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Abstract

In this paper we consider a cut sparsification problem for digraphs parametrized by
balancedness. A weighted digraph D = (V,E) is said to be α-balanced if the total weight of
the edges from U to V \U is at most α times the total weight of the edges from V \U to U for
any U ⊆ V . Based on the combinatorial cut-sparsification framework by Fung et al. (2011),
we show that for any α-balanced weighted digraph D with n vertices and m edges there is a
weighted subdigraph D′ with O(αε−2n log n log(nW )) edges that (1 + ε)-cut-approximates D
where W is the maximum weight of an edge in D. We also show how to compute a such cut
sparsifier in O(m logα+ α3n logWpoly(log n)) time.

Applying our sparsifier as a preprocessing, the running time of the minimum cut approxi-
mation algorithm by Ene et al. (2016) is improved to O(m logα+ α3ε−4npoly(log n)) for an
α-balanced digraph with n vertices and m edges.

1 Introduction

Graph sparsification is one of the fundamental tools for developing efficient graph algorithms.
The seminal work of Karger [9] and Benczúr and Karger [1, 2] showed that for any positively
weighted undirected graph G with n vertices and m edges, there is a weighted subgraph G′

with O(ε−2n log n) edges such that the size of each cut is within (1 ± ε) factor of the original
cut size. Such a sparse subgraph is called a cut sparsifier. They also gave an O(m log3 n) time
algorithm for constructing a cut sparsifier with high probability, and demonstrated applications
to several cut and flow problems. Later, Spielman and Teng [15] introduced a generalized notion,
a spectral sparsifier, that sparsifies G keeping the spectral of the Laplacian, and have broadened
applications to solving linear systems. Since the work of [15], various improved spectral sparsifiers
and efficient algorithms have been developed.

This successful line of research is only for undirected graphs, and despite its obvious im-
portance, there has been little progress for digraphs. Cohen et al. [4] recently introduced a
new notion of spectral sparsifiers based on a scaled norm, and they showed the existence of
sparsifiers with O(ε−2npoly(log n)) edges for any strongly connected digraphs. However, unlike
the undirected case, their spectral sparsifier does not imply a cut sparsifier. In fact there are
digraphs which do not admit cut sparsifiers with sub-quadratic size (see [4]). This is a typical
reason why there is no counterpart theory for digraphs.

Although we cannot hope for a perfect theory for digraphs, there is a natural question; for
which class of digraphs can we construct good cut sparsifiers? In this paper we study this problem

∗This work is supported by JST CREST (JPMJCR1402).
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by focusing on balanced graphs. Balancedness is a new notion introduced by Ene et al. [5] for
expressing the ratio of the in-coming and out-going cut sizes. More formally, for α ≥ 1, a digraph
D = (V,E) is called α-balanced if

δ+(U ;D) ≤ αδ−(U ;D)

holds for any U ⊆ V , where δ+(U ;D) (resp., δ−(U ;D)) denotes the sum of the weights of the
edges from U to V \ U (resp., from V \ U to U). The imbalance bD of D is defined to be the
infimum of α such that D is α-balanced. Note that bD = 1 if and only if D is Eulerian.

The main contribution of this paper is to show the existence of cut sparsifiers whose sizes are
parametrized by bD. We show that for any weighted digraph D with n vertices and m edges,
there is a weighted subdigraph D′ with O(bDε

−2n log n log(nW )) edges such that

(1− ε)δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + ε)δ+(U ;D) for all U ⊆ V ,

where W is the maximum weight of an edge in D. We further show how to obtain such a cut
sparsifier in O(m log bD + b3Dn logWpoly(log n)) time with high probability.

Our result on the existence of cut sparsifiers is actually a direct application of a result on
undirected cut sparsifiers. Although the main focus of the research for undirected graphs has
been shifted to spectral sparsifiers, still interesting questions remain even for cut sparsifiers. One
such a question is to understand which graph parameter can be used as a sampling parameter
in a sampling-type algorithm. Fung et al. [6] gave a general framework to solve this question
for undirected graphs. In this paper we exploit the power of their remarkable combinatorial
approach; we show that the proof of the main result in [6] can be applied even to digraphs
without any substantial modification.

As is always the case with cut sparsifiers, our result can be used as a preprocessing of algorithms
for any cut problem. One interesting example is the minimum cut problem of balanced digraphs
studied by Ene et al. [5]. Ene et al. [5] gave an algorithm to find a (1 + ε)-approximate minimum
cut (and a (1− ε)-approximate maximum flow) of a digraph D that runs in O(mb2Dε

−2 logc n)
time for some constant c. (Here the current best c is 45, see [14].) Using our sparsifier at a
preprocessing phase, we obtain an algorithm that runs in O(m log bD + b3Dε

−4n poly(log n)) time.
This is a substantial improvement if bD is not too large. (Note that an exact algorithm in [11] is
faster than that of Ene et al. [5] if bD = Ω(n1/4).)

The paper is organized as follows. In Section 2 we show the existence of cut sparsifiers
for balanced digraphs, and in Section 3 we give an efficient algorithm for constructing those
sparsifiers. In Section 4 we explain an application to the minimum cut problem. In Section 5 we
give a short remark on the number of cut projections in α-balanced digraphs.

