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Abstract
Deterministic finite automata are one of the simplest and most practical models of computation
studied in automata theory. Their conceptual extension is the non-deterministic finite automata
which also have plenty of applications. In this article, we study these models through the lens of
succinct data structures where our ultimate goal is to encode these mathematical objects using
information theoretically optimal number of bits along with supporting queries on them efficiently.
Towards this goal, we first design a succinct data structure for representing any deterministic finite
automaton D having n states over a σ-letter alphabet Σ using (σ − 1)n logn + O(n log σ) bits of
space, which can determine, given an input string x over Σ, whether D accepts x optimally in
time proportional to the length of x, using constant words of working space. When the input
deterministic finite automaton is acyclic, we can improve the above space bound significantly
to (σ − 1)(n − 1) logn + 3n + O(log2 σ) + o(n) bits, without compromising the running time for
string acceptance checking. Finally, we exhibit our succinct data structure for representing a
non-deterministic finite automaton N having n states over a σ-letter alphabet Σ using σn2 + n

bits of space, such that given an input string x, we can decide whether N accepts x efficiently in
polynomial time.

1 Introduction

Automata theory is a branch of theoretical computer science that deals exclusively with the
definitions, properties and applications of different mathematical models of computation.
These models play a major role in multiple applied areas of computer science. One of the
most basic and fundamental models that is studied in automata theory since long time back
is called the finite automata. It comes in two different types, deterministic finite automata
(henceforth DFA) and non-deterministic finite automata (henceforth NFA). There exists
more complex and sophisticated models as well, for example, Context-free grammar, Turing
machines etc. In what follows, let us formally define DFA and NFA in a nutshell as these are
our primary subjects of study in this article. A DFA D is a quintuple D = (Σ, Q, q0, δ, F )
where:
• Σ is an alphabet; a finite set of letters,
• Q is the finite set of states,
• q0 ∈ Q is the initial state,
• δ : Q× Σ→ Q is the transition function and
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2 Succinct Representation for (Non)Deterministic Finite Automata

• F ⊆ Q is the set of final states.
We often extend the transition function to δ : Q×Σ∗ → Q which is defined recursively as
follows: δ(q, ε) = q for all q ∈ Q, where ε is the empty string; and δ(q, aw) = δ(δ(q, a), w) for
all q ∈ Q, a ∈ Σ, and w ∈ Σ∗. Given the above definition, we say that the DFA accepts a
string x over the alphabet Σ if and only if δ(q, x) ∈ F . The language L accepted by a DFA
D is defined as the set of all strings accepted by the DFA D, and is denoted by L(D). See
Figure 1 for a simple example. In the rest of this paper, we assume that the alphabet Σ is
{1, 2, . . . , σ}, 1 and the state set Q is {q0, q1, . . . , qn−1}.

0

0

1

1

Figure 1 The state transition diagram for a DFA D where D = (Σ, Q, q0, δ, F ) such that (i) Σ = {0, 1},
(ii) Q = {q0, q1}, (iii) q0 = q0 (marked with an incoming arrow coming from nowhere), (iv) F = {q0},
and (v) the transition function is defined as the following set, {δ(q0, 1) = q0, δ(q0, 0) = q1, δ(q1, 1) =
q1, δ(q1, 0) = q0}. Precisely the DFA D accepts all the strings containing an even number of zeros
over the binary alphabet.

A deterministic automaton A is called acyclic [16] if it has a unique recurrent state
where a state q is defined as recurrent if there exists a non-empty string x over Σ such that
δ(q, x) = q. Non-recurrent states are typically called transient, and the unique recurrent
state (denoted by q′′ ∈ Q) is classically called the dead state as δ(q′′, σ) = q′′ for all σ ∈ Σ.

An NFA is a conceptual extension of DFAs where the definition of the transition function
is mainly extended. More specifically, for DFA, the transition function is defined as δ:
Q× Σ→ Q whereas for NFA, the same is defined as δ: Q× Σ→ P(Q) where P(Q) denotes
the power set of Q. Another extension, which is sometimes used in the literature, is to simply
allow more than one initial state in an NFA, and in this case, the third item in the tuple
becomes I denoting the set of initial states, instead of singleton {q0}. The rest of above
quintuple definition remains as it is for NFA. Thus, in the case of NFA N , the language
L(N ) is defined as {x | ∃q∈I∃q′∈F [q′ ∈ δ(q, x)]}. We refer the readers to the classic texts
of [14, 23] for a thorough discussions on these mathematical models.

