2, 2), and the corresponding tight coefficient
matrix A′# =

(
Q′#

T ′#

)
of A′(s) is

A′# =


−1 −1
1 1

α2
α5

 .

The minimizer J∗ that we used above also minimizes the right-hand side of the rank identity (9) for
A′#. Since A′# is still singular, we go on the modification. Noting the order of rows, we transform

Q′#[RQ, J∗] =
(
−1 −1
1 1

)
by U ′ =

(
1
1 1

)
into

Q̄′#[RQ, J∗] = U ′Q′#[RQ, J∗] =
(
−1 −1

)
.

We have U ′Q(s) = diag(s−1, 1)U ′diag(s, 1) =
(

1
s 1

)
, and modify A′(s) to

A′′(s) =


1
s 1

1
1

A′(s) =


−s −s −1 1

−s+ 1 s
α1 α2s

2 α3s
α4 α5s

 .

The dual solution is updated to p′′ = (1, 3, 2, 3) and q′′ = (2, 2, 4, 4). Our algorithm halts at this point
since A′′(s) is upper-tight, which can be checked through the nonsingularity of the tight coefficient matrix
A′′# again. Now δn(A) is computed as δn(A) = δn(A′′) = δ̂n(A′′) = 3. The resulting DAE is

−ẋ1 − ẋ2 − x3 + x4 = f1(t)− f2(t),
−ẋ3 + x3 + ẋ4 = ḟ1(t)− ḟ2(t) + f2(t),

α1x2 + α2ẍ3 + α3ẋ4 = f3(t),
α4x3 + α5ẋ4 = f4(t),

(36)

which is index two.
An index-1 DAE is obtained by applying the MS-algorithm to the DAE (36). Instead of (p′′, q′′), we

now use an optimal solution p̃ = (0, 2, 1, 2) and q̃ = (1, 1, 3, 3) of D(A′′) in the MS-algorithm in order
to decrease the number of dummy variables and equations. Then the MS-algorithm outputs an index-1

17

DAE 

−ẋ1 − z[1]
2 − x3 + x4 = f1(t)− f2(t),
−ẋ3 + x3 + ẋ4 = ḟ1(t)− ḟ2(t) + f2(t),

−z[2]
3 + x3 + z

[2]
4 = f̈1(t)− f̈2(t) + ḟ2(t),

−z[3]
3 + x3 + z

[3]
4 =

...
f 1(t)−

...
f 2(t) + f̈2(t),

α1x2 + α2x3 + α3ẋ4 = f3(t),

α1z
[1]
2 + α2ẋ3 + α3z

[2]
4 = ḟ3(t),

α4x3 + α5ẋ4 = f4(t),

α4ẋ3 + α5z
[2]
4 = ḟ4(t),

α4z
[2]
3 + α5z

[3]
4 = f̈4(t),

where z[1]
2 , z[2]

3 , z[3]
3 , z[2]

4 and z[3]
4 are dummy variables corresponding to ẋ2, ẍ3,

...
x 3, ẍ4 and

...
x 4, respectively.

6.2 Example of Electrical Network
The next example is a DAE representing an electrical network illustrated in Figure 1, given in [17, Section
1.1]. The network consists of a voltage source of time-varying voltage V (t), two resistances R1 and R2,
an inductor L and a capacitor C. State variables of this network is currents i1, . . . , i5 shown in Figure 1,
and voltages v1, . . . , v5 across branches carrying the currents i1, . . . , i5, respectively.

V (t)

i5
R1

i1
R2 i2

C

i4

L

i3

Figure 1: Simple RLC network.

The Laplace transform of an index-2 DAE representing this network is given by

−1 −1 1
1 1 1 −1

1 1 −1
−1 −1 1

1 −1
R1 −1

R2 −1
sL −1

−1 sC
1





ĩ1
ĩ2
ĩ3
ĩ4
ĩ5
ṽ1
ṽ2
ṽ3
ṽ4
ṽ5


=



0
0
0
0
0
0
0
0
0

Ṽ (s)


, (37)

where ĩ1, . . . , ĩ5, ṽ1, . . . , ṽ5 and Ṽ (s) are the Laplace transforms of i1, . . . , i5, v1, . . . , v5 and V (t), respec-
tively (we assumed that all state variables and their derivatives were equal to zero at t = 0 for simplicity).
In this system (37), the first two equations come from Kirchhoff’s current law (KCL), and the following
three equations come from Kirchhoff’s voltage law (KVL). The last five equations represent the element
characteristics (constitutive equations). The coefficient matrix in (37) is naturally regarded as a mixed
polynomial matrix with independent parameters R1, R2, L and C since nominal values of the parameters
are supposed to be inaccurate.

