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Abstract
We consider the range mode problem where given a sequence and a query range in it, we want to
find items with maximum frequency in the range. We give time- and space- efficient algorithms for
this problem. Our algorithms are efficient for small maximum frequency cases. We also consider
a natural generalization of the problem: the range mode enumeration problem, for which there
has been no known efficient algorithms. Our algorithms have query time complexities which is
linear to the output size plus small terms. We also give an application of our algorithm for fast set
intersection problem.

1 Introduction

We consider the range mode problem, defined as follows.

Definition 1 (Mode). Given a non-empty multiset S, x ∈ S is said to be a mode of S, if its
multiplicity is no smaller than those of any other elements.

Definition 2 (Range mode problem). For a sequence A[0...n − 1] and a range [l, r] of A
(0 ≤ l ≤ r < n), output any one of the modes of the multiset {A[l], A[l+1], . . . , A[r−1], A[r]}.

The problem has many applications in data mining and data analysis [2, 4]. Moreover, there
is a strong interest in theory community as well for this problem as it is related to the famous
Boolean matrix multiplication and set intersection problem [1].

In this paper, we consider the indexing version of the range mode problem. That is, given
a sequence of length n, we first construct a data structure, called an index. Then given a
query range [l, r], we solve the query using the index as well as the input. The algorithm is
measured by the index size (in bits) and query time complexity. There are many existing
work [7, 1, 8, 3] and some of them are summarized in Table 1.

Our first contribution is space-efficient indexes for the range mode problem, for the case
the maximum multiplicity m of an item in the set is small. Table 1 summarizes our results.
The one in Corollary 26 has better time and space complexities than that of [3] with ε = 0,
which is also specialized for small m and has space complexity O(nm logn) bits and query
time complexity O(log logn).

Our second contribution is efficient indexes for the range mode enumeration problem,
defined as follows.

Definition 3 (Range Mode Enumeration Problem). Given a sequence A[0...n− 1] and a query
range [l, r] (0 ≤ l ≤ r < n), output all items in the multiset {A[l], A[l+ 1], . . . , A[r− 1], A[r]}
with the largest number of occurrences.
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2 Enumerating Range Modes with Applications

Table 1 Complexities of data structures for the range mode problem where n is the number of terms
of a string and m is the maximum frequency of an item. The space complexities do not include one
for the input string.

Data structure Space complexity (bits) Query time complexity conditions
[7] O

(
n2−2ε logn

)
O(nε) 0 ≤ ε ≤ 1/2

[1] O
(
n2−2ε) O(nε) 0 ≤ ε ≤ 1/2

[8] O
(
n2 log logn

logn

)
O(1)

[3] O((n1−εm+ n) logn) O(nε + log logn) 0 ≤ ε ≤ 1/2

Theorem 25 O
(

4knm
(
n
m

) 1
22k

)
O(2k) k is any positive integer

Theorem 28 O(nm) O(logm)
Corollary 26 O

(
nm
(
log log n

m

)2
)

O
(
log log n

m

)
Though the problem seems to be a natural generalization of the range mode problem,

there has been no existing work. A related and important problem, the set intersection
problem [1], has been considered. However, the set intersection problem can be reduced
to the range mode enumeration problem, whereas the converse is not true. We cannot use
existing algorithms for the set intersection problem to solve the range mode enumeration
problem. A simple modification of an existing algorithm [3] works, but it takes O(nε) time
for each output of an item (see Theorem 32). We give faster solutions whose query time
complexity is linear to the output size plus some small term. Table 2 summarizes the results.

The paper is organized as follows. In Section 2, we review basic properties of the
range mode problem and existing algorithms for the range mode problem. We also explain
fundamental data structures for storing integer sequences. In Section 3, we give our improved
algorithms for the range mode problem. In Section 4, we give algorithms for the range mode
enumeration problem. Section 5 summaries the paper. Some of the proofs, algorithms, and
figures are given in the appendix.

2 Preliminaries

2.1 Basic properties
To avoid confusion between modes and frequency of modes, from now on we consider range
mode problems for not integer sequences but strings on an alphabet. We define the following.
• S: input string
• n: the length of string S

Table 2 Complexities of data structures for the range mode enumeration problem where |output|
denotes the number of solutions, n the length of the input sequence, m the maximum frequency of
symbols, and ε is a parameter between 0 and 1/2 users can choose. Note that the space complexities
does not contain that for the input sequence S.

Data structure Space (bits) Query time
Theorem 32 O(n2−2ε logn) O(nε|output|)
Theorem 43 O

(
nm
(
log log n

m

)2 + n logn
)

O
(
log log n

m
+ |output|

)
Theorem 44 O(nm+ n logn) O(logm+ |output|)
Theorem 45 O(n1+ε logn+ n2−ε) O(logm+ n1−ε + |output|)
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• Σ: the set of characters (alphabet) of S
• f(l, r): the frequency of the modes of the substring S[l, r]
• m: the frequency of a character with maximum frequency, that is, m = f(0, n− 1)
We assume that there exists a bijection Σ→ {0, 1, . . . , |Σ| − 1} which can be computed in
constant time. We sometimes identify characters in the alphabet and integers.