Even if a DFA is defined as an abstract mathematical concept, still it has got myriad
of practical applications. More specifically, it is used in text processing, compilers, and
hardware design [23]. Quite often it is implemented in small hardware and software tools
for solving various specific tasks. For example, a DFA can model a software that can figure
out whether or not online user input such as email addresses are valid. DFAs/NFAs are also
used for network packet filtering. In some of these applications, the alphabet is large and
there is a failure/exit state so that only a subset of transitions go to non-failure states; so we
call the latter ones non-failure transitions.

Despite having so many applications in practically motivated problems, we are not aware
of, to the best of our knowledge, any study of DFAs and NFAs from the point of view of

1 We follow the standard assumption on Σ for succinct data structures, so the final time bounds in this
paper will have an extra multiplicative factor of O(log σ) when σ is non-constant.
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succinct data structures where the goal is to store an arbitrary element from a set Z of
objects using the information theoretic minimum log(|Z|) + o(log(|Z|)) bits of space while
still being able to support the relevant set of queries efficiently, which is what we focus on in
this paper. We also assume the usual model of computation, namely a Θ(logn)-bit word
RAM model where n is the size of the input.

1.1 Related Work
The field of succinct data structures originally started with the work of Jacobson [15], and by
now it is a relatively mature field in terms of breadth of problems considered. To illustrate
this further, there already exists a large body of work on representing various combinatorial
objects succinctly. A partial list of such combinatorial objects would be trees [18, 21],
various special graph classes like planar graphs [2], chordal graphs [19], partial k-trees [10],
interval graphs [1] along with arbitrary general graphs [11], permutations [17], functions [17],
bitvectors [22] among many others. We refer the reader to the recent book by Navarro [20] for
a comprehensive treatment of this field. The study of succinct data structures is motivated
by both theoretical curiosity and also by the practical needs as these combinatorial structures
do arise quite often in various applications.

For DFA and NFA, other than the basic structure that is mentioned in the introduction,
there exists many extensions/variations in the literature, for example, two-way finite automata,
Büchi automata and many more. Researchers generally study the properties, limitations and
applications of these mathematical structures. One such line of study that is particularly
relevant to us for this paper is the research on counting DFAs and NFAs. Since the fifties
there are plenty of attempts in exactly counting the number of DFAs and NFAs with n states
over the alphabet Σ, and the state-of-the-art result is due to [3] for DFAs and [9] for NFAs
respectively. We refer the readers to the survery (and the references therein) of Domaratzki [8]
for more details. Basically, from these results, we can deduce the information theoretic lower
bounds on the number of bits required to represent any DFA or NFA. Then we augment
these lower bounds by designing data structures whose size matches the lower bounds, hence
consuming optimal space, along with capable of executing algorithms efficiently using this
succinct representation, and this is the main contribution of this paper.

1.2 DFA and NFA Enumeration
After a number of efforts by several authors, finally Bassino and Nicaud [3] found a matching
upper and lower bound on the number of non-isomorphic initially-connected (i.e., all the
states are reachable from the initial state) DFA’s with n (including a fixed initial and one or
possibly more final) states over an alphabet Σ (where |Σ| = σ) is Θ(n22nS2(σn, n)) where
S2(n,m) denotes the Stirling numbers of the second kind2. Using the approximation of the
Stirling numbers of the second kind [13], which states that S2(n,m) ≈ mn

m! , we can obtain
the information theoretic lower bound for representing any DFA having n states and σ-sized
alphabet is given by lg(n22nS2(σn, n)) = (σ − 1)n lgn + O(n) bits. On the other hand,
Domaratzki et al. [9] showed that there are asymptotically 2σn2+n initially connected NFAs
on n states over a σ-letter alphabet with a fixed initial state and one or more final states.
Thus, information theoretically, we need at least σn2 + n bits to represent any NFA. In
what follows later, we show that we can represent any given DFA/NFA using asymptotically

2 It is defined recursively as S2(0, 0) = 1, S2(n, 0) = 0 for all n ≥ 1 and for all n,m ≥ 1, S2(n,m) =
mS2(n− 1,m) + S2(n− 1,m− 1).
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optimal number of bits as mentioned here. Throughout this paper, we assume that the input
DFAs/NFAs that we want to encode succinctly are initially connected.