Let A(s) denote the coefficient matrix in (37). Since A(s) is not LM-polynomial, it seems that
we cannot directly apply our algorithm to A(s). However, since each of the last five rows in A(s) do

18

not contain two or more accurate constants, we can convert A(s) into an LM-polynomial matrix by
multiplying an independent parameter to each of the rows. In addition, by the same logic to Lemma 4.3,
our algorithm works without actually multiplying the independent parameters by regarding nonzero
entries in the last five rows as independent parameters. Thus we see A(s) as an LM-polynomial matrix
A(s) =

(
Q(s)
T (s)

)
, where Q(s) and T (s) correspond to the first and last five rows in A(s), respectively.

In addition, A(s) meets the condition (28) for DCLM-polynomial matrices with λ = (0, 0, 0, 0, 0) and
µ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We are now ready for applying our algorithm to A(s). In Phase 1, a dual optimal solution is obtained
as p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and q = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), which implies that δ̂n(A) = 2. The
corresponding tight coefficient matrix A# =

(
Q#

T#

)
is given by

A# =



−1 −1 1
1 1 −1

1 1 −1
−1 −1

1 −1
R1 −1

R2 −1
L −1
−1 C

1



RQ

RT

.

A minimizer J∗ of the rank identity (9) for A# is the set of nine columns other than the rightmost
column corresponding to the variable ṽ5. Thus we can check

rankA# = Q#[RQ, J∗] + T#[RT , J∗] + |C \ J∗| = 4 + 4 + 1 = 9 < 10,

which imply that A(s) is not upper-tight. We proceed to the matrix modification process for DCLM-
polynomial matrices that we described in Section 5.2.

The row set Rk and the column set Ck for k ∈ Z defined in (29) is the following:

J∗︷ ︸︸ ︷
C0︷ ︸︸ ︷ C1︷︸︸︷ C0︷ ︸︸ ︷ C1︷︸︸︷ C0︷︸︸︷


−1 −1 1

R0.

1 1 −1
Q# = 1 1 −1

−1 −1
1 −1

Now Q# can be seen as a block diagonal matrix consisting of one diagonal block Q#
0 = Q#[R0, C0] by

Q#[R0, C1] = O. We transform

Q#
0 [R0, C0 ∩ J∗] =


−1 −1 1

1 1 −1
1 1
−1 −1

1 −1


into

UQ#
0 [R0, C0 ∩ J∗] =


−1 −1 1

1 1 −1

−1 −1
1 −1

,

19

where U =


1

1
1 1 1

1
1

. Using UQ(s) = U , we modify A(s) to

A′(s) =



−1 −1 1
1 1 1 −1

1 −1
−1 −1 1

1 −1
R1 −1

R2 −1
Ls −1

−1 Cs
1


,

where the third row is different between A(s) and A′(s). The dual solution is updated to p′ =
(0, 0, 1, 0, 0, 0, 0, 0, 0, 1) and q′ = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1). Since the corresponding tight coefficient ma-
trix of A′(s) is nonsingular, we stop the algorithm. The index of the modified DAE remains at two.

Finally, by applying the MS-algorithm to the modified DAE, we obtain an index-1 DAE

−i1 − i4 + i5 = 0,
i2 + i3 + i4 − i5 = 0,

v4 − v5 = 0,

z
[1]
4 − z

[1]
5 = 0,

−v1 − v2 + v4 = 0,
v2 − v3 = 0,

R1i1 − v1 = 0,
R2i2 − v2 = 0,
Li̇3 − v3 = 0,

−i4 + Cz
[1]
4 = 0,
v5 = V (t),

z
[1]
5 = V̇ (t),

where z[1]
4 and z[1]

5 are dummy variables corresponding to v̇4 and v̇5, respectively.

7 Application to Nonlinear DAEs
In this section, we discuss the application of our algorithm to nonlinear DAEs. The σν-method [2], which
is implemented in Mathematica [26], adopts a strategy of treating nonlinear or time-varying terms as
independent parameters in the Jacobian matrices of DAEs. We first describe the σν-method briefly.

Consider an index-2 nonlinear DAE
F1 : ẋ1 + g(x2) = f1(t),
F2 : ẋ1 + x1 + x3 = f2(t),
F3 : ẋ1 + x3 = f3(t),

(38)

where g : R→ R is a smooth nonlinear function. Their method constructs two kinds of Jacobian matrices
JD and JV as follows:

JD =
(
∂Fi
∂ẋj

)
i,j

=

1 0 0
1 0 0
1 0 0

 , JV =
(
∂Fi
∂xj

)
i,j

=

0 dg/dx2 0
1 0 1
0 0 1

 .