Lemma 4. [[6]] If non-empty multisets M,M1 and a multiset M2 satisfies M = M1 ∪M2
and if x is a mode of M , at least one of the following holds.
• x is a mode of M1.
• x belongs to M2.

Lemma 5. For l2 < l1 ≤ r1 < r2, if f(l1, r1) = f(l2, r2), modes of range [l1, r1] are also
modes of range [l2, r2].

2.2 Algorithms for the range mode problem
We review the data structure with O(n2−2ε)-word space and O(nε) query time [3]. The input
string S of length n is partitioned into n/s = n1−ε blocks of length s = nε each. In addition
to S, the data structure has the following four components.
Two-dimensional array A : For each character in the alphabet, an array for storing

positions of its occurrences is used.
Array B : For each position i of S, B[i] stores the number of times that the character S[i]

occurs in the substring S[0, . . . , i− 1].
Two-dimensional array C : The (i, j) entry of C stores the frequency of modes of the

substring from the i-th block to the j-th block. That is, C[i][j] = f(i · s, (j + 1) · s− 1).
Two-dimensional array D : The (i, j) entry of D stores one of the modes of the substring

from the i-th block to the j-th block.
The space complexity is O(n2−2ε) words, for any fixed 0 ≤ ε ≤ 1/2. Using these arrays, any
query [l, r] is solved in O(nε) time as follows. If a query is contained inside a block, we scan
the range [l, r] and for each character in the alphabet, we count its number of occurrences.
This takes O(s) = O(nε) time. If a query range [l, r] lies on more than one block, we partition
the query range into prefix [l, (bl + 1)s− 1], span [(bl + 1)s, brs− 1], and suffix [brs, r] where
bl = bl/sc, br = br/sc. Note that the span may be empty.

From Lemma 4, modes of range [l, r] are either (a) modes of the span, (b) a character
in the prefix, or (c) a character in the suffix. For (b) and (c), we scan the prefix and the
suffix, and for each character in them, we compute its frequency using the arrays A and B
(for details refer to [3]). For (a), one of the modes of the span and its frequency is obtained
from D[bl][br] and C[bl][br], respectively. This also takes O(s) = O(nε) time.

There exist improved data structures which are summarized in Table 1.

2.3 Representations of integer sequences
Definition 6. We define IMS(n, u) as the set of all integer sequences A of length n such
that 0 ≤ A[0] ≤ A[1] ≤ · · · ≤ A[n− 1] < u.

Theorem 7 ([10]). For a sequence A ∈ IMS(n, u) (n > u) and an integer k ≥ 0, there
exists a data structure using O(2kn1/2k

u1−1/2k ) bits which can compute
• access(i, A) = A[i]
• bound(i, A) = #{j | A[j] > i}
in O(2k) time.
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Theorem 8 (FID [9]). For a bit-vector B of length n which contains u ones, consider the
following operations.
• access(i, B): returns the i-th bit of B.
• rankc(i, B): returns #{j | B[j] = c}.
• selectc(i, B): returns min{j | rankc(j, B) = i}.
There exists a data structure which performs the operations in constant time using log

(
n
u

)
+

Θ
(
n log logn

logn

)
bits of space.

3 Improved Data Structures for Range Mode Problem

We propose efficient data structures for the range mode problem usingm, the largest frequency
of characters, as a parameter.

Consider the data structure of Section 2.2 with ε = 0. For simplicity we define C[i][j] = 1
for any i, j with i > j. Then the n× n array C satisfies the following property.

Property 1. For any adjacent entries in the two-dimensional array C, it holds

C[i][j] ≤ C[i][j + 1] ≤ C[i][j] + 1 (0 ≤ i < n, 0 ≤ j < n− 1),
C[i][j] ≤ C[i− 1][j] ≤ C[i][j] + 1 (1 ≤ i < n, 0 ≤ j < n).

From the definition, C also satisfies:

Property 2. Any entry of C is an integer between 1 and m.

Below we propose a data structure for storing C in a compressed form and supporting
constant time access.

3.1 An efficient representation of the array C

We define the set of two-dimensional arrays which have both column-wise and row-wise
monotonicity as follows.

Definition 9. We define the set of two-dimensional arrays A[0 . . . n− 1][0 . . . n− 1] which
satisfy all the following inequalities as IMS2 (n,m).

A[i][j] ≤ A[i][j + 1] (0 ≤ i < n, 0 ≤ j < n− 1),
A[i][j] ≤ A[i+ 1][j] (1 ≤ i < n, 0 ≤ j < n),

0 ≤ A[i][j] < m (0 ≤ i < n, 0 ≤ j < n).

Theorem 10. Let A be a two-dimensional array in IMS2 (n,m) (n ≥ m) and k be a non-
negative integer. There exists a data structure Sk(n,m) which can output an entry of A in
O
(
2k
)
time using O

(
4knm

(
n
m

) 1
22k

)
bits of space.

Proof. We prove by induction on k that there exists a data structure Sk(n,m) using at most
c4knm

(
n
m

) 1
22k bits of space, where c is some constant satisfying:

• There exists a data structure Z(n,m) using at most c1/3
√
nm bits of space which can

read an entry of IMS(n,m) in constant time.
Below we show such a constant c exists, if we use the data structure of Theorem 7.