1.3 Our Main Results and Paper Organization
The classical representation of DFAs/NFAs consists of explicitly writing the transition
function δ in a two dimensional array J [0..n− 1][1..σ] having n rows corresponding to the n
states of the DFA/NFA and σ (where |Σ| = σ) columns corresponding to the alphabet Σ
such that J [i][j] = δ(qi, j) where qi ∈ Q, j ∈ Σ. For DFA, the entry in J [i][j] is a singleton
set whereas for NFA it could possibly contain a set having more than one state. Thus, the
space requirement for representing any given DFA (NFA respectively) is given by O(nσ logn)
(O(n2σ logn) respectively) bits. These space bounds are clearly not optimal – for the DFAs,
it is off by an additive n logn term from the information theoretic minimum, while for the
NFAs, it is off by a multiplicative factor of logn from the optimal bound. We alleviate this
discrepancy in the space bounds by designing optimal succinct data structures for these
objects.

Towards this goal, we start by listing all the preliminary data structures and graph
theoretic terminologies that will be required in our paper in Section 2. Then, in Section 3.1
we first discuss the relevant prior work from [3], and show that, by using suitable data
structures, their work already gives a succinct encoding of DFA. But the major drawback of
this encoding is that it is not capable of handling the problem of checking whether a string
is accepted by the DFA extremely efficiently. In Section 3.2, we overcome this problem by
designing a succinct data structure for DFA, which can also check the string acceptance
optimally. We summarize our main result in the following theorem.

Theorem 1. Given an initially-connected deterministic finite automata D having n states
and working over an alphabet Σ of size σ, there exists a succinct encoding for D taking
(σ− 1)n logn+O(n log σ) bits of space, which can optimally determine, given an input string
x over Σ, whether D accepts x in time proportional to the length of x, using constant words
of working space. If the DFA has only N < σn non-failure transitions, then the space can be
further reduced to (N − n) logn+O(N log σ) bits.

The upper bounds in Theorem 1 save roughly n logn bits with respect to the immediate
representation of the DFA. The former upper bound is optimal as it matches the information-
theoretical lower bound in Section 1.2, up to lower order terms. As for the latter upper
bound, we do not know its optimality but it is smaller than the information-theoretical
lower bound of dlog

(
n2

N

)
e+ Θ(N log σ) bits derived for edge-labeled deterministic directed

graphs [12]. Indeed, DFAs can be seen as a special case of these graphs where n is the
number of nodes, N ≥ n− 1 is the number of arcs, and σ is the maximum node degree.3

We can improve the above space bound significantly if the given DFA is acyclic. More
specifically, in Section 3.3, we obtain the following result in this case.

Theorem 2. Given an initially-connected acyclic deterministic finite automata A having
n− 1 transient states, a unique dead state and working over an alphabet Σ of size σ, there
exists a succinct encoding for A taking (σ − 1)(n− 1) logn+ 3n+O(log2 σ) + o(n) bits of

3 A directed graph with labels on its arcs is deterministic if no two out-neighbor arcs have the same
label. Since there are dlog

(
n2

N

)
e directed graphs [12] with n nodes and N arcs, each deterministic graph

G = (V,E) can have L =
∏

u∈V
du! label assignments for its arcs, where du s the out-degree of node u

and N =
∑

u∈V
du. Note that logL = Θ(N log σ) when labels are from Σ and thus du ≤ σ.
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space, which can optimally determine, given an input string x over Σ, whether A accepts x
in time proportional to the length of x, using constant words of working space.

This is followed by the succinct data structure for NFA in Section 3.4 where we prove the
following result.

Theorem 3. Given an initially-connected non-deterministic finite automata N having n
states and working over an alphabet Σ of size σ, there exists a succinct encoding for N taking
σn2 + n bits of space, which can determine, given an input string x over Σ, whether N
accepts x, in polynomial time.

Finally, we conclude in Section 4 with some concluding remarks.

2 Preliminaries

In this section we collect all the previous theorems and definitions that will be used throughout
this paper.