Throughout the paper we consider a digraph D = (V,E) or an undirected graph G = (V,E)
with n vertices, m edges, and each edge weight is a positive integer. As defined above, for U ⊆ V ,
δ+(U ;D) (resp., δ−(U ;D)) denotes the sum of the weights of the edges from U to V \ U (resp.,
from V \ U to U). In an undirected graph G, we use δ(U ;G) to denote the sum of the weights
of the edges between U and V \ U . The (local) edge connectivity κ(e;G) of e = {u, v} in G is
defined by κ(e;G) = κe = min{δ(U ;G) | U ⊆ V, u ∈ U, v /∈ U}. Similarly, the edge connectivity
κ(e;D) of e = (u, v) in D is defined by κ(e;D) = min{δ+(U ;D) | U ⊆ V, u ∈ U, v /∈ U}.

2 Digraph Sparsification

In this section, we give cut sparsifications for digraphs based on the result by Fung et al. [6]. Let
us first give the following formal definition.
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Definition 2.1. Let D = (V,E) be a digraph. A digraph D′ = (V,E′) ε-cut-approximates D,
which is often abbreviated as D′ ∈ (1± ε)D, if for all U ⊆ V ,

(1− ε)δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + ε)δ+(U ;D).

A sparse subgraph that ε-cut-approximates the original graph is called a cut sparsifier.
As is in the ordinary sparsification framework, our algorithm is a random sampling algorithm.

More specifically, we use the compression of each edge, first introduced by Benczúr and Karger [1,
2], where each edge e is sampled with probability pe and the sampled edge is given a weight 1/pe.
The sampling probability is determined by a graph parameter λe for each edge e. The original
algorithm by Benczúr and Karger [1, 2] uses the strong connectivity of each edge e for λe, which
is defined to be the largest k for which a k-edge-connected subgraph containing the edge exists.
Fung et al. [6] showed that it is possible to construct a cut sparsifier using edge connectivity,
effective resistance, or Nagamochi-Ibaraki index (defined in Section 2.1).

A formal description of the compression for digraphs is given in Algorithm 1.

Algorithm 1 Compress(D,λ, γ, d, ε)

Input: A weighted simple digraph D = (V,E,w) with weight ω : E → Z+, an edge parameter
λ : E → Z+, a constant γ, d ∈ R+, and ε ∈ (0, 1)

Output: A cut sparsifier Dε = (V, F, u)
1: C ← 43(d+ 7)
2: ρ← Cγ lnn/ε2

3: F ← ∅
4: for each e ∈ E do
5: pe ← min{ρ/λe, 1}
6: Generate a random number Xe from a binomial distribution B(we, pe)
7: if Xe > 0 then
8: Add edge e to F and set ue = Xe/pe
9: end if

10: end for
11: return Dε = (V, F, u)

We now analyze the quality of the output Dε. Following the analysis by Fung et al. [6], we
consider a partition F0, F1, . . . , FΛ of the edge set E of D defined by

Fi := {e ∈ E | 2i ≤ λe < 2i+1}

where Λ = blg(maxe∈E λe)c.
We say that a family G0, . . . , GΛ of weighted undirected graphs covers D if for each i and for

each (u, v) ∈ Fi, the weight of {u, v} in Gi is greater than or equal to the sum of the weights of
(u, v) and (v, u) in Fi. Such a cover is said to be a γ-certificate 1 if the following two properties
are satisfied:

(Connectivity) For each i ≥ 0 and each edge (u, v) ∈ Fi, κ({u, v};Gi) ≥ 2i−1.

(Overlapped) For any U ⊆ V ,
∑Λ

i=0 δ(U ;Gi) ≤ γ · δ+(U ;D).

Given γ-certificates, the following theorem states the existence of cut sparsifiers.

Theorem 2.2. Let D be a weighted digraph, and λe be a positive integer for each e ∈ E.
Suppose that there exists a γ-certificate family of weighted undirected graphs that covers D. Then,
Dε = Compress(D,λ, γ, d, ε) contains O(γ logn

ε2
∑

e∈E
we
λe

) edges in expectation, and Dε ∈ (1± ε)D
with probability at least 1− 1/nd.

1This is a simplified and adapted notion of the (π, α)-certificate introduced by Fung et al. [6].
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Proof. The theorem follows from the following more general statement, Theorem 2.3, by observing
that each undirected graph Gi is considered as an Eulerian digraph if we regard each undirected
edge as two parallel directed edges of both directions.

We can apply the above definition of a covering family and a γ-certificate to a family of
weighted digraphs D0, . . . , DΛ. Formally, a family D0, . . . , DΛ of weighted digraphs covers D
if for each i and for each (u, v) ∈ Fi, the weight of (u, v) in Di is greater than or equal to the
weight of (u, v) in Fi. A cover is said to be a γ-certificate if κ((u, v);Di) ≥ 2i−1 holds for each
i ≥ 0 and each edge (u, v) ∈ Fi, and

∑Λ
i=0 δ

+(U ;Di) ≤ γ · δ+(U ;D) for any U ⊆ V .
Theorem 2.2 still holds if Gi is substituted by an Eulerian digraph Di.

Theorem 2.3. Let D be a weighted digraph, and λe be a positive integer for each e ∈ E.
Suppose that there exists a γ-certificate family of weighted Eulerian digraphs that covers D. Then,
Dε = Compress(D,λ, γ, d, ε) contains O(γ logn

ε2
∑

e∈E
we
λe

) edges in expectation, and Dε ∈ (1± ε)D
with probability at least 1− 1/nd.