For k = 0, we use the data structure Z(n,m) of Theorem 7 for storing each column. Then
the space usage is at most c1/3n3/2m1/2 bits, which is at most cn3/2m1/2 bits and the claim
holds.
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0 0 0 1
1 1 1 2
1 2 2 3
2 2 3 3

(0,4)

(4,0)

Figure 1 An IMS2 (4, 4) array. The second boundary of its grid graph is shown in a red bold line.
We can see that the boundary is a shortest path from vertex (0, 4) to vertex (4, 0) of the grid graph.

Now we assume that the data structure Sk−1 exists, and prove Sk also exists. We partition
the two-dimensional array into u× u blocks where u = n/t, each of which has t =

(
n
m

) 1
22k−1

columns and rows. The block corresponding to A[it, . . . , (i+ 1)t− 1][jt, . . . , (j + 1)t− 1] is a
t× t two-dimensional array and denoted by Bi,j . We define flatness of a block as follows.

Definition 11. A block is called flat if all the entries in the block are identical.

We also define the height of a block.

Definition 12. The height of block Bi,j, denoted by di,j, is defined as

di,j = Bi,j [t− 1][t− 1]−Bi,j [0][0] + 1
( = A[(i+ 1)t− 1][(j + 1)t− 1]−A[it][jt] + 1).

That is, the height of a block is the difference between the maximum and the minimum values
in the block, plus one.

We prove the following:

Theorem 13. Among u2 blocks, there are at most 2um non-flat blocks.

To prove it, we define k-th boundary in a block for k = 0, 1, . . . ,m− 1 as follows.

Definition 14. For a two-dimensional array A ∈ IMS2 (n,m), consider the (n+ 1)× (n+ 1)
grid graph G. The k-th boundary of A is defined as the edge set of G satisfying:

{((i, j), (i+ 1, j))|A[i][j − 1] < k and A[i][j] ≥ k}
∪ {((i, j), (i, j + 1))|A[i− 1][j] < k and A[i][j] ≥ k},

where we assume A[−1][·] = A[·][−1] = −1.

Then the following holds.

Property 3. The k-th boundary is a shortest path from vertex (0, n) to vertex (n, 0) of the
grid graph G. That is, if we regard the path as a directed path from (0, n) to (n, 0), the
edges in the path are of the form of either (i, j)→ (i+ 1, j) or (i, j)→ (i, j − 1).

Example 15. Figure 1 shows an IMS2 (4, 4) array and its second boundary.
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Proof of Theorem 13. It is equivalent that a block is flat, and that any boundary does not
pass inside the block. For each of m boundaries, the number of blocks in which the boundary
passes is 2u. Therefore the number of blocks which contains at least one boundary in it is at
most 2um. �

Based on this property, we use the following data structure.
E: to store IMS2 (u,m)

We define E[i][j] = A[it][jt] (0 ≤ i < u, 0 ≤ j < u). It is clear that E ∈ IMS2 (u,m).
Fi,j: to store differences inside block Bi,j

For non-flat block Bi,j , we define Fi,j [x][y] := Bi,j [x][y] − Bi,j [0][0]. Then it holds
Fi,j ∈ IMS2 (t, di,j).

It holds for the original array A, A[i][j] = E[i/t][j/t] + Fi/t,j/t[i%t][j%t], and for flat block
Bi,j , the two-dimensional array Fi,j is the zero-value array. Then an access to the array A is
done by Algorithm 1. At line 4 of the algorithm, it is necessary to decide if a block is flat
or not. Because a naive data structure using a u× u Boolean array is space-consuming, we
develop a space-efficient solution. To do so, we define the following mapping.

Definition 16 (Mapping to decide if a block is flat or not). We define a mapping from a block
number to a pair of integers Φ : {0, . . . , u− 1}2 → {0, . . . ,m− 1} × {0, . . . , 2u− 2} as

(i, j) 7→ (E[i][j], i− j + u− 1).

We obtain the following.

Theorem 17. For any two distinct non-flat blocks Bi1,j1 and Bi2,j2 , it holds Φ(i1, j1) 6=
Φ(i2, j2).

Proof. Let Bi1,j1 and Bi2,j2 be two distinct non-flat blocks. From the definition of Φ the
claim holds if E[i1][j1] 6= E[i2][j2]. If E[i1][j1] = E[i2][j2], the E[i2][j2]-th boundary must
pass both Bi1,j1 and Bi2,j2 . It is however not possible to pass both of them if i1− j1 = i2− j2
from Property 3. Thus it holds Φ(i1, j1) 6= Φ(i2, j2). �

We also define a mapping, which is something like an inverse of Φ.

Definition 18. We define a mapping

Ψ : {0, . . . ,m− 1} × {0, . . . , 2u− 2} → {0, . . . , u− 1}2 ∪ {⊥}

as Ψ(x, y) = (i, j) if there exists a non-flat block Bi,j with Φ(i, j) = (x, y), and Ψ(x, y) = ⊥
otherwise.

Then it holds block bi,j is not flat ⇔ Ψ(Φ(i, j)) = (i, j). To use this fact, we have to
compute both Ψ and Φ. We can compute Φ at line 3 of Algorithm 1 from Definition 16. To
compute Ψ, we use the following.