2.1 Graph Terminology and Graph Algorithms
We will assume the knowledge of basic graph theoretic terminology (like trees, paths etc)
as given in [6] and basic graph algorithms (mostly the depth first search (henceforth DFS)
traversal of a graph and its related concepts) as given in [5]. Perhaps at this point it may
seem slightly unusual that we are talking about graphs here when the focus of this paper is
DFA/NFA and their succinct representations. Essentially in this paper we view DFA/NFA,
more specifically their graphical representation i.e., state transition diagram, as a special case
of an edge labeled directed graph G having n nodes corresponding to the n = |Q| states of
DFA/NFA, m = σn edges where |Σ| = σ as each node has exactly σ outgoing edges, and
each edge is labeled with some elements from Σ. It is with this point of view, we will design
our succinct data structures for DFA/NFA in this paper.

2.2 Succinct Data Structures
Rank-Select. For a bit vector B and any a ∈ {0, 1}, the rank and select operations are
defined as follows :
• ranka(B, i) = the number of occurrences of a in B[1, i], for 1 ≤ i ≤ n;
• partial_rank1(B, i) = rank1(B, i) if B[i] = 1, and −1 otherwise; and
• selecta(B, i) = the position in B of the i-th occurrence of a, for 1 ≤ i ≤ n.

We make use of the following theorems:

Theorem 4. [4] We can store a bitstring B of length n with additional o(n) bits such
that rank and select operations can be supported in O(1) time. Such a structure can also be
constructed from the given bitstring in O(n) time and space.

Theorem 5. [22] We can store a bitstring B of length n with m ones using log
(
n
m

)
+

o(m) +O(log logn) bits such that partial_rank1 operations can be supported in O(1) time.
Such a structure can also be constructed from the given bitstring in O(n) time and space.

Succinct tree representation. We use following result from [18].
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Theorem 6. [18] Given a rooted ordered tree τ on n nodes, it can be succinctly represented
as a sequence of balanced parenthesis of length 2n bits, such that given a node v, we can
support subtree size and various navigational queries (such as parent and i-th child) on v in
O(1) time using an additional o(n) bits. Such a structure can also be constructed in O(n)
time and space.

Compact representation of increasing sequence. We use the following theorem
from [24].

Theorem 7. [24] Given an increasing integer sequence a[·] of length n such that 0 ≤ a[1] ≤
a[2] ≤ · · · ≤ a[n] < u, there exists a data structure to represent a[·] in compressed form using
O(min{ 1

εn
εu1−ε, 1

εu
εn1−ε}) bits of space, where ε > 0 is any fixed constant, such that any

entry a[i] and the value a[i] = |{j | a[j] < i, 1 ≤ j ≤ n}| can be still retrieved in constant
time.

We denote the above data structure by D(n, u, ε). If B denotes the characteristic vector for
the sequence a, then computing a[i] and a[i] correspond to computing select and rank on B.

Representation of a vector. We also make use of the following theorem from [7].

Theorem 8. [7] There exists a data structure that can represent a vector A[1..n] of elements
from a finite alphabet Σ using n log |Σ|+O(log2 n) bits, such that any element of the vector
can be read or written in constant time.

3 Succinct Representations for DFA and NFA

In this section, we provide all the upper bound results of our paper dealing with DFA/NFA.
Throughout this section, whenever we mention DFA (NFA resp.), it should refer to an
initially-connected deterministic (non-deterministic resp.) finite automata having n states
and working over an alphabet Σ of size σ. With this notation in mind, we start with the
succinct encoding of DFA first.

3.1 Succinct Encoding of DFA
Bassino and Nicaud [3] proved a beautiful bijection between the state transition diagram of
any DFA and pairs of integer sequences which can be represented by boxed diagrams (will
be defined shortly) along with providing an efficient algorithm to perform this construction.
We will refer the readers to [3] for complete details regarding the bijection, counting and
many other details that we choose to not repeat here. However, we still need to provide
some details/definitions (which basically follow their exposition) that are relevant to our own
work and will also help to understand the results from their paper smoothly. Following [3],
a diagram of width m and height n is defined as a sequence (x1, . . . , xm) of non-decreasing
non-negative integers such that xm = n, represented as a diagram of boxes. See Figure 2 for
better visual description and understanding. A boxed diagram can be defined as a pair of
sequences ((x1, . . . , xm), (y1, . . . , ym)) where (x1, . . . , xm) is a diagram and for all i (such that
1 ≤ i ≤ m), the yi-th box of the column i of the diagram is marked. Note that 1 ≤ yi ≤ xi.
Thus, a diagram can lead to

∏m
i=1 xi boxed diagrams. A k-Dyck diagram of size n is defined

as a diagram of width m := (k − 1)n + 1 and height n such that xi ≥ di/(k − 1)e for all
i ≤ m − 1. Finally, a k-Dyck boxed diagram of size n is boxed diagram where the first
coordinate (x1, . . . , x(k−1)n+1) is a k-Dyck diagram of size n. Given these definitions, Bassino
and Nicaud [3] proved the following theorem.