Theorem 2.3 is a proper extension of Theorem 2.2. The proof of Theorem 2.3 is an adaptation
of that of Fung et al. [6], but for completeness we give a formal proof in Appendix B.

2.1 Compression using NI Indexes

In the following two subsections, we shall show how to set up parameter λe to apply Theorem 2.2.
Nagamochi and Ibaraki [13, 12] showed how to compute a sparse certificate for the k-

connectivity of undirected graphs. Motivated by their work, Fung et al. [6] introduced the
following simplified variant of the local connectivity.

Definition 2.4 (NI forest, NI index [6]). Let G be an undirected graph with integer-valued edge
weight, and let G̃ be the multigraph obtained from G by replacing each edge e with weight we
by we parallel edges. A sequence of edge-disjoint spanning forests T1, T2, . . . of G̃ is said to be
an NI forest packing if Ti is a spanning forest on the edges left in G̃ after removing those in
T1, T2, . . . , Ti−1. An edge with weight we in G must appear in we contiguous forests. The NI
index of edge e in G, denoted `e, is the index of the last NI forest in which e appears.

Let D = (V,E) be an α-balanced digraph, and G be the undirected graph obtained from D
by ignoring the direction. For each edge e ∈ E, we set λe = `e, where `e is the NI index of e in
G. It turns out that the compression using this parameter gives a good sparsifier. To see this
we need to construct a family G0, . . . , GΛ of undirected graphs with the properties as given in
Theorem 2.2.

Let T1, T2, . . . , Tk be an NI forest packing of G. We define a weighted undirected graph Hi to
be the union of T2i−1 , T2i−1+1, . . . , T2i−1 (i.e., the weight of {u, v} is the number of appearances
of edge {u, v} in T2i−1 , T2i−1+1, . . . , T2i−1.) We then define Gi = (V,Ei) such that the weight of
{u, v} is the sum of the weight of {u, v} in Hi and the weights of (u, v) and (v, u) in Fi for every
pair u, v ∈ V (and Ei is defined to be the set of pairs of vertices with nonzero weight).

Lemma 2.5. A family Gi of undirected graphs defined above is a 2(1 +α)-certificate covering D.

Proof. Clearly the family covers D.
To see the connectivity, recall first that λe ≥ 2i for any e = (u, v) ∈ Fi. Hence u and v are

connected in each of T2i−1 , T2i−1+1, . . . , T2i−1 by the definition of NI forest packing. Therefore
κ({u, v};Gi) ≥ 2i−1.

To evaluate the overlapping, note that for any i 6= j, Fi ∩ Fj = ∅ and the edge set of Hi is
disjoint from that of Hj . Hence the sum of the weights of {u, v} over Gi is at most two times the
weight of {u, v} in G. Thus for each U ⊆ V we get

∑
i δ(U ;Gi) ≤ 2δ(U ;G) ≤ 2(1 + α)δ+(U,D),

and it is 2(1 + α)-overlapped.
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We can now apply Theorem 2.2.

Theorem 2.6. Let D be a weighted digraph, and Dε = Compress(D, `, 2(1 + bD), d, ε). Then, Dε

contains O(bDε
−2n log n log(nW )) edges in expectation, and Dε ∈ (1 ± ε)D with probability at

least 1− 1/nd, where W is the maximum weight of an edge in D.

Proof. By Lemma 2.5, there always exists a 2(1+bD)-certificate covering D. Thus by Theorem 2.2,
we have a weighted subgraph Dε with O(ρ

∑
ewe/`e) edges and Dε ∈ (1± ε)D with probability

at least 1− 1/nd. It was shown by Fung et al. [6] that
∑

e∈E we/`e = O(n log(nW )). Therefore
Dε has the properties in the statement.

2.2 Compression using Edge Connectivities

If we use the local edge connectivity, we have a slightly better sparsifier. But computing the
local edge connectivities is more expensive than computing the NI indexes.

Let D = (V,E) be a digraph, and let G be the undirected graph obtained from D by ignoring
the direction. For an edge e = (u, v) in D, we consider the local edge connectivity κe of {u, v}
in G. We consider the compression by setting λe = κe for each e ∈ E. We need to construct a
family G0, . . . , GΛ of undirected graphs with the properties as given in Theorem 2.2.

Let T1, . . . , Tk be an NI forest packing of G. We define a weighted undirected graph Hi to
be the union of T1, T2, . . . , T2i−1−1 for i ≤ lg n, the union of T2i−1−lgn , T2i−1−lgn+1, . . . , T2i+1−1 for
i ≥ lg n+ 1. We then define Gi = (V,Ei) such that the weight of {u, v} is the sum of the weight
of {u, v} in Hi and the weights of (u, v) and (v, u) in Fi for every pair u, v ∈ V (and Ei is defined
to be the set of pairs of vertices with nonzero weight).

Lemma 2.7 (Fung et al. [6]). Let T1, T2, . . . be an NI forest packing of an undirected graph
G = (V,E). For any pair of vertices u, v ∈ V and for any i ≥ 1, κ(u, v;T1 ∪ T2 ∪ · · · ∪ Ti) ≥
min{κuv, i}.

Lemma 2.8. A family Gi of undirected graphs defined above is a (1 + α)(3 + lg n)-certificate
covering D.