Lemma 19. Assume that Ψ(x, y1) = (i1, j1),Ψ(x, y2) = (i2, j2). Then if y1 ≤ y2, it holds
i1 ≤ i2 and j1 ≥ j2.

Finally we obtain:

Theorem 20. Ψ(x, y) is computed in constant time using a data structure of (2
√

2c1/3+2)nm
t

bits.
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Therefore the decision at line 4 of Algorithm 1 is done by using Algorithm 2.
We analyze the space complexity of the data structure Sk. If u > m, the space complexity

of the two-dimensional array E is, from the assumption of Sk−1(u,m),

c4k−1um
( u
m

) 1
22k−1 = c4k−1nm

(m
n

) 1
22k−1

( u
m

) 1
22k−1

= c4k−1nm

(
1
t

) 1
22k−1

= c4k−1nm
(m
n

) 1
22k−1

1
22k−1

≤ c4k−1nm.

If u ≤ m, it can be stored in c1/3u3/2m1/2 bits by using the data structure Z(u,m) for each
row. Therefore for any case E can be stored in at most c4k−1nm bits.

Next we consider the space complexity of storing differences inside non-flat blocks.

Lemma 21. For the summation of all di,j, it holds
∑

0≤i<u
0≤j<u

di,j ≤
2mn
t

.

Proof. From the column-wise and row-wise monotonicity, for each l = −u+ 1, . . . , u− 1, it
holds

∑
i−j=l

di,j ≤ m. By summing this for all l, we obtain the claim. �

Consider the space complexity of the data structure storing Fi,j ∈ IMS2 (t, di,j) for non-flat

blocks Bi,j . If t > di,j , by using Sk−1(t, di,j), the space becomes c4k−1tdi,j

(
t
di,j

) 1
2(2k−1)

bits. If t ≤ di,j , we store each row of the two-dimensional array in t · c1/3
√
tdi,j bits by

using Z(t, di,j) which support constant access. For both time and space, the former case has
worse complexities. Therefore we analyze the space by assuming every block is stored in

c4k−1tdi,j

(
t
di,j

) 1
2(2k−1) bits.

∑
i,j

Bi,j is not flat

c4k−1tdi,j

(
t

di,j

) 1
22k−1

≤
∑
i,j

c4k−1tdi,j

(
t

di,j

) 1
22k−1

≤
∑
i,j

c4k−1tdi,jt
1

22k−1

≤ c4k−1t
1+ 1

22k−1
∑
i,j

di,j

≤ c4k−1t
1+ 1

22k−1 2nm
t

= 2c · 4k−1nm
( n
m

) 1
22k−1

1
22k−1

= 2c · 4k−1nm
( n
m

) 1
22k

.

We also need to store pointers to the data structures Fi,j because their size varies depending
on (i, j). As a bijection between {0, . . . ,m−1}×{0, . . . , 2u−2} and {0, 1, . . . ,m(2u−1)}, we
define (i, j) 7→ i(2u− 1) + j. By using this, we can regard the pointers to the data structures
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as a monotone increasing sequence P with 2um terms and range 2c · 4k−1nm
(
n
m

) 1
22k . By

representing P by the data structure Z(2um, 2c · 4k−1nm
(
n
m

) 1
22k ), it holds

c1/3
√

2um · c · 4k−1nm
( n
m

) 1
22k ≤ c5/62knm.

Therefore the space is upper-bounded by c5/62knm bits.
The total space of the data structures for Sk is:

c4k−1nm︸ ︷︷ ︸
array E

+ (c1/3 · 2
√

2 + 2)nm
t︸ ︷︷ ︸

Ψ

+ 2c · 4k−1nm
( n
m

) 1
22k︸ ︷︷ ︸

total space for F

+ c5/62knm︸ ︷︷ ︸
P

bits.

By letting c ≥ 106, for any positive integer k, it holds

c4k−1nm+ (2
√

2c1/3 + 2)nm
t

+ 2c · 4k−1nm
( n
m

) 1
22k + c5/62knm

≤ (c4k−1 + c1/32
√

2 + 2 + 2c · 4k−1 + c5/62k)nm
( n
m

) 1
22k

≤ c4knm
( n
m

) 1
22k

.

This proves there exists a data structure of c4knm
(
n
m

) 1
22k bits for Sk(n,m).

Next we consider the time Tk to access an entry of Sk. In Algorithm 1, lines 3 and 5 take
Tk−1 time. For other lines including the call to Algorithm 2 it takes constant time. Therefore
it holds Tk = 2Tk−1 + O(1) and we obtain Tk = O(2k).

This completes the proof of Theorem 10. �

We also obtain:

Theorem 22. There exists a data structure of O
(
nm

(
log log n

m

)2) bits supporting an access
to IMS2 (n,m) (n > m) in O

(
log log n

m

)
time.

Proof. We obtain the claim by letting k = log log log n
m in Theorem 10. �

By using this data structure for a two-dimensional array C satisfying Property 1, we can
compute the frequency f of the modes of a query range [l, r]. From Lemma 5, a mode is
obtained by computing S[min{x | C[l][x] = f}]. To compute this, consider the following
data structure.

Theorem 23. There exists a data structure of O(nm) bits for given column number r of
A ∈ IMS2 (n,m) and a value h, to compute min{x | A[r][x] ≥ h} in constant time.