Chakraborty, Grossi, Sadakane and Satti 7(1, 1, 2, 4, 4) (1, 1, 2, 4, 4)(1, 1, 2, 1, 3) (1, 3, 3, 4, 4) (1, 3, 3, 4, 4)(1, 1, 2, 2, 4)
Figure 2 A diagram of width m = 5 and height n = 4, a boxed diagram, a k-Dyck diagram and a
k-Dyck boxed diagram with k = 2. This example is borrowed from [3].

Theorem 9. [3] The set Dn containing DFAs having n states and working over a σ-letter
alphabet is in bijection with the set Bn of σ-Dyck boxed diagrams of size n. Moreover, the
construction involving going from transition diagram of the DFA to k-Dyck boxed diagram
and vice versa runs in linear time and space.

Thus, by applying the above theorem, from any given DFA with n states and σ-letter
alphabet, [3] produces a σ-Dyck boxed diagrams of size n, which can be in turn represented by
two integer arrays Max [1..m] and Boxed[1..m] of length m := (σ−1)n+1 each. Furthermore,
from these two arrays, it is possible to entirely reconstruct the DFA using the algorithm
of Theorem 9. Thus, it is sufficient to store just these two arrays in order to encode any
given DFA. For more details, readers are referred to [3]. For an example, see Figure 3 which
will also serve as the working example for this part of our paper. In particular, the DFA of
Figure 3 can be entirely encoded by the Max [1..15] = {3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7} and
Boxed[1..15] = {1, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 4, 5, 3, 6} arrays of length (σ − 1)n + 1 = 15, and
these can be computed using the algorithms of [3].
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Figure 3 Two ways to define the same DFA. This DFA will serve as the working example for our
discussion. By using the techniques of [3], this DFA can be entirely represented by the Max[1..15] =
{3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7} and Boxed[1..15] = {1, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 4, 5, 3, 6} arrays of
length (σ − 1)n+ 1 = 15 each.

First, we observe that, by construction, the arrays satisfy 1 ≤ Max[1] ≤ Max[2] ≤ · · · ≤
Max [m] ≤ n and 1 ≤ Boxed[i] ≤ Max [i] for each i = 1, 2, . . . ,m. Now we consider the number
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of bits needed to encode the array Max [1..m]. As it is an increasing integer sequence of length
m and the range of the values is [1, n], by using data structure D(n,m, ε) of Theorem 7, this
array can be represented using O( 1

εm
εn1−ε) = O( 1

ε {(σ − 1)n+ 1}εn1−ε) bits of space. By
letting ε = 1/ log(σ − 1), the size is O(n log σ) bits if σ > 2. If σ = 2, the space is obviously
O(n) = O(n log σ) bits. Next we consider the number of bits required for array Boxed[1..m].
Because each entry of this array is an integer from 1 to n, we can use Theorem 8 to represent
the Boxed[1..m] array using (σ − 1)n logn+O(log2 m) (recall m = (σ − 1)n+ 1) bits. Thus,
in total, the size of the representation using two integer arrays is (σ − 1)n logn+O(n log σ)
bits. Because the information theoretic lower bound is (σ − 1)n logn + O(n) bits for the
representation of DFA, this representation is succinct.

We consider a special case when there is a failure/exit state labeled 0 and onlyN transitions
among all the σn transitions go to non-failure states. Note that Boxed has N−n+1 non-zero
values. In this case we can reduce the space for Boxed[1..m] by using a new bitvector Z[1..m]
which has N−n+1 ones. We use a new array Boxed ′[1..N−n+1] which stores non-zero values
of Boxed[1..m]. Then Boxed[i] is computed as follows. If Z[i] = 0, Boxed[i] = 0 (transition
to the failure state). If Z[i] = 1, Boxed[i] = Boxed ′[partial_rank1(Z, i)]. If we use the data
structure of Theorem 4, Z is represented in σn+ o(σn) bits, which is asymptotically smaller
than the space lower bound of (σ − 1)n logn + O(n). But, by using the data structure
of Theorem 5, the bitvector Z can be represented in log

(
σn
N

)
+ o(N) + O(log log(σn)) =

N log σn
N +O(N) bits to support partial_rank queries in O(1) time. The space for Boxed ′

is (N −n+ 1) logn bits. Therefore the total space for representing a DFA with N non-failure
transitions is (N − n) logn+O(N log σ) bits.

