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Properties of divergence for semiparametric

copula models∗

Tomonari Sei† and Kazuya Matsumoto†

June 17, 2019

Abstract

A semiparametric copula model is a statistical model where the cop-
ula part is assumed to be parametric and the marginal distribution is
arbitrary. In this paper, properties of divergence for the model is investi-
gated. In particular, a relation between the rank divergence induced from
the marginal distribution of the multivariate rank statistic and the profile
divergence defined by infimum of the Kullback–Leibler divergence with
respect to the nuisance parameter is established. Formulas for piecewise
uniform and Gaussian copulas are also obtained.

Keywords: Composite transformation model, Copula, Divergence, Holo-
nomic gradient method, Information geometry, Optimal transport.

1 Introduction

A d-dimensional probability density function c(x) (x = (x1, . . . , xd) ∈ [0, 1]d)
is called a copula density if all the one-dimensional marginal density is uni-
form over [0, 1]. By Sklar’s theorem, any probability density function p(x) =
p(x1, . . . , xd) on Rd is uniquely represented as

p(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

F ′
i (xi), (1)

where c is a copula density, Fi is the marginal distribution function of p and F ′
i

is the derivative of Fi. A statistical model where the copula part c is parametric
and the marginal distribution Fi is nonparametric is called a semiparametric
copula model. More precise definition is given in Section 3.

There are a number of researches on the estimation problem of semiparamet-
ric copula models. Klaassen and Wellner (1997) showed that the normal scores
rank correlation coefficient for the two-dimensional Gaussian copula model is

∗This paper is an English version of a paper written in Japanese.
†Graduate School of Information Science and Technology, The University of Tokyo.
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asymptotically efficient. Genest and Werker (2002) pointed out that the pseudo-
maximum likelihood estimator is not asymptotically efficient for models other
than the Gaussian copula. Chen et al. (2006) constructed an asymptotically ef-
ficient estimator by using the sieve method for marginal estimation. Tsukahara
(2005) provided a class of estimators depending only on the rank statistic and
derived its asymptotic properties. Construction of an asymptotically efficient
estimator depending only on the rank statistic is an important open problem.
For submodels of the Gaussian copula, Hoff et al. (2014) characterized the infor-
mation bound and Segers et al. (2014) constructed a rank-based asymptotically
efficient estimator.

In this paper, we investigate properties of divergence measures for semipara-
metric copula models. Based on the Kullback–Leibler divergence, we define
the rank divergence and profile divergence, which are population characteristics
of rank likelihood (Hoff, 2007) and profile likelihood, respectively. Both di-
vergences are not explicitly calculated in general. However, we can derive some
explicit formulas for piecewise-uniform copulas. As a result, under the regularity
conditions, the rank divergence converges to the profile divergence (Theorem 2).
For Gaussian copula models, calculation of the profile divergence is reduced to a
finite-dimensional optimization problem, and the rank divergence is represented
by orthant probability of the multivariate normal distributions. The latter is
numerically evaluated by the holonomic gradient method. These results will be
a fundamental step of obtaining the asymptotic properties of estimators.

The paper is organized as follows. In Section 2, we give a simple example
that motivates to study the divergence of semiparametric copula models. In
Section 3, we define the divergences and provide fundamental theorems on them.
In Section 4 and 5, we show explicit results for piecewise uniform and Gaussian
copulas, respectively. Finally, we discuss future problems in Section 6.

2 A toy example

Consider the following two-dimensional piecewise uniform distribution. Divide
the square region [0, 1]2 into four small squares and define a copula density by

c(x1, x2) =

{
1.8 if (x1, x2) ∈ [0, 1

2 )
2 ∪ [ 12 , 1]

2,

0.2 otherwise

which is constant on each region (Fig. 1 (a)). Choose a one-dimensional distri-
bution

F1(ξ) = F2(ξ) =

{
2
3ξ if ξ ∈ [0, 3

4 ),
1
2 + 2(ξ − 3

4 ) if ξ ∈ [ 34 , 1]
(2)
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and define a density function p(x1, x2) by Eq. (1). Specifically,

p(x1, x2) =


0.8 if (x1, x2) ∈ [0, 3

4 )
2,

0.8/3 if (x1, x2) ∈ ([0, 3
4 )× [ 34 , 1]) ∪ ([ 34 , 1]× [0, 3

4 ))

7.2 if (x1, x2) ∈ [ 34 , 1]
2.