Proof. For two-dimensional array A, consider the boundaries of Definition 14. We can say
that min{x | A[r][x] ≥ h} is the minimum row number of elements in r-th column which are
above the h-th boundary. Recall that boundaries are shortest paths in the grid graph from
vertex (0, n) to vertex (n, 0). Consider to encode the m boundaries as follows.

Definition 24 (A bit-vector representation of a boundary). We encode a boundary by a bit-
vector of 2n bits as follows. Initially the bit-vector is set empty. We traverse the graph from
vertex (0, n) to vertex (n, 0) along the boundary, and append 0 when we go down, and 1 when
we go right, to the end of the bit-vector.
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The bit-vector for a boundary has n zeros and n ones. There are m such bit-vectors and the
space complexity is O(nm) bits in total. Let Bk denote the bit-vector for the k-th boundary.
From definition, it holds min{x | A[r][x] ≥ h} = n− rank0(select1(r,Bk), Bk). This can be
computed in constant time by using FID. �

Theorem 25. In addition to the string S, by using a data structure of O
(

4knm
(
n
m

) 1
22k

)
bits, we can solve the range mode problem in O

(
2k
)
time.

Proof. We can use Algorithm 4, where the two-dimensional array C satisfies the following:

C[i][j] =
{
f(i, j) (i ≤ j),
1 (otherwise).

By storing the rows or columns in reverse order and subtracting one from all values, C
belongs to IMS2 (n,m).

In Algorithm 4, the data structures of Theorems 10 and 23 are used. The space complexity
includes O

(
4knm

(
n
m

) 1
22k

)
bits for Theorem 10 and O(nm) bits for Theorem 23, and therefore

the total space complexity is O
(

4knm
(
n
m

) 1
22k

)
bits. �

By letting k = log log log n
m in Theorem 25, we obtain:

Corollary 26. In addition to the string S, using a data structure of O
(
nm

(
log log n

m

)2)
bits, the range mode problem is solved in O

(
log log n

m

)
time.

This data structure is superior to the data structure of [3] with ε = 0, which has space
complexity O(nm logn) bits and query time complexity O(log logn), in terms of both time
and space.

3.2 Efficient data structure for small m

Instead of using the two-dimensional array C storing frequencies of all the ranges, we can
compute the frequency of modes using only the bit-vector representation of the boundaries
of Definition 24.

Theorem 27. For a two-dimensional array A ∈ IMS2 (n,m), there exists a data structure
of O(nm) bits that given i, j, k, to decide if A[i][j] ≥ k in constant time.

Proof. We store all the bit-vectors B0, . . . , Bm−1 representing the boundaries. It is enough
to decide if the k-th boundary of A is either in the (0, 0)’s side or (n, n)’ size with respect to
(i, j). This is done by Algorithm 3, which runs in constant time. �

From Theorem 27, we can compute C[i][j] = max{k|C[i][j] ≥ k} in O(logm) time by a
binary search on k. Furthermore, from Theorem 23, we can compute an index for modes in
constant time. Now we obtain the following theorem.

Theorem 28. In addition to the input string S, by using a data structure of O(nm) bits,
the range mode problem is solved in O(logm) time.

This data structure is effective if m� logn. Table 1 summarizes the proposed and known
data structures.
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4 Range Mode Enumeration Problem

Below we consider range modes of a string S with alphabet size σ instead of a sequence A.
We evaluate algorithms with their space complexity and query time complexity using the
size of the output |output| as a parameter.

4.1 Algorithms using existing data structures
Data structures for the range mode problem return only arbitrary one item among all range
modes. Instead here we consider a data structure for the problem which returns the leftmost
index and the frequency of range modes, where the leftmost index is defined as follows.

Definition 29. For a string S and query range [l, r], the leftmost index of range modes is
defined as min{x | S[x] is an item with the largest frequency in the query range [l, r]}.

Lemma 30. Let D be a data structure which returns the leftmost index of range modes for a
query range [l, r] in time t using s space, there exists a data structure which solves the range
mode enumeration problem in time (t+O(1))|output| using s space.

Proof. Algorithm 5 solves the problem using the data structure D. The algorithm narrows
the query range gradually. Because the data structure D returns the leftmost index i of range
modes, the number of range modes for the new query range [i+ 1, r] is exactly one smaller
than that of the current query range. Therefore the while loop at line 4 of the algorithm is
executed |output|+ 1 times, and the total time complexity is (t+ O(1))|output|. �

Lemma 31. There exists a data structure for finding the leftmost index of range modes and
their frequency in time O(nε) using a data structure with space complexity O(n2−2ε) words
in addition to the input string S.

Proof. We slightly change the data structure of [3] described in Section 2.2. Instead of the
two-dimensional array D storing modes of block ranges, we create another two-dimensional
array D′ storing leftmost indices of block ranges. Then we can find the leftmost index of span
in constant time. For items appearing in the prefix and the suffix, we can find the leftmost
index and its frequency using the same algorithm. Algorithm 6 gives a pseudo code. �

From Lemmas 30 and 31, we obtain the following.

Theorem 32. There exists a data structure for the range mode enumeration problem solving
a query in O(nε|output|) time using O(n2−2ε).