Even though this representation is optimal from the point of view of space occupancy, one
major drawback of this representation is that, given a string x over Σ, it takes linear time (in
the size of the DFA, i.e., O(σn) time where n is number of states of the DFA and σn is total
number of transitions or edges in state transition diagram of the DFA) to decide whether
the DFA accepts the string x, which is clearly not optimal as ideally it should be performed
in time O(|x|). This happens because the algorithm of Theorem 9 actually unravels the DFA
from these two arrays Max [1..m] and Boxed[1..m], and then checks whether the input string
can be accepted or not. Thus, from the point of view of string acceptance, this encoding of
DFA is not optimal whereas space requirement point of view, this is optimal. This motivates
the need of a succinct encoding of a given DFA, where the problem of string acceptance
can be performed in optimal time (i.e., in time proportional to the string length). In what
follows, we provide such an encoding.

3.2 Succinct Data Structure for DFA
Data structure: To design a succinct data structure for DFA, we need the following three
bitvectors F , P and T in addition to an integer array NewBoxed[1..m] (that can be obtained
from the Boxed[1..m] array of the previous section, as described later), which are defined as
follows.

P is a balanced parentheses sequence of length 2n obtained from the lexicographic depth-
first search (DFS) tree of the given input automaton D. More specifically, given any DFA
D, we first perform the lexicographic DFS on D to generate the lexicographic DFS tree
R of D, i.e., while looking for a new edge to traverse during DFS, the algorithm always
searches in lexicographic order of edge labels. For example, in Figure 3, from any vertex,
lexicographic DFS first tries to traverse the edge labeled a, followed by b and finally c. The
tree R is represented as a balanced parenthesis sequence P together with auxiliary structures
to support the navigational queries on R, as mentioned in Theorem 6, using 2n+ o(n) bits.
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354
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1234 5 6 7a bcc ccc ccb bb bb baaa a a a
P (((())(()))()) T 110 110 010 000 010 000 000

1 2 3 4 5 6 7 1 2 3 4 5 6 7a b c a b c a b c a b c a b c a b c a b c
NewBoxed [1..15] = [      6         4   1    4   2 3 1    3    1   4 2 3   4 5 3]

Figure 4 The extended lex-DFS tree S of the automaton of Figure 3 along with the corresponding
bitvectors P , T , and the NewBoxed[1..15] array (the elements of this array are drawn exactly below
the corresponding 0s with which they share one to one correspondence with). Note that, for the
same automaton Boxed[1..15] array is given as Boxed[1..15] = {1, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 4, 5, 3, 6}.

The bitvector F is used to mark all the final states of the input DFA, hence it takes n bits.
Before explaining the other bitvector, T , required for our succinct encoding, we want

to explain the contents of Figure 4. The tree depicted in the figure is what we call an
extended lexicographic DFS tree or extended lex-DFS tree (denoted by S) in short. If we delete
the squared nodes and their incident edges (originating from the circled nodes), we obtain
the lexicographic DFS tree of the automaton D. Actually these edges represent the back
edges/cross edges/forward edges [5] (i.e., non-tree edges) in the DFS tree of the automaton
D. Traditionally the vertices in the square are not drawn (as in our case of Figure 4), rather
the edges point to the nodes in the circle only (hence all the nodes appear only once). We
have chosen to draw and define the extended lex-DFS tree this way as it helps us to design
and explain our succinct data structure well. Also note that, edges originating from a circled
node and going to another circled node represents tree edges whereas edges from circled to
squared nodes represent non-tree edges.