See Fig. 1 (b). Note that only the difference between c(x1, x2) and p(x1, x2) is
the marginal distribution, and the dependence is the same.

(a) c(x1, x2) (b) p(x1, x2)

Figure 1: Two density functions with different marginal and the same copula
part. The number specified in each region denotes the value of density functions.
The density function p(x1, x2) has a smaller Kullback–Leibler divergence from
the uniform density than c(x1, x2).

However, the Kullback–Leibler divergence between u and c, where u(x1, x2) =
1 denotes the uniform density, is

KL(u, c) =

∫
[0,1]2

u(x) log
u(x)

c(x)
dx

=
1

2
log

1

1.8
+

1

2
log

1

0.2
≈ 0.511

and the divergence between u and p is

KL(u, p) =

(
3

4

)2

log
1

0.8
+ 2

(
3

4

)(
1

4

)
log

1

0.8/3
+

(
1

4

)2

log
1

7.2

≈ 0.498.

Therefore, p is closer than c from u.
Likewise, the divergence between densities changes with the marginal dis-

tributions. The minimum is called the profile divergence in this paper. On the
other hand, as discussed in the following section, information of semiparametric
copula models is aggregated to the rank statistic. Hence we call the divergence
defined by the rank statistic the rank divergence. Our purpose is to elucidate
their relation.
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3 Rank divergence and profile divergence

In this section, we first explain that the semiparametric copula models are invari-
ant under coordinate-wise transformations (Hoff, 2007; Hoff et al., 2014). Thus
the model is regarded as a composite transformation model (Appendix A). From
this point of view, two divergences called the rank divergence and the profile
divergence are defined. Their relationship is clarified.

3.1 Semiparametric copula models

Let us precisely define the semiparametric copula model. Denote the set of all
positive probability density functions on [0, 1]d by P, where p(x) is said to be
positive if p(x) > 0 almost surely. The set of all coordinate-wise transformations
T (x) = (T1(x1), . . . , Td(xd)) such that Ti : [0, 1] → [0, 1] for each i is a monotone
increasing, bijective and absolutely continuous function is denoted by T . For
example, the pair of marginal distributions (F1, F2) in Eq. (2) is an element of
T . The set T forms a group with respect to function composition. For a density
p ∈ P and a transformation T ∈ T , the push-forward density T∗p ∈ P is defined
by

(T∗p)(x1, . . . , xd) = p(T−1
1 (x1), . . . , T

−1
d (xd))

d∏
i=1

(T−1
i )′(xi). (3)

This is the density function of a transformed random vector T (X) if X is dis-
tributed according to p. The map (T, p) 7→ T∗p defines an action of T to P.
Denote the orbit (equivalence class) with respect to the action by [p] = {T∗p |
T ∈ T }. Sklar’s theorem implies that each orbit contains a unique copula
density. In other words, copulas and orbits have one-to-one correspondence.

Although the density functions are restricted to those on [0, 1]d, it is possible
to deal with density functions on Rd. Indeed, we can fix any function from Rd

to (0, 1)d, then transformations from Rd to Rd are obtained as a result.
Under these notations, the semiparametric copula model is defined by

M = {T∗cθ | θ ∈ Θ, T ∈ T }, (4)

where {cθ | θ ∈ Θ} is a parametric family of copula densities. See Nelsen (2006)
for examples of parametric copulas. We will deal with the piecewise uniform
copulas and Gaussian copulas in Sections 4 and 5, respectively.

The modelM is a composite transformation model with respect to the action
of T . The parameter of interest is θ, that is, the orbit. We try to define the
divergence between two orbits [p] and [q].

3.2 Rank divergence

Let p ∈ P be the true density and X = (xti)1≤t≤n,1≤i≤d be a random sample
generated from p, where n is the sample size. Since we consider continuous
distributions, the values {xti}nt=1 are assumed to be different from each other
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for each i. The following lemma is well known for one-dimensional case (e.g.
Eaton (1983)). The multi-dimensional case is similarly proved.