Proof. Clearly the family covers D.
Hence, for i ≤ lg n, it holds that κ({u, v};Hi) ≥ 2i−1 − 1 by Lemma 2.7, and κ({u, v};Gi) ≥

2i−1. For i ≥ lg n+ 1, it holds that κ({u, v};T1 ∪ · · · ∪ T2i+1−1) ≥ 2i by Lemma 2.7. Since there
are at most 2i−1 edges in T1, T2, . . . , T2i−1−lgn−1, we have κ({u, v};Gi) ≥ 2i−1.

To evaluate the overlapping, note that for any i 6= j, Fi ∩ Fj = ∅ and each edge of G
appears in Hi for at most 2 + lg n different values of i. Hence the sum of the weights of
{u, v} over Gi is at most 3 + lg n times the weight of {u, v} in G. Thus for each U ⊆ V we
get

∑
i δ(U ;Gi) ≤ (3 + lg n)δ(U ;G) ≤ (1 + α)(3 + lg n)δ+(U ;D), and it is (1 + α)(3 + lg n)-

overlapped.

We can now apply Theorem 2.2.

Theorem 2.9. Let D be a weighted digraph, and Dε = Compress(D,κ, (1 + bD)(3 + lg n), d, ε).
Then, Dε contains O(bDε

−2n log2 n) edges in expectation, and Dε ∈ (1± ε)D with probability at
least 1− 1/nd.

Proof. By Lemma 2.8, there always exists a (1 + bD)(3 + lg n)-certificate covering D. Thus by
Theorem 2.2, we have a weighted subgraph Dε with O(ρ

∑
ewe/κe) edges and Dε ∈ (1 ± ε)D

with probability at least 1− 1/nd. It is known [6] that
∑

e∈E we/κe ≤ n− 1. Therefore Dε has
the properties in the statement.

We can also apply the analysis to the compression algorithm using the local edge connectivity
of digraphs (rather than that of the underlying undirected graphs) as sampling parameter λe.
However, the resulting edge density is no better than that in Theorem 2.9.
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3 Digraph Sparsification Algorithm

In this section we give an efficient implementation of Compress based on the NI index. For
this, we compute the NI index of a weighted graph before calling Compress. It is implicit in the
work by Nagamochi and Ibaraki [13] that the NI index of a weighted graph can be computed
in O(m + n log n) time. The generation of a random variable from a binomial distribution
B(we, pe) can be done in O(wepe) time (see e.g. [8]). Therefore, Compress(D, `, 2(1 + α), ε) can
be implemented in O(m +

∑
ewepe) time if we know that D is α-balanced in advance. Here∑

ewepe = O(αε−2n log n log(nW )) is the expected number of the edges in the sparsifier, and we
may always assume that it is O(m) since otherwise we can simply return D as a better sparsifier.
Hence the total running time is O(m). To apply the algorithm to any digraph D, we need to
(approximately) compute the imbalance of D. For this, the following result is known.

Lemma 3.1 (Ene et al. [5, Lemma 2.9]). Given a weighted digraph D and α such that D is
α-balanced, there is an algorithm ApproxBal(D,α, ε0) that outputs (1 + ε0)-approximate bD in
O(mα2ε−2

0 poly(log n)) time.

By simply calling the algorithm in Lemma 3.1, we obtain an O(mb2Dpoly(log n)) time algorithm
for constructing a cut sparsifier for a digraph D. In this section we shall present an improved
implementation by first showing the following.

Lemma 3.2. Given a weighted digraph D, there is an algorithm that outputs α with bD ≤ α ≤
27bD with probability at least 1− 1/nd in O(m log bD + b3Dn logW poly(log n)) time, where W is
the maximum weight of an edge in D.

In the algorithm stated in Lemma 3.2, we use the following two algorithms as subroutines.

• ApproxBal(H,α, ε0): Given α ∈ Z+, ε0 ∈ R+, and an α-balanced digraph H with n vertices
and m edges, output b with bH ≤ b ≤ (1 + ε0)bH in O(mα2ε−2

0 poly(log n)) time.

• Sparsify(H,α, ε0): Given α ∈ Z+, ε0 ∈ R+, and an α-balanced digraph H with n vertices
and m edges, output H ′ with O(αε−2

0 n log n log(nW )) edges that (1 + ε0)-cut-approximates
H with probability at least 1− 1/nd+1 in O(m) time.

Note that in these subroutines we are required to know that the input is α-balanced in advance.
Combining these two subroutines, we consider Algorithm 2 to compute the imbalance

approximately. Here D−1 denotes the digraph obtained from D by reversing the direction of
each edge, and αD denotes the weighted digraph in which the weight of each edge is α times of
the original weight.

We show that Algorithm 2 outputs a constant-factor-approximation of bD. We first remark
that, since there are at most log n iterations, all Sparsify(Dα, α, ε0) outputs a cut sparsifier with
probability at least 1− 1/nd.

Lemma 3.3. For any α ∈ Z+, Dα = D ∪ αD−1 satisfies

bDα =
1 + αbD
α+ bD

≤ α.