4.2 More efficient data structures for enumeration
Definition 33. The mode index set for a query range [l, r] of the range mode enumeration
problem is the set of the rightmost position of each mode in the query range. That is,

{i | S[i] is a mode and S[i] 6= S[j] for any j = i+ 1, i+ 2, . . . , l}.

Because the set of all range modes can be obtained from the mode index set, below we focus
on finding the mode index set.

Define n bit-vectors B[0], . . . , B[n− 1] of length n each as follows.

B[i][j] = 1⇔ i ≤ jand S[j] is a mode of range [i, j]

Using these bit-vectors, we obtain:
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Theorem 34. The set of modes for a query range [l, r] is {x | f(l, x) = f(l, r) and B[l][x] =
1}.

Proof. From the definition of B[l][x], S[x] is a mode of range [l, r]. From Lemma 5, S[x] is
also a mode of range [l, r]. Conversely, for any index x contained in the index set for range
[l, r], it holds f(l, x) = f(l, r) and B[l][x] = 1. Therefore these two sets coincide. �

Therefore we can enumerate items in the mode index set by using Algorithm 10.
Consider complexities of the algorithm. For the data structure B, which consists of n

bit-vectors of length n, we use O(n2) bits. We also use O(n2) bits for the array C storing
frequencies using bit-vectors, which is used to obtain frequency of modes of a query range.
Therefore the total space is O(n2) bits. As for the time complexity, the algorithm executes
Line 5 for O(|output|) times. Lines 1 and 2 takes constant time if we use data structures
for bit-vectors. Therefore the total time complexity is O(|output|). We obtain the following
basic data structure.

Theorem 35. There exists a data structure for the range mode enumeration problem which
computes the mode index set in O(|output|) time using a data structure of O(n2) bit space in
addition to the input string S.

Now we improve this using a parameter m, the frequency of modes of the entire range.
The following lemma holds for the two-dimensional bit-array B.

Lemma 36. There is the following relation between function f and bit-array B.

If f(i, j) = f(i+ 1, j) and B[i+ 1][j] = 1, then B[i][j] = 1.

Proof. Because B[i+ 1][j] = 1, S[j] is a mode of range [i+ 1, j]. Using Lemma 5, it holds
S[j] is also a mode of range [i, j]. From the definition of B, we obtain B[i][j] = 1. �

Using this property, we define m integer sequences H[1], . . . ,H[m] of length n each.

Definition 37. Define integer sequences H[1], . . . ,H[m] as follows.

H[i][j] = max {{k | f(k, j) = i and B[k][j] = 1} ∪ {−1}} .

The bit-array B and the sequences H have the following relation.

Lemma 38. B[i][j] = 1⇔ H[f(i, j)][j] ≥ i.

Example 39. Figure 2 shows an example of bit-array B and sequences H for string S =
“abcbfcdaacfbcgba”.

Algorithm 10 enumerates indices with bits being set in range [b, r] of bit-vector B[l].
Here for any t with b ≤ t ≤ r, the value of f(l, t) is always g. Therefore this operation is
identical to enumerate all indices in range [b, r] of sequence H[g] whose value is at least l.
This problem can be regarded as the range maximum problem.

Definition 40 (Range Maximum Problem (RMQ)). Given a sequence A and query range
[l, r], the range maximum problem asks an index of the maximum value in the sub-sequence
A[l, . . . , r].

Theorem 41 ([5]). For the range maximum problem of size n, there exists a data structure
with space complexity 2n+ o(n) bits and query time complexity O(1).
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Theorem 42. Consider the following problem: Given a sequence A, a query range [l, r] and
a threshold t, compute {l ≤ k ≤ r | A[k] ≥ t}. If there exists an oracle to check if it holds
A[k] ≥ t for some k in constant time, there exists a data structure for the problem with O(n)
bits and O(|output|) query time.

Consider a data structure to decide if H[f(l, r)][k] ≥ l or not for finding the index set.
This can be done by using the arrays A,B in Section 2.2 because it is equivalent that
H[f(l, r) = g][k] ≥ l and the frequency of S[k] in range [l, r] is at least g.

From the observation above, it is enough to use the following data structures to enumerate
the solutions.
Two-dimensional array A storing positions of occurrences of symbols

An array to store positions of occurrences in ascending order for each symbol of the
alphabet

Array B to store ranks for strings
An array storing the rank for each index of S, that is, B[i] stores the number of times
that the symbol S[i] appears in the substring S[0, . . . , i− 1].

Two-dimensional array C storing frequencies of modes for all ranges
The (i, j) entry of the array C stores the frequency of the modes for range [i, j].

m bit-vectors D storing boundaries of the array C

The array stores m bit-vectors of Definition 24.
Two-dimensional array H storing m RMQ data structures for arrays of length n each

An array storing m sequences of Definition 37 as RMQ data structures. The sequences
themselves are not stored.

The space complexity of the two-dimensional array C varies depending on which data structure
is used. For example, we can use ones in Theorems 22 and 28. The space complexities of
A,B,D,H are O(n logn) bits, O(n logn) bits, O(nm) bits, O(nm) bits, respectively.

The pseudo code is given in Algorithm 9. Only Line 1 cannot be done in constant time.
For other lines, the time complexity is proportional to the number of times the function
range is executed, and it is O(|output|).