Lemma 1 (Hoff (2007)). The maximal invariant of the semiparametric copula
model is the multivariate rank statistic

rti = ♯{s ∈ {1, . . . , n} | xsi ≤ xti}, 1 ≤ t ≤ n, 1 ≤ i ≤ d,

where ♯A denotes the cardinality of a set A. We also use a matrix notation
R = (rti).

We call the multivariate rank statistic simply the rank statistic. Denote
the marginal distribution of the rank statistic R by p̄n(R) and call it the rank
likelihood. Since R can take only finite number of values (precisely (n!)d), p̄n is
a discrete distribution.

The rank likelihood is described by a high-dimensional integral. Indeed, let
{R(X) = R} be the set of values X ∈ Rn×d that are consistent with R. Then
the rank likelihood of p is

p̄n(R) =

∫
{R(X)=R}

n∏
t=1

p(xt1, . . . , xtd)dX. (5)

As will be stated in Section 4, we can write down the rank likelihood without
integrals when p is piecewise uniform.

The rank divergence is defined as follows.

Definition 1. For given density functions p, q ∈ P and the sample size n, the
rank divergence is defined by

Dn([p], [q]) =
1

n
KL(p̄n, q̄n) (6)

=
1

n

∑
R

p̄n(R) log
p̄n(R)

q̄n(R)
.

The function Dn([p], [q]) is well-defined since p̄n(R) does not depend on the
representative of [p]. The reason why the right hand side of Eq. (6) is divided
by n is that the statistic R has information of order O(n). The additivity and
monotonicity of the Kullback–Leibler divergence imply

Dn([p], [q]) ≤ KL(p, q). (7)

The rank divergence is not positive in general, that is, Dn([p], [q]) may be
zero even if [p] ̸= [q]. For example, if a two-dimensional copula density p has a
symmetry p(x1, x2) = p(1− x1, x2), then p̄2(R) is the uniform distribution (on
four points). Thus if both p and q are symmetric, then D2([p], [q]) = 0. On
the other hand, there is not [p] ̸= [q] such that Dn([p], [q]) = 0 for all n (under
regularity conditions). This fact is confirmed by Theorem 1 and Theorem 2
later.
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3.3 Profile divergence

It is natural to consider the following divergence as an analogue of composite
transformation models (Appendix A).

Definition 2. For given density functions p, q ∈ P, the profile divergence is
defined by

D̃([p], [q]) = inf
T,U∈T

KL(T∗p, U∗q) (8)

= inf
T∈T

KL(T∗p, q).

The second equality follows from invariance of the Kullback–Leibler divergence
KL(T∗p, T∗q) = KL(p, q).

Even if p and q are copula densities, D̃([p], [q]) < KL(p, q) in general. The
example given in Section 2 is such an example.

We derive a condition when D̃([p], [q]) = KL(p, q) holds. For a density q ∈ P
and a map T ∈ T , define the pull-back density T ∗q by

(T ∗q)(x) = q(T1(x1), . . . , Td(xd))

d∏
i=1

T ′
i (xi). (9)

This is the inverse of the push-forward operation defined by Eq. (3). Note that
KL(T∗p, q) = KL(p, T ∗q).

Lemma 2. Let p and q be continuously differentiable probability density func-
tions on (0, 1)d, which are not necessarily copula densities. Then the equality
D̃([p], [q]) = KL(p, q) holds only if

∂i log pi(xi) = Ep[∂i log q(x)|xi], i = 1, . . . , d. (10)

Here pi is the marginal density of p, ∂i is the partial derivative by xi and Ep[·|·] is
the conditional expectation with respect to p. Furthermore, if q is log-concave,
then Eq. (10) is also a sufficient condition.

Proof. The proof is based on the variational method. Let Ti(xi) = xi+ δTi(xi),
where δTi(xi) is a smooth function with a compact support in (0, 1). Expand
KL(p, T ∗q) with respect to δTi up to the first order term to obtain

KL(p, T ∗q) =

∫
p(x) log

p(x)

q(T (x))
∏

i T
′
i (xi)

dx (11)

≃ KL(p, q)−
∑
i

∫
p(x)(∂i log q(x))δTi(xi)dx−

∑
i

∫
p(x)δT ′

i (xi)dx

= KL(p, q) +
∑
i

∫
{−p(x)∂i log q(x) + ∂ip(x)} δTi(xi)dx (12)

= KL(p, q) +
∑
i

∫
pi(xi) {Ep[−∂i log q(x)|xi] + ∂i log pi(xi)} δTi(xi)dxi.
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Here the equality in (12) follows from the integral-by-parts and the boundary
condition δTi(0) = δTi(1) = 0. Hence we have the stationary condition (10). If
q is log-concave, the functional T 7→ KL(p, T ∗q) on T is convex due to the form
of Eq. (11). Thus the stationary condition implies optimality.