Proof. For any nonempty subset U ( V ,

δ−(U ;Dα)

δ+(U ;Dα)
=
δ−(U ;D) + αδ+(U ;D)

δ+(U ;D) + αδ−(U ;D)
=

1 + αβ(U)

β(U) + α

where β(U) := δ+(U ;D)/δ−(U ;D). For a ≥ 1, a function f(x) = (1 + ax)/(a+ x) = a− (a2 −
1)/(a+ x) is monotonically increasing. Hence, bDα is given by U that maximizes β(U), implying
the first equation in the statement.
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Algorithm 2 An algorithm to approximate imbalance

Input: A weighted digraph D = (V,E,w)
1: ε0 ← 0.1, ε1 ← 2(1 + ε0)/(1− ε0), α← 1
2: while α ≤ n do
3: Dα ← D ∪ αD−1

4: Hα ← Sparsify(Dα, α, ε0)
5: bα ← ApproxBal(Hα, α(1 + ε0)/(1− ε0), ε0)
6: if bα ≤ (α+ α−1)/2ε1 then
7: return α
8: else
9: α← 2α

10: end if
11: end while
12: Output “α is larger than n”

The second inequality simply follows by observing

bDα = α− α2 − 1

α+ bD
≤ α.

Lemma 3.4. Let Hα = Sparsify(Dα, α, ε0) and bα = ApproxBal(Hα, α(1 + ε0)/(1− ε0), ε0). Then
with probability at least 1− 1/nd+1,

1− ε0
1 + ε0

bDα ≤ bα ≤
(1 + ε0)2

1− ε0
bDα .

Proof. From Lemma 3.3, Sparsify(Dα, α, ε0) correctly outputs a cut sparsifier with probability at
least 1− 1/nd+1. Hence,

1− ε0
1 + ε0

bDα ≤ bHα ≤
1 + ε0
1− ε0

bDα .

By Lemma 3.3 this in particular implies bHα ≤ α(1+ε0)/(1−ε0), and therefore ApproxBal(Hα, α(1+
ε0)/(1 − ε0), ε0) correctly outputs a (1 + ε0)-approximate of bHα , i.e., bHα ≤ bα ≤ (1 + ε0)bHα .
Therefore we obtain the relation in the statement.

Lemma 3.5. Let bα = ApproxBal(Hα, α(1+ε0)/(1−ε0), ε0), and suppose that bα ≤ (α+α−1)/2ε1
where ε1 = 2(1 + ε0)/(1− ε0). Then α ≥ bD with probability at least 1− 1/nd+1.

Proof. If bα ≤ (α+ α−1)/2ε1,

1− ε0
1 + ε0

· 1 + αbD
α+ bD

≤ (1− ε0)

2(1 + ε0)
· 1

2

(
α+

1

α

)
(1)

holds from Lemma 3.3 and Lemma 3.4. Then (1) is equivalent to

0 ≤ α3 − 3α2bD − 3α+ bD = α(α− bD)(α− 1)− (2bD − 1)α2 − bD(α− 1)− 3α.

Since α ≥ 1 and bD ≥ 1, it is necessary that α ≥ bD.

Lemma 3.6. Let bα = ApproxBal(Hα, α(1 + ε0)/(1− ε0), ε0) and ∆ = 4ε1(1 + ε0)2/(1− ε0). If
α ≥ ∆bD, then bα ≤ (α+ α−1)/2ε1 with probability at least 1− 1/nd+1.
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Proof.

bα ≤
(1 + ε0)2

1− ε0
bDα (by Lemma 3.4)

=
(1 + ε0)2

1− ε0
· 1 + αbD
α+ bD

(by Lemma 3.3)

≤ (1 + ε0)2

1− ε0

(
1

α+ bD
+
α

∆

)
(by α ≥ ∆bD)

≤ (1 + ε0)2

1− ε0
· 2α

∆

(
by

1

α+ bD
≤ 1

2
< bD ≤

α

∆

)
≤ (1 + ε0)2

1− ε0
· 2

∆

(
α+

1

α

)
=

1

2ε1

(
α+

1

α

)

We are now ready prove Lemma 3.2.

Proof of Lemma 3.2. Let α∗ be the output. By Lemma 3.5 we have bD ≤ α∗. By Lemma 3.6
and Line 6 of Algorithm 2, it holds that α in the second to last loop (= α∗/2) is at most ∆bD.
Thus, by the definition of ∆ and ε1,

α∗ ≤ 2∆bD =
16(1 + ε0)3

(1− ε0)2
.

When we take ε0 = 0.1, we have α∗ ≤ 27bD.
The time complexity can be obtained by replacing m of the time complexity of ApproxBal

with the edge size of the output of Sparsify.

Now, by using Algorithm 2 to compute the imbalance of a given digraph, we have the following
computational result for cut sparsifiers.

Theorem 3.7. Given a weighted digraph D and ε, there is an algorithm that outputs a cut
sparsifier with O(bDε

−2n log n log(nW )) edges in expectation with probability at least 1− 1/nd in
time O(m log bD + b3Dn logW poly(log n)), where W is the maximum weight of an edge in D.

4 Minimum Cut Problem

Ene et al. [5] show the following algorithm.

Theorem 4.1 (Ene et al. [5]). Given a weighted digraph D, a source s, a sink t, and ε0 with
0 < ε0 < 1, there is an algorithm that outputs a (1 + ε0)-approximate minimum s-t cut in time
O(mb2Dε

−2
0 poly(log n)).

When computing a (1 + ε0)-approximate minimum s-t cut, there is a simple trick to suppose
that the edge weight is integer-valued and the maximum weight value is at most O(m2/ε0) [3].
Hence by using the cut sparsifier in Theorem 3.7 at a preprocessing phase in the algorithm in
Theorem 4.1, we have the following.