If JD is nonsingular, the DAE is index zero from the implicit function theorem. Otherwise, the method
performs the Gaussian elimination on JD (and JV simultaneously) to make a row of zeros in JD. Then

20

the method differentiates the corresponding equation, and checks the nonsingularity of JD again. The
main feature of the σν-method is to treat nonlinear or time-varying terms as “independent parameters”
to avoid complicated symbolic manipulations. The method works according to the rule that arithmetical
operations and the differentiation of independent parameters generate new independent parameters.

The σν-method may fail due to this rule. For example, let α1 be an independent parameter repre-
senting dg/dx2 in JV. By subtracting the first row from the second and third ones, we obtain

JD =

1 0 0
0 0 0
0 0 0

 , JV =

0 α1 0
0 α2 1
0 α3 1

 ,

where α2 = 0−α1 and α3 = 0−α1 are newly generated parameters by the rule of arithmetical operations.
We differentiate the second and third rows. Then JD and JV are

JD =

1 0 0
0 α2 1
0 α3 1

 , JV =

0 α1 0
0 α4 0
0 α5 0

 ,

where α4 and α5 are parameters corresponding to the derivatives of α2 and α3, respectively. Although
the Jacobi matrix JD is indeed singular due to α2 = α3, the σν-method halts at this point as the method
regards α2 and α3 as independent. This failure originates from the elimination of matrices involving the
independent parameter α1. We have confirmed that the implementation in Mathematica actually fails
on this DAE.

Our algorithm is applied to the same DAE (38) as follows. Let

A(s) =

 s α
s+ 1 1
s 1

 ,

where α is an independent parameter representing dg/dx2. As described in Section 2.4, the MS-algorithm
is applicable to the nonlinear DAE (38) if A(s) is upper-tight. The tight coefficient matrix corresponding
to a dual optimal solution p = (0, 0, 0) and q = (1, 0, 0) is

A# =

1 α
1 1
1 1

 ,

which is singular. Thus we need to modify the matrix. By the same logic as the discussion in Section 6.2,
we can regard A(s) as an LM-polynomial matrix A(s) =

(
T (s)
Q(s)

)
, where T (s) corresponds to the first row

and Q(s) corresponds to the other two ones in A(s). Then our algorithm modifies A(s) to

A′(s) =

s α
1
s 1

 ,

which is upper-tight (we omit the detail of this modification). Using an optimal solution p′ = (0, 1, 0)
and q′ = (1, 0, 0) of D(A′), the MS-algorithm obtains a purely algebraic equation

z
[1]
1 + g(x2) = f1(t),
x1 = f2(t)− f3(t),

z
[1]
1 = ḟ2(t)− ḟ3(t),

z
[1]
1 + x3 = f3(t),

where z[1]
1 is a dummy variable corresponding to ẋ1.

This example shows that our algorithm works for a DAE to which the existing index reduction
algorithm cannot be applied. Our algorithm is expected to rarely cause cancellations between nonlinear
terms as the algorithm does not perform the row operations involving independent parameters. Therefore,
although the application to nonlinear DAEs remains at the stage of heuristic, we consider that the
proposed method can be useful for index reduction of nonlinear DAE.

21

8 Conclusion
In this paper, we have proposed an index reduction algorithm for linear DAEs whose coefficient matrices
are mixed matrices. The proposed method detects numerical cancellations between accurate constants,
and transforms a DAE into an equivalent DAE to which the MS-algorithm is applicable. Our algorithm
uses combinatorial algorithms on graphs and matroids, based on the combinatorial relaxation framework.
The algorithm is expected to keep the sparsity of DAEs because the algorithm modifies only rows of
accurate constants, and to run much faster in most cases because the algorithm terminates without
modifying the DAEs unless the DAEs have unlucky numerical cancellations. We also have developed
a faster algorithm for DAEs whose coefficient matrices are dimensionally consistent. Our algorithms
can be applied to nonlinear DAEs by regarding nonlinear terms as independent parameters. Numerical
experiments on nonlinear DAEs are left for further investigation.

References
[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in

Differential-Algebraic Equations. SIAM, Philadelphia, 1996.

[2] S. Chowdhry, H. Krendl, and A. A. Linninger. Symbolic numeric index analysis algorithm for
differential algebraic equations. Industrial & Engineering Chemistry Research, 43:3886–3894, 2004.

[3] W. H. Cunningham. Improved bounds for matroid partition and intersection algorithms. SIAM
Journal on Computing, 15:948–957, 1986.

[4] J. Edmonds. Matroid partition. In G. B. Dantzig and A. F. Veinott, Jr., editors, Mathematics of
the Decision Sciences, pp. 335–345. AMS, Providence, RI, 1968.

[5] C. W. Gear. Differential-algebraic equation index transformations. SIAM Journal on Scientific and
Statistical Computing, 9:39–47, 1988.

[6] S. Iwata and M. Takamatsu. Index reduction via unimodular transformations. METR 2017-05,
University of Tokyo, 2017.