Now given the extended lex-DFS tree S, we visit the nodes of S in DFS order and append
a bit string of length σ for each vertex v of S marking which of its children are attached to v
via tree edges (marked with 1) and which are attached to v via non-tree edges (marked with
0) in the lexicographic order of the edge labels. The string obtained this way is referred to
as T . Thus, T is a bit-vector of length σn which captures the information about the tree
and non-tree edges of S. More specifically, it has exactly n− 1 ones, which have one-to-one
correspondence with the tree edges of the lexicographic DFS tree of DFA D, and has exactly
(σ − 1)n+ 1 zeros, which correspond to non-tree edges of the lexicographic DFS tree of DFA
D. See Figure 4 for an example. We relabel all the states of D such that the i-th vertex
(state) in R in preorder has label i, and also modify the transition function accordingly. Now
it is easy to see that, for the state with label i (1 ≤ i ≤ n), the corresponding node in the
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lexicographic DFS tree has exactly σ outgoing edges, and we encode the tree edges among
them using the bits in the range T [σ(i− 1) + 1..σi]. More specifically, T [σ(i− 1) + c] = 1 if
and only if the outgoing edge labeled c is a tree edge (1 ≤ c ≤ σ). Similarly, we can also find
the j-th outgoing tree edge from the state i by select1(T, j + rank1(T, σ(i− 1))). Finally, we
compress T by observing that the positions of 1s in the T array form an increasing sequence,
hence by using the data structure D(n − 1, σn, ε) of Theorem 7, access, rank and select

operations can be supported in constant time. By setting ε = 1/ log(σ−1), T can be encoded
in O(n log σ) bits.

Now let us define the new integer array NewBoxed[1..m]. First, observe that elements of
the array Boxed[1..m] are nothing but the leaves (i.e., node labels in the squared nodes) of
the extended lex-DFS tree S in the left to right order. More specifically, they are the node
labels of the destinations of the non-tree edges emanating from the nodes of the lexicographic
DFS tree of the automaton D in their preorder. Instead of this specific ordering (followed
in the Boxed[1..m] array), NewBoxed[1..m] lists the same node labels in the order of their
appearance in the T bitvector (from left to right). Note that, as mentioned previously, these
node are marked by 0s in T and they are in one-to-one correspondence with all the non-tree
edges of the lexicographic DFS tree of the automaton D. Thus, the NewBoxed[1..m] array
contains the same node labels as the Boxed[1..m] array, but in a different order. See Figure 4
for an example. This completes the description of our succinct data structure for DFA. Note
that Max is no longer used in our data structure.

We now analyze the space complexity of our data structure. The array NewBoxed[1..m]
takes (σ− 1)n logn+O(log2 m) bits (by similar analysis as before for the Boxed[1..m] array).
As mentioned previously, we store T using Theorem 7, hence it takes O(n log σ) bits. The
bitvector F consumes n bits. Finally, the bitvector P is stored using Theorem 6, hence it oc-
cupies 2n+o(n) bits in total. Thus, overall our data structure uses (σ−1)n logn+O(n log σ)
bits. Hence, the data structure is succinct. It is easy to further reduce the size if the DFA has
only N < σn non-failure transitions. Using the bitvector Z[1..m] for indicating non-failure
transitions, the array NewBoxed[1..m] is compressed to N − n + 1 non-zero values, and
the total space is (N − n) logn + O(N log σ) bits. In what follows, we describe the string
acceptance query algorithm using our data structures.

Query algorithm. Suppose we are given an input string x of length y over Σ, and we need
to decide if the DFA D accepts x or not. We start the following procedure from the initial
state (stored explicitly using O(logn) bits) and repeat until the end of the input string x.
At any generic step, to figure out the transition function δ(q, c) := q′ where 1 ≤ q, q′ ≤ n

are the states, we first look at the bit T [σ(q − 1) + c]. If it is 1, the outgoing edge labeled c
from state q is a tree edge. Let j := rank1(T, σ(q − 1) + c)− rank1(T, σ(q − 1)). Then the
outgoing edge is the j-th tree edge of node q in the lex DFS tree. Therefore q′ = child(q, j)
(supported using the Theorem 6). If the bit is 0, the outgoing edge labeled c from state q is
a non-tree edge. Let j := rank0(T, σ(q − 1) + c). Then the edge is the j-th non-tree edge
in the DFA, and q′ is obtained by q′ := NewBoxed[j]. All of this can be done in constant
time. Hence, when we reach the end of x, and if we are at an accepting/final states (can be
figured out from the bitvector F ), we say that the DFA D accepts x. It is easy to see that
the whole procedure runs in time proportional to the length of the input string x along with
using constant words of working space, hence our algorithm is optimal. This completes the
proof of Theorem 1.
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3.3 Succinct Data Structures for Acyclic DFA
As mentioned previously, an acyclic DFA A with total n states always has a unique dead
state and n− 1 transient (i.e., non dead) states. Another way to visualize A is to see that
the state transition diagram of A does not have any cycles except at the unique dead state.
Given such a setting, one can always use the succinct encoding (of the previous section) of an
arbitrary DFA to represent them. In that case, we end up using (σ − 1)n logn+O(n log σ)
bits of space. In what follows, we show that by exploiting the acyclic property, one can
obtain improved space bound for representing A.