Theorem 4.2. Given a weighted digraph D, a source s, a sink t, and ε0 with 0 < ε0 < 1, there
is an algorithm that outputs a (1 + ε0)-approximate minimum s-t cut with probability at least
1− 1/nd in O(m log bD + b3Dε

−4
0 n poly(log n)) time.

8



Figure 1: An example that shows the simple approach for counting does not seem to work.

5 Bound of the number of cut projections in balanced digraphs

It was shown by Karger and Stein [10] that the number of cuts of size at most β times the
minimum cut size is bounded by n2β for any undirected graph with n vertices. This was
generalized by Fung et al. [6] in the form of cut projections (defined below for digraphs), and
was crucially used in the analysis of cut sparsifiers. On the other hand, there is a family of
digraphs for which the number of the minimum cuts exponentially grows in n, and this is a
critical difference between undirected and directed graphs. In view of this, in this section we
shall give a new bound on the number of cut projections in terms of imbalance.

Definition 5.1 (Fung et al. [6]). An edge is said to be k-heavy if its connectivity is at least k;
otherwise, it is said to be k-light. The k-projection of an edge set is the set of k-heavy edges in
it.

The following theorem, a natural extension of the theorem by Fung et al. [6], is a key tool in
the proof of Theorem 2.3.

Theorem 5.2. Let λ be the weight of a minimum weight cut in a digraph D. Then, for any
integer k ≥ λ and any real number β ≥ 1, the number of k-projections of cuts with size at most
βk is at most 2n2βbD .

Suppose that D is an Eulerian digraph, i.e., bD = 1. One natural idea to prove Theorem 5.2
for D is to apply the undirected version of Fung et al. [6] to the underlying undirected graphs.
Specifically for counting the number of cuts of size k, we may count the number of cuts of
size 2k in the underlying undirected graph since in the Eulerian digraph D = (V,E) we have
δ+(U ;D) = δ−(U ;D) for any U ⊆ V . This simple approach does not seem to work. Consider,
for example, the graph in Fig. 1, which consists of n disjoint pairs of strongly connected graphs
of two vertices. The corresponding undirected graph consists of n pairs of vertices with two
multiple edges. Consider counting the number of cuts of size n in this digraph. This corresponds
to picking one vertex from each component, and hence we have 2n choices. On the other hand,
in the underlying graph, there is only one cut of size 2n, that is, the whole edge set.

We may guess such a gap does not occur in strongly connected digraphs; however we cannot
ignore disconnected digraphs in order to count the number of k-projections stated in Theorem 5.2;
even if a given digraph is strongly connected, it can be disconnected after removing k-light edges.

Nevertheless we can apply the proof of the undirected counterpart by Fung et al. [6]. One
critical ingredient in the proof by Fung et al. [6] is Mader’s splitting-off theorem, whose directed
counterpart does not hold in general. Fortunately, Jackson [7] already pointed out an extension
of Mader’s theorem to Eulerian digraphs, and this extension enables us to apply the proof of
Fung et al. [6] to Eulerian digraphs. Extending the result from Eulerian digraphs to general
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digraphs using the imbalance parameter is done by a simple counting argument. See Appendix
A for a formal proof.
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A Proof of Theorem 5.2

Let D = (V,E) be a strongly connected digraph. Since the edge weight is integer-valued, in the
following discussion we may assume that D is an unweighted multigraph. For U ⊆ V , we define
C+(U ;D) (resp., C−(U ;D)) be the set of edges from U to V \ U (resp., from V \ U to U). We
also define P (k, β;D) to be the set of the k-projections of cuts with size at most βk in D. Our
goal is to prove |P (k, β;D)| ≤ 2n2βbD .

We first consider the case when D is Eulerian.

Lemma A.1. Let λ be the weight of a minimum weight cut in an Eulerian digraph D. Then,
for any integer k ≥ λ and any real number β ≥ 1, |P (k, β,D)| ≤ 2n2β.

To prove this, we introduce the splitting-off operation.

Definition A.2. The splitting-off operation replaces a pair of edges (u, v) and (v, w) with the
edge (u,w), and is said to be admissible if it does not change the edge connectivity kst between
any two vertices s, t 6= v. It is well-known that splitting-off operation never increases the size of
any cut.

The complete splitting-off operation at a vertex v repeatedly performs admissible splitting-off
operations on the edges incident on v until v becomes an isolated vertex, and then removes v.

Lemma A.3 (Jackson [7]). Let v be a non isolated vertex of an Eulerian digraph D. Then, there
exists a complete splitting-off operation at v.

The proof of Lemma A.1 is done by analyzing the following algorithm, Algorithm 3, which
is identical to that given by Fung et al. [6]. In Algorithm 3, a vertex v is said to be k-heavy if
there exists an k-heavy edge incident on v; otherwise, it is said to be k-light.

Algorithm 3 performs a set of iterations. In each iteration, it performs complete splitting-off
at all k-light vertices in D, contracts an edge selected uniformly at random, and removes all
self-loops. The iterations terminate when at most d2βe vertices are left in the graph. At this
point, the algorithm outputs the k-projection of a cut selected uniformly at random. Note that a
complete splitting-off adds new edges to D. All new edges are treated as k-light irrespective of
their connectivity. Therefore, the k-projection of a cut that is output by the algorithm does not
include any new edge.

Lemma A.1 follows from the following.

Lemma A.4. Let F be the k-projection of a cut with size at most βk. Then, Algorithm 3 outputs
F with probability at least n−2β/2.