In the last part of the proof, we used convexity of the set T and convexity of
the functional T 7→ KL(p, T ∗q). They are called displacement convexity in the
context of the optimal transport theory. Lemma 2 holds even if the support of
p and q is not [0, 1]d.

If q is the uniform density on [0, 1]d, then Eq. (10) in Lemma 2 is equiva-
lent to ∂ipi = 0, which means p is a copula density. In this case, KL(p, q) =∫
p(x) log p(x)dx is equal to the negative entropy. Hence we obtain the following

consequence.

Lemma 3. The density p ∈ P is a copula density function if and only if p
maximizes the entropy over the orbit [p].

3.4 Main theorems

We provide two theorems on the rank divergence and profile divergence. Note
that the two quantities satisfy Dn([p], [q]) ≤ D̃([p], [q]) in general from Eq. (7).

First we have the following theorem on positivity of the profile divergence.

Theorem 1. Let p and q be positive copula density functions and assume that
q is bounded from above and upper semi-continuous. Then there exists T ∈ T
such that D̃([p], [q]) = KL(p, T ∗q). In particular, D̃([p], [q]) > 0 if [p] ̸= [q].

The proof is given in Appendix B.1. The optimal transport theory is rel-
evant, where the minimization problem D̃([p], [q]) = infT∈T KL(T∗p, q) is in-
terpreted as energy minimization problem with respect to the transport map
T .

The boundedness of q in Theorem 1 is assumed for the sake of proof and not
necessary. In fact, the Gaussian copula does not satisfy the condition, but the
positivity of the profile divergence is directly proved (Section 5). To weaken the
condition is a future work.

The following result is an analogue of a known fact in the composite trans-
formation model (Appendix A).

Theorem 2. Let p and q be positive copula density functions and assume that
both are bounded from below and above and continuous. If the true density is
p, then we have

lim
n→∞

1

n
log

p̄n(R)

q̄n(R)
= D̃([p], [q])

with probability one. Furthermore, the rank divergence converges to the profile
divergence:

lim
n→∞

Dn([p], [q]) = D̃([p], [q]).
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The proof is given in Appendix B.2. From the theorem, the asymptotic
information of semiparametric copula models is contained in the profile diver-
gence.

4 Piecewise uniform copula

The rank divergence and profile divergence do not have explicit formulas in gen-
eral. However, the piecewise uniform distributions and Gaussian distributions
are exceptions. This section deals with the piecewise uniform distributions.
The discussion is restricted to two-dimensional cases but the multi-dimensional
case is similar. Note that piecewise uniform distributions are also called the
chessboard distributions (Ghosh and Henderson, 2001).

4.1 Profile divergence

Let I and J be positive integers. Divide [0, 1]2 into I × J small rectangles and
call them Aij =

[
i−1
I , i

I

)
×
[
j−1
J , j

J

)
(1 ≤ i ≤ I, 1 ≤ j ≤ J). A density function

p is called piecewise uniform if

p(x1, x2) = pij if (x1, x2) ∈ Aij , 1 ≤ i ≤ I, 1 ≤ j ≤ J.

Here {pij} is a set of positive numbers such that
∑I

i=1

∑J
j=1 pij/IJ = 1. A

piecewise uniform density is a copula density if and only if

I∑
i=1

pij
I

= 1 (1 ≤ j ≤ J),

J∑
j=1

pij
J

= 1 (1 ≤ i ≤ I).

Therefore the set of piecewise copula densities is a (I − 1)(J − 1)-dimensional
parametric model. Although it looks like a contingency table model, the diver-
gence structure is different from it as already discussed in Section 2.