To recap, the complexities of the algorithms become O(S + nm+ n logn) bit space and
O(T + |output|) query time, where S is the space complexity of the two-dimensional array C,
and T is the time complexity to access an entry of C. Using Theorems 22 and 28, we obtain
the following.

Theorem 43. There exists a data structure with space complexity O
(
nm

(
log log n

m

)2 + n logn
)

bits in addition to the input string S, which solves a query in time O
(
log log n

m + |output|
)
.

Theorem 44. There exists a data structure with space complexity O(nm+ n logn) bits in
addition to the input string S, which solves a query in time O(logm+ |output|).

By combining the data structure of [3], we can further reduce the space complexity.
Consider a string S1 which stores symbols of S whose frequencies are at least n1−ε, and
a string S2 which stores the rest of the symbols. The string S1 stores at most nε distinct
symbols. Using the data structures of [3] and Theorem 44 for S1 and S2 respectively, the
following holds.

Theorem 45. There exists a data structure with space complexity O(n1+ε logn+ n2−ε) bits
in addition to the input string S, which solves a query in time O(logm+ n1−ε + |output|).

The proposed data structures for the range mode enumeration problem are summarized
in Table 2.
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5 Concluding Remarks

In this paper, we have given more efficient algorithms for the indexing version of the range
mode problem. Our algorithms are more space- and time- efficient for small maximum
frequency case than existing ones. We have also considered a natural extension of the range
mode problem: range mode enumeration problem and given fast algorithms.

There are other related problems like Boolean matrix multiplication problem. A future
work, we will give efficient algorithms for these problems.
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A Omitted Proofs

A.1 Proof of Lemma 4
Proof. We prove by contradiction. Let x be a mode of M , and assume x is not a mode of
M1 and x /∈M2. Let y ∈M1 be a mode of M1. From the definition the multiplicity of y in
M1 is strictly larger than that of x in M1. Because x /∈ M2, the multiplicity of x in M is
equal to that of x in M1, and it is smaller than that of y in M . This contradicts that x is a
mode of M . �

A.2 Proof of Lemma 5
Proof. Let c be any mode in range [l1, r1] and m be its frequency. Because range [l2, r2]
contains range [l1, r1], the frequency of c in range [l2, r2] is at least m. On the other hand,
because f(l1, r1) = f(l2, r2) = m, the frequency of c in range [l2, r2] is at most m. Therefore
the frequency of c in range [l2, r2] becomes m and c is also a mode in range [l2, r2]. �

A.3 Proof of Theorem 20
Proof. We use a two-dimensional Boolean array K of 2um bits storing for each member (x, y)
of {0, . . . ,m−1}×{0, . . . , 2u−2}, True if Ψ(x, y) 6= ⊥ and False if Ψ(x, y) = ⊥. In addition to
this, for each x we create two integer sequences Ix, Jx of length 2u−1 each, as follows. For each
y ∈ {0, . . . , 2u−2}, we define (Ix[y], Jx[y]) = Ψ(x, y) if Ψ(x, y) 6= ⊥. If Ψ(x, y) = ⊥, we choose
arbitrary values for Ix[y] and Jx[y] satisfying Ix[y] ∈ IMS(2u−1, u), Jx[y] ∈ DMS(2u−1, u).
From Lemma 19, such sequences Ix, Jx must exist. By using the data structure Z(2u− 1, u)
we can store each sequence in at most

√
2c1/3u bits and access in constant time. The total

space for these 2m sequences is at most 2um+ 2
√

2c1/3um = (2
√

2c1/3 + 2)nm
t

bits. �

A.4 Proof of Theorem 42
Proof. We recursively find range maximum values as in Algorithm 7. Consider the number
of times that the function range of Algorithm 8 is called. The number of times that an item
is added to the set ans in the function is at most |output|. On the other hand, if ans =
{x1, . . . , x|output|}, the number of times that any item is not added to the set ans is at most
|output|+1, for ranges [l, x1−1], [x1+1, x2−1], . . . , [x|output|−1+1, x|output|−1], [x|output|+1, r].
Therefore the total number of times that range is called is at most 2|output|+ 1. From the
assumption of the oracle, Algorithm 7 runs in O(|output|) time. Because the algorithm uses
no data structures other than RMQ, the space complexity is O(n) bits. �

B Omitted Pseudo codes and Figures
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Algorithm 1 Obtaining the entry A[x][y] of an two-dimensional array A ∈ IMS2 (n,m).
Require: Indices x, y
Ensure: A[x][y]
1: xb ← x/t, yb ← y/t . The block number
2: xr ← x%t, yr ← y%t . The position in the block
3: ans ← E[xb][yb]
4: if Block Bxb,yb

is not flat then
5: ans ← ans + Fxb,yb

[xr][yr]
6: end if
7: return ans

Algorithm 2 Decide if Bi,j is flat or not
Require: Block number i, j
Ensure: If block Bi,j is flat or not
1: x← E[i][j], y ← i− j + u− 1 . Φ(i, j) = (x, y)
2: if K[x][y] = False then . Ψ(x, y) = ⊥
3: return block Bi,j is flat
4: end if
5: if Ix[y] = i and Jx[y] = j then . Ψ(x, y) = (i, j)
6: return block Bi,j is not flat
7: else
8: return block Bi,j is flat
9: end if