Indeed, if Lemma A.4 holds, the probability that a k-projection of a cut with size at
most βk is returned is at least n−2β/2 times the number of such k-projections. Thus we get
|P (k, β,D)| ≤ 2n2β.

We shall now prove Lemma A.4. Algorithm 3 changes a graph to a different graph by complete
splitting-offs, edge-contractions, and removals of self-loops. Let Di = (Vi, Ei) (i = 0, . . . ,M)
be the graphs which we consider during the algorithm. To prove Lemma A.4, we consider the
following properties:
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Algorithm 3 An algorithm for proving bound on cut projections

Input: An Eulerian digraph D = (V,E), an integer k ≥ λ where λ is the weight of a minimum
weight cut in D, and a real number β ≥ 1

1: while there are more than d2βe vertices remaining do
2: while there exists a k-light vertex v in D do
3: Perform a complete splitting-off at v
4: end while
5: Pick an edge e uniformly at random
6: Contract e and remove all self-loops
7: end while
8: return the k-projection of a cut selected uniformly at random

• (I1) Di is Eulerian.

• (I2) There exists a subset Ui ⊆ Vi such that prk(C
+(Ui;Di);D) = F and δ+(Ui;Di) ≤ βk,

where prk(C;D) is the k-projection of C in D.

• (I3) If e ∈ Ei is not an edge added by complete splitting-offs and κ(e;D) ≥ k, then
κ(e;Di) ≥ k.

Clearly, D = D0 has the properties (I1)-(I3). Since the removal of a self-loop does not affect
any cut set, (I1)-(I3) are preserved. For a complete splitting-off operation,

• (I1) is preserved from the definition of splitting-off.

• (I2) is preserved since we only split-off at a k-light vertex and a splitting-off never increases
the size of any cut.

• (I3) is preserved since we only split-off at a k-light vertex and the splitting-offs are admissible.

Lemma A.5. Let Di+1 be the result of a contraction of an edge f = (w, x) chosen from Di

uniformly at random. Suppose that Di has the properties (I1)-(I3). Then, Di+1 has the properties
(I1)-(I3) with probability at least 1− 2β/|Vi|.

Proof. Clearly, (I1) is preserved. For (I3), since a contraction does not create new cuts, the edge
connectivity of an uncontracted edge cannot decrease. Now we consider the probability that
Di+1 has (I2). (I2) is preserved if C+(Ui;Di) ∪ C−(Ui;Di) does not contain f , and,

Pr[f /∈ C+(Ui;Di) ∪ C−(Ui;Di)] = 1− |C
+(Ui;Di) ∪ C−(Ui;Di)|

|Ei|

= 1− 2δ+(Ui;Di)

|Ei|
.

Since every vertex in Di is k-heavy, the outdegree of each vertex is at least k. Therefore, we have

|Ei| =
∑
v∈Vi

δ+(v;Di) ≥ k|Vi|,

and

Pr[f /∈ C+(Ui;Di) ∪ C−(Ui;Di)] ≥ 1− 2δ+(Ui;Di)

k|Vi|
≥ 1− 2β

|Vi|
.

We use a following technical lemma.
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Lemma A.6 (Karger [9, p.42, ll.27–28]). For any real number β ≥ 1 and any positive integer
n > 2β,

n!

Γ(n− 2β + 1)
< n2β.

Now we are ready to prove Lemma A.4.
We assume that n > 2β; otherwise there is nothing to prove. Let N be the number of

contractions, and suppose that the ith contraction transforms Dji into Dji+1. The output is F if
D0, D1, . . . , DM satisfies (I1)-(I3) and the algorithm selects the cut defined by UM in Line 8. Let
R be d2βe. Then,

Pr[Algorithm 3 outputs F ]

≥
(

1− 2β

|Vj1 |

)(
1− 2β

|Vj2 |

)
· · ·
(

1− 2β

|VjN |

)
2−|VM |

=

(
1− 2β

n

)(
1− 2β

n− 1

)
· · ·
(

1− 2β

R+ 1

)
2−R

=
n− 2β

n
· n− 1− 2β

n− 1
· · · R+ 1− 2β

R+ 1
· 2−R

=
Γ(n− 2β + 1)

Γ(R− 2β + 1)
· R!

n!
· 2−R ≥ Γ(n− 2β + 1)

2 · n!
> n−2β/2,

where the second last inequality follows from 2R−1 ≤ R! and 0 < Γ(x) ≤ 1 for 1 ≤ x ≤ 2, and
the last inequality follows from Lemma A.6. This completes the proof of Lemma A.4, and hence
Lemma A.1.

Proof of Theorem 5.2. Let D′ = D ∪ D−1. For any U ⊆ V , it follows from the definition of
imbalance that

(1 + b−1
D )δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + bD)δ+(U ;D). (2)

From the first inequality of (2), for any u, v ∈ V ,

κ((u, v);D′) = min
{
δ+(U ;D′) | U ⊆ V, u ∈ U, v /∈ V

}
≥ min

{
(1 + b−1

D )δ+(U ;D) | U ⊆ V, u ∈ U, v /∈ V
}

= (1 + b−1
D )κ((u, v);D).

Hence for k-heavy edge e in D,

κ(e;D′) ≥ (1 + b−1
D )κ(e;D) ≥ (1 + b−1

D )k.