We basically view the state transition diagram of A as a directed acyclic graph with a
single source (i.e., the initial state), and a single sink i.e., the dead state (call it d). Given
this, we first construct a spanning tree W = (V,E) of A where V = Q (i.e., the set of states
of A) and E = {(qu, qv) | δ(qv, σ) = qu where qv 6= d} by making the dead state d as the
root of this tree. It is easy to see that such a spanning tree can always be constructed.
By applying Theorem 6, we encode the structure of W using 2n + o(n) bits to support
the navigational queries on W (in particular, the parent query) in O(1) time. As done
previously in Section 3.2 while constructing the succinct data structures for DFA, here also
we relabel all the states of A such that the i-th vertex (state) in W in preorder has label
i, and modify the transition function accordingly. Note that the dead state d is labeled
with label 0 in this ordering, and we do not need to store the transition function for the
dead state. We also mark in a bitvector of size n all the final states of A, and we store the
label of the start state. We then store a two dimensional array L[1..n − 1][1..σ − 1] such
that L[q][i] = δ(q, i) using data structure of Theorem 8. Thus, the overall space usage is
(σ − 1)(n− 1) logn+ 3n+O(log2 σ) + o(n) bits.

In what follows, we explain how to check if A accepts any given string x over Σ. At any
generic step, to compute δ(q, i), we simply output L[q][i] if i ∈ {1, 2, . . . , σ − 1}; otherwise
(i.e., if i = σ) the value of δ(q, σ) is given by the parent of q in W i.e., δ(q, i) = parent(q).
Thus δ(q, i) can be computed in constant time, and hence we can optimally decide if A
accepts x in time proportional to the length of x. This completes the proof of Theorem 2.

3.4 Succinct Encoding for NFA
As mentioned previously in Section 1.2, to encode an initially connected NFA on n states
over a σ-letter alphabet Σ with a fixed initial state and one or more final states, we need at
least σn2 + n bits. In what follows, we show a very simple scheme achieving this bound.

We store a table H having n rows (corresponding to the n states of the input NFA)
and σ columns (corresponding to each letter of the alphabet Σ). The entry H[i][j] (where
0 ≤ i ≤ n− 1 and 1 ≤ j ≤ σ) basically stores the corresponding transition function of the
NFA i.e., H[i][j] = δ(qi, j) where qi ∈ Q and j ∈ Σ. Now for an NFA, δ(i, j) is a subset of Q.
If we store this subset explicitly, it might take O(n logn) bits in the worst case per transition
of the NFA, leading to overall σn2 logn bits which is O(logn) multiplicative factor off from
the optimal space requirement. Instead we simply store the charecteristic vector L of the
subset (of length n, marking the corresponding states from the subset as 1, and rest of the
bits in L are 0) where the state labeled i of the NFA moves to after reading the letter j ∈ Σ.
Thus, the overall size of H is exactly σn2 bits. Finally, we also mark in a separate bitvector
(of length n) all the final states of the input NFA. Thus, in total the size of our encoding is
given by σn2 + n bits, which matches the lower bound. Hence, our encoding is succinct and
optimal.

Now using our encoding, we can simply implement the classical algorithm (given in the
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texts of [14, 23]) for checking if the NFA accepts a given input string or not, and this runs in
polynomial time. Hence, we obtain the result mentioned in Theorem 3.

4 Concluding Remarks

We considered the problem of succinctly encoding any given DFA D, acyclic DFA A or NFA
N so as to check efficiently if they accept a given input string. To this end, we successfully
designed succinct data structures for them that also support the string acceptance query
optimally for DFA D, acyclic DFA A, and efficiently for NFA N , matching the running
times of the classical algorithms. To the best of our knowledge, our work is the first attempt
to encode any mathematical models from the world of automata theory using the lens of
succinct data structures, and we believe that our work will spur further interest in other
similar problems in future.
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