[7] S. Iwata and M. Takamatsu. Computing the maximum degree of minors in mixed polynomial
matrices via combinatorial relaxation. Algorithmica, 66:346–368, 2013.

[8] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quar-
terly, 2:83–97, 1955.

[9] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 296–303, 2014.

[10] S. E. Mattsson and G. Söderlind. Index reduction in differential-algebraic equations using dummy
derivatives. SIAM Journal on Scientific Computing, 14:677–692, 1993.

[11] K. Murota. Use of the concept of physical dimensions in the structural approach to systems analysis.
Japan Journal of Applied Mathematics, 2:471–494, 1985.

[12] K. Murota. Computing puiseux-series solutions to determinantal equations via combinatorial relax-
ation. SIAM Journal on Computing, 19(6):1132–1161, 1990.

[13] K. Murota. Mixed matrices: irreducibility and decomposition. In Combinatorial and Graph-
Theoretical Problems in Linear Algebra, pp. 39–71. Springer, New York, 1993.

[14] K. Murota. Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Com-
puting Smith-Mcmillan form at infinity and structural indices in Kronecker form. Applicable Algebra
in Engineering, Communication and Computing, 6:251–273, 1995.

[15] K. Murota. Computing the degree of determinants via combinatorial relaxation. SIAM Journal on
Computing, 24:765–796, 1995.

[16] K. Murota. On the degree of mixed polynomial matrices. SIAM Journal on Matrix Analysis and
Applications, 20:196–227, 1998.

22

[17] K. Murota. Matrices and Matroids for Systems Analysis. Springer, Berlin, 2000.

[18] K. Murota and M. Iri. Structural solvability of systems of equations —a mathematical formulation
for distinguishing accurate and inaccurate numbers in structural analysis of systems—. Japan
Journal of Applied Mathematics, 2:247–271, 1985.

[19] K. Murota, M. Iri, and M. Nakamura. Combinatorial canonical form of layered mixed matrices and
its application to block-triangularization of systems of linear/nonlinear equations. SIAM Journal
on Algebraic and Discrete Methods, 8:123–149, 1987.

[20] J. Oxley. Matroid Theory. Oxford University Press, Oxford, 2nd ed., 2011.

[21] C. C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM Journal on
Scientific and Statistical Computing, 9:213–231, 1988.

[22] J. D. Pryce. A simple structural analysis method for DAEs. BIT Numerical Mathematics, 41:364–
394, 2001.

[23] C. Shi. Linear Differential-Algebraic Equations of Higher-Order and the Regularity or Singularity
of Matrix Polynomials. PhD thesis, Technische Universität, Berlin, 2004.

[24] G. Tan, N. S. Nedialkov, and J. D. Pryce. Symbolic-numeric methods for improving structural
analysis of differential-algebraic equation systems. In J. Bélair, I. A. Frigaard, H. Kunze, R. Makarov,
R. Melnik, and R. J. Spiteri, editors, Mathematical and Computational Approaches in Advancing
Modern Science and Engineering, pp. 763–773. Springer, Cham, 2016.

[25] J. Unger, A. Kröner, and W. Marquardt. Structural analysis of differential-algebraic equation
systems — theory and applications. Computers and Chemical Engineering, 19:867–882, 1995.

[26] Wolfram Research, Inc. Numerical Solution of Differential-Algebraic Equations — Wolfram Lan-
guage Documentation. URL: http://reference.wolfram.com/language/tutorial/NDSolveDAE.
html. (accessed September 27, 2017).

23

http://reference.wolfram.com/language/tutorial/NDSolveDAE.html
http://reference.wolfram.com/language/tutorial/NDSolveDAE.html

	1 Introduction
	2 Index Reduction for Linear DAEs
	2.1 Index of Linear DAEs
	2.2 Assignment Problem
	2.3 Computing the Index via Combinatorial Relaxation
	2.4 Mattsson–Söderlind's Index Reduction Algorithm
	2.5 Index Reduction via Combinatorial Relaxation

	3 DAEs with Mixed Matrices
	3.1 Mixed Matrices and Mixed Polynomial Matrices
	3.2 Rank of LM-matrices
	3.3 Combinatorial Relaxation Algorithm for Mixed Polynomial Matrices

	4 Combinatorial Relaxation Algorithm for Index Reduction with Mixed Polynomial Matrices
	4.1 Reduction to LM-polynomial Matrices
	4.2 Construction of Dual Optimal Solution
	4.3 Matrix Modification
	4.4 Dual Updates
	4.5 Complexity Analysis

	5 Exploiting Dimensional Consistency
	5.1 Dimensional Consistency
	5.2 Improved Algorithm
	5.3 Complexity Analysis

	6 Examples
	6.1 Example of High-index DAE
	6.2 Example of Electrical Network

	7 Application to Nonlinear DAEs
	8 Conclusion