Furthermore, from the second inequality of (2), if U ⊆ V satisfies δ+(U ;D) ≤ βk, then
δ+(U ;D′) ≤ β(1 + bD)k. Thus,

|P (k,β;D)| = |{prk(C
+(U ;D);D) | U ⊆ V, δ+(U ;D) ≤ βk}|

≤ |{pr(1+b−1
D )k(C

+(U ;D′);D′) | U ⊆ V, δ+(U ;D′) ≤ β(1 + bD)k}|.

Note that the last formula is |P ((1+b−1
D )k, βbD;D′)|. Thus, by Lemma A.1, we have |P (k, β;D)| ≤

|P ((1 + b−1
D )k, βbD;D′)| ≤ 2n2βbD .
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B Proof of Theorem 2.3

The proof is again an adaptation of that for the undirected counterpart [6].
We prepare some notations. Recall that C+(U ;D) is the set of edges from U to V \ U . For

U ⊆ V , we define F
(U)
i = Fi ∩ C+(U ;D), and f

(U)
i = |F (U)

i |. Let f̂
(U)
i be the sum of weight over

edges in F
(U)
i that appear in Dε. It holds that E[f̂

(U)
i ] = f

(U)
i .

The following Chernoff bound will be used.

Lemma B.1 (Fung et al. [6]). Let X1, X2, . . . , Xn be n independent random variables such that
Xi takes value 1/pi with probability pi and 0 otherwise. Then, for any p such that p ≤ pi for
each i, any ε ∈ (0, 1), and any N ≥ n,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > εN

]
< 2e−0.38ε2pN .

The following lemma is a key to prove Theorem 2.3.

Lemma B.2. Let D0, . . . , DΛ be a γ-certificate family of weighted Eulerian digraphs that covers
D, and i ∈ {0, 1, . . . ,Λ}. Then with probability at least 1− 1/nd+2, any U ⊆ V satisfies

|f (U)
i − f̂ (U)

i | ≤
ε

2
max

{
δ+(U ;Di)

γ
, f

(U)
i

}
. (3)

Proof. If f
(U)
i = 0, (3) holds with probability one. So we only consider U such that f

(U)
i > 0.

By the connectivity condition of γ-certificates, we have δ+(U ;Di) ≥ 2i−1 for any such U . Then
we partition subsets of V into Uij (j ≥ 0) based on δ+(U ;Di):

Uij = {U ⊆ V | f (U)
i > 0, 2i+j−1 ≤ δ+(U ;Di) ≤ 2i+j − 1}.

In order to analyze the worst situation, we may assume that each edge is sampled with
probability strictly less than one, i.e, pe = ρ

λe
. We claim the following:

Each U ∈ Uij satisfies (3) with probability at least 1− 2n−(d+7)2j . (4)

To see this, recall that λe < 2i+1 for each e ∈ F (U)
i . Hence

pe =
ρ

λe
≥ ρ

2i+1
.

Therefore by Lemma B.1, we have

Pr

[
|f (U)
i − f̂ (U)

i | >
( ε

2

)
max

{
δ+(U ;Di)

γ
, f

(U)
i

}]
< 2 exp

(
−0.38

ε2

22

ρ

2i+1
max

{
δ+(U ;Di)

γ
, f

(U)
i

})
≤ 2 exp

(
−0.38

ε2

22

ρ

2i+1

δ+(U ;Di)

γ

)
.

Using δ+(U ;Di) ≥ 2i+j−1 and ρ = Cγ lnn/ε2 with C = 43(d+ 7), the last term is bounded by
2n−(d+7)2j .

By (4) and the union bound, the failure probability of (3) is at most∑
j≥0

|{F (U)
i | U ∈ Uij}| · 2n−(d+7)2j . (5)
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To bound |{F (U)
i | U ∈ Uij}| we use Theorem 5.2. By the connectivity condition of γ-certificates,

|{F (U)
i | U ∈ Uij}| ≤ |{F (U)

i | δ+(U ;Di) ≤ 2i−1 · 2j+1 − 1}| ≤ |P (2i−1, 2j+1;Di)| ≤ 2n4·2j . (6)

By (5) and (6) the failure probability of (3) is at most

∑
j≥0

4n−(d+3)2j ≤ 4n−(d+3)

1− n−(d+3)
≤ 1

nd+2
.

Proof of Theorem 2.3. In the graph D, there are at most n2 pairs of vertices, so the number of
distinct λe is at most n2. Hence the number of nonempty Fi is at most n2. Using union bound
over these values of i, we can conclude that (3) is satisfied for all i and U with probability at
least 1− 1/nd. Thus, from the triangle inequality, we have

|δ+(U ;D)− δ+(U ;Dε)| =

∣∣∣∣∣
Λ∑
i=0

f
(U)
i −

Λ∑
i=0

f̂
(U)
i

∣∣∣∣∣
≤

Λ∑
i=0

|f (U)
i − f̂ (U)

i |

≤ ε

2

Λ∑
i=0

max

{
δ+(U ;Di)

γ
, f

(U)
i

}

≤ ε

2

(
Λ∑
i=0

δ+(U ;Di)

γ
+

Λ∑
i=0

f
(U)
i

)
≤ ε · δ+(U ;D)

since γ-overlapped property and
Λ∑
i=0

f
(U)
i = δ+(U ;D).

Hence we conclude that Dε ∈ (1± ε)D.
Finally, observe that the expected number of edges in Dε is

∑
e(1− (1− pe)we) ≤

∑
ewepe =

O(
∑

e ρwe/λe). This completes the proof.
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