Algorithm 3 A function to compare A[i][j] with k
Require: an index (i, j) of A and an index k of a boundary
Ensure: if A[i][j] ≥ k or not
1: if n− rank0(select1(i, Bk), Bk) ≤ j then
2: return YES
3: else
4: return NO
5: end if

Algorithm 4 Algorithm for Theorem 25
Require: a query range [l, r]
Ensure: a mode in range [l, r] of string S
1: f ← C[l][r] . using Theorem 10
2: if f = 1 then
3: i← l

4: else
5: i← min{x | C[l][x] = f} . using Theorem 23
6: end if
7: return S[i]
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Algorithm 5 Algorithm for the range mode enumeration problem using the data structure
for finding the leftmost index of range modes
Require: a query range [l, r]
Ensure: the set of all range modes ans
1: ans ← {}
2: (f, i)← D([l, r]) . a pair of the frequency f of modes in range [l, r] and the leftmost

index i
3: x← l

4: while do
5: (freq, i)← D([x, r])
6: if f > freq then. if the frequency freq of modes in [x, r] is less than the frequency f

of modes in [l, r]
7: break
8: end if
9: ans ← ans ∪ {S[i]}
10: if i = r then . if the query range becomes empty
11: break
12: end if
13: x← i+ 1 . update the query range
14: end while
15: return ans
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Algorithm 6 Find the leftmost index of range modes (assuming l, r belong to different
blocks)
Require: a query range [l, r] (bl := bl/nεc 6= br := br/nεc)
Ensure: (leftmost indexli, frequencyf)
1: f ← C[bl][br] . obtain the frequency of modes of span
2: li ← D′[bl][br]
3: for i = l, . . . , (bl + 1)s− 1 do . check symbols in the prefix
4: cnt ← 0
5: while (the number of terms ofA[S[i]]) > B[i] + f − 1 and A[S[i]][B[i] + f − 1] ≤ r do
6: li ← min(li, i)
7: f ← f + 1, cnt ← cnt + 1
8: end while
9: if cnt > 0 then
10: f ← f − 1
11: end if
12: end for
13: for i = brs, . . . , r do . check symbols in the suffix
14: cnt ← 0
15: while 0 ≤ B[i]− freq + 1 and A[S[i]][B[i]− freq + 1] ≥ l do
16: f ← f + 1, cnt ← cnt + 1
17: li ← min(li, A[S[i]][B[i]− freq + 1])
18: end while
19: if cnt > 0 then
20: f ← f − 1
21: end if
22: end for
23: return (li, f)

Algorithm 7 Find all indices in range [l, r] of sequence A with frequency at least t
Require: a query range [l, r], a threshold t
Ensure: set of indices ans
1: ans ← {}
2: range(l, r) . the function in Algorithm 8
3: return ans

Algorithm 8 The recursive function range called in Algorithm 7
Require: a range [x, y]
1: if x > y then
2: return
3: end if
4: id← RMQ(x, y)
5: if A[id] ≥ t then
6: ans ← ans ∪ {id}
7: range(x, id− 1) . the range to the left of id
8: range(id+ 1, y) . the range to the right of id
9: end if
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Algorithm 9 Algorithm for finding the index set
Require: a query range [l, r]
Ensure: the index set ans
1: g ← f(l, r) . using data structure C
2: b← min{t | f(l, t) ≥ g} . using boundary bit-vector D
3: ans ← {}
4: range(b, r)
5: return ans
6:
7: def function range(x, y)
8: if x > y then
9: return
10: end if
11: id ← RMQ(x, y,H[g]) . the index of maximum value in range [x, y] of sequence H[g]
12: if A[S[id]]− g + 1 < 0 and B[S[id]][A[S[id]]− g + 1] ≥ l then
13: ans ← ans ∪ {id}
14: range(x, id− 1) . the range to the left of id
15: range(id+ 1, y) . the range to the right of id
16: end if
17: end def

Algorithm 10 Algorithm for finding the mode index set
Require: a query range [l, r]
Ensure: the mode index set ans
1: g ← f(l, r)
2: b← min{t | f(l, t) ≥ g}
3: x← r

4: ans ← {}
5: while x ≥ b do
6: ans ← ans ∪ {x} . add to the mode index set
7: x← select1(rank1(x− 1, B[l]), B[l]) . update x
8: end while
9: return ans
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S: abcbfcdaacfbcgba
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1

1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1
0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

B[0]
B[1]
B[2]
B[3]
B[4]
B[5]
B[6]
B[7]
B[8]
B[9]
B[10]
B[11]
B[12]
B[13]
B[14]
B[15]

              index

* * * 1 * 2 * 0 7 5 4 3 9 * 8
0 1 2 3 4 5 6 7 8 9

* * * * * * * * 0 2 * 1 5 * 3 7
* * * * * * * * * * * * 2 * 1 0

11
111213141510H[1]

H[2]
H[3]
H[4]

Figure 2 Bit-vectors B[0], . . . , B[15] and sequences H[1], . . . , H[4] for string S of length n = 16. The
marks * stand for −1. Colors of numbers for B represent frequencies of modes of the corresponding
ranges. Blue, red, green, and brown colors represent frequencies 1, 2, 3, and 4, respectively.
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