The following lemma shows that calculation of the profile divergence D̃([p], [q])
is reduced to a finite-dimensional optimization problem as long as q is piecewise
uniform.

Lemma 4. Let p be an arbitrary copula density and q be a piecewise uniform
copula density. Denote the value of q(x) over Aij by qij . Then the map T ∈ T
that attains D̃([p], [q]) = KL(p, T ∗q) is a piecewise linear transformation that
satisfies

ξi = T−1
1 (i/I), ηj = T−1

2 (j/J) (1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1). (13)
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Furthremore, ξi and ηj are the solution of the following minimization problem:

Minimize
∑
i

∑
j

(∫ ξi

ξi−1

∫ ηj

ηj−1

p(x)dx

)
log

1

qij
(14)

+
∑
i

(ξi − ξi−1) log(ξi − ξi−1) +
∑
j

(ηj − ηj−1) log(ηj − ηj−1)

subject to 0 = ξ0 < ξ1 < · · · < ξI = 1, 0 = η0 < η1 < · · · < ηJ = 1.

The objective function is equal to KL(p, T ∗q) up to a constant term.

Proof. Fix {ξi} and {ηj}. We prove that the minimizer of KL(p, T ∗q) under the
condition (13) is piecewise uniform. For such a T , the value of q(T (x)) does not
depend on T because of the piecewise uniformity of q. Therefore we have

KL(p, T ∗q) =

∫
p(x) log

p(x)

q(T (x))T ′
1(x1)T ′

2(x2)
dx (15)

= (const.)−
∫ 1

0

log T ′
1(x1)dx1 −

∫ 1

0

log T ′
2(x2)dx2,

where the condition
∫
p(x)dx2 =

∫
p(x)dx1 = 1 of copula densities is used.

In general, the minimizer of −
∫ 1

0
log t′(x)dx under the boundary condition

t(0) < t(1) is a linear function. Indeed, concavity of the logarithm implies

that −
∫ 1

0
log t′(x)dx ≥ − log

∫ 1

0
t′(x)dx = − log(t(1) − t(0)), and the equal-

ity holds if and only if t′′(x) = 0. From these, T1 and T2 are piecewise lin-
ear. The objective function in Eq. (14) is obtained from Eq. (15). Note that
T ′
1(x1) = 1/(I(ξi − ξi−1)) for x1 ∈ [ξi−1, ξi].

The optimization problem (14) is not convex in general and the solution is
not unique. However, there exists a solution due to Theorem 1.

From now on, we investigate the simplest case I = J = 2. Consider the
following copula density:

cθ(x) =

{
1 + θ if x ∈ [0, 1/2]2 ∪ [1/2, 1]2,

1− θ otherwise,

where −1 < θ < 1. The copula density used in Section 2 was of the form. If
θ = 0, cθ is equal to the uniform density.

In fact, the following “bifurcation phenomenon” holds. Here the definition
of ξ1 and η1 is the same as above.

Lemma 5. Let θ > 0. Then the profile divergence from the uniform density u
to cθ is

D̃([u], [cθ]) =

{
KL(u, cθ) if 0 < θ ≤ tanh(1),

KL(u, T ∗cθ) if tanh(1) < θ < 1,

9



where T = (T1, T2) is a piecewise linear transformation with knots ξ1 = η1 = ξ
or 1− ξ. The quantity ξ is the unique solution of the following equation:

ξ =
1

2

(
1 +

log ξ
1−ξ

log 1+θ
1−θ

)
,

1

2
< ξ < 1. (16)

Proof. Denote the objective function in Eq. (14) by f(ξ1, η1). The stationary
condition of f is

η1 =
1

2

(
1 +

log ξ1
1−ξ1

log 1+θ
1−θ

)
, ξ1 =

1

2

(
1 +

log η1

1−η1

log 1+θ
1−θ

)
.

This equation has a unique solution (ξ1, η1) = (1/2, 1/2) if | log 1+θ
1−θ | ≤ 2, or

equivalently |θ| ≤ tanh(1), and two symmetric solutions (ξ, ξ) and (1− ξ, 1− ξ)
together with (1/2, 1/2) if |θ| > tanh(1). Here ξ is the solution of Eq. (16). The
Hessian matrix of f is (

1
ξ1(1−ξ1)

2 log 1−θ
1+θ

2 log 1−θ
1+θ

1
η1(1−η1)

)
.

In particular, if θ > tanh(1), then ξ1 = η1 = 1/2 is not a minimal point, and
ξ1 = η1 = ξ and ξ1 = η1 = 1− ξ are minimal.

Solve (16) with respect to θ to obtain

θ =
( ξ
1−ξ )

1/(2ξ−1) − 1

( ξ
1−ξ )

1/(2ξ−1) + 1
,

1

2
< ξ < 1.

For example, if ξ = 3
4 , then θ = 0.8, which corresponds to the example given in

Section 2.
From Lemma 5, we see that a bifurcation phenomenon occurs at θ = tanh(1).

See Figure 2. It is also shown that D̃([u], [cθ]) converges to log 2 as θ → 1. In
particular, it is remarkable that the profile divergence is bounded.

4.2 Rank likelihood of piecewise uniform copulas

We determine the rank likelihood for piecewise uniform copulas. Consider a
piecewise uniform copula density

pθ(x1, x2) = θij if (x1, x2) ∈ Aij , (17)

where Aij is a small region defined in the preceding subsection and θij is a
positive number that satisfies

∑
i θij/I = 1 and

∑
j θij/J = 1. The joint density

function of a random sample X = {(xt1, xt2)}nt=1 is

(IJ)−n
I∏

i=1

J∏
j=1

θ
nij

ij , (18)
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Figure 2: A bifurcation phenomenon. (a) The optimal map T changes at θ =
tanh(1) (b) Kullback–Leibler divergence KL(u, cθ), rank divergence Dn([u], [cθ])
(n = 800) and profile divergence D̃([u], [cθ]) are plotted as a function of θ.

where nij denotes the number of observations that belong to Aij and is the
sufficient statistic of θ. However, since X itself is not observed and only the
rank statistic R is observed, (nij) is a latent variable.

Denote the marginal frequency of (nij) by σi = ni+ =
∑

j nij and τj =
n+j =

∑
i nij . Once σ = (σi) and τ = (τj) are given, (nij) is determined from

R. We denote the relation by nij = nij(R, σ, τ).

Theorem 3. For a piecewise copula density p, the rank likelihood is given by

p̄n(R) = (IJ)−n
∑
σ

∑
τ

1∏
i σi!

∏
j τj !

∏
i

∏
j

θ
nij(R,σ,τ)
ij , (19)

where σ and τ range over the whole set of marginal frequency vectors with the
total frequency n.

The proof is given in Appendix B.3. The rank divergence plotted in Figure 2
(b) is computed by Theorem 3 together with the Monte Carlo method.

5 Gaussian copulas

The Gaussian copula is a copula induced from the multivariate Gaussian dis-
tribution. It is shown that the profile divergence between Gaussian copulas has
a simple form. The rank divergence is reduced to the problem of calculating
orthant probability.

As noted in Section 3, the divergence between two densities on Rd is de-
fined via the densities on (0, 1)d. However, as a result, it is enough to consider
transformations on Rd and not necessary to go through (0, 1)d.

11



5.1 Profile divergence

Calculation of the profile divergence of Gaussian copulas is reduced to a finite-
dimensional convex optimization problem. Denote the density function of Gaus-
sian density with the mean vector 0 and the covariance matrix Σ by ϕΣ. For a
vector u, diag(u) is the diagonal matrix with the diagonal part u.

Lemma 6. Let P and Q be d-dimensional symmetric positive definite matrices,
and set p = ϕP and q = ϕQ. Then a map T ∈ T satisfying D̃([p], [q]) =
KL(p, T ∗q) is given by a linear map T (x) = diag(u)x, where u = (ui) is the
unique solution of the following convex programming:

Minimize −
∑
i

log ui +
1

2
tr(Q−1diag(u)P diag(u)) (20)

subject to u1, . . . , ud > 0.

The objective function is equal to KL(p, T ∗q) up to a constant term.

Proof. The density q is log-concave because it is Gaussian. Hence it is sufficient
to prove that T (x) = diag(u)x satisfies the stationary condition

∂i log pi(xi) = Ep[(∂i log(T
∗q)(x)|xi]

of Lemma 2. The left hand side is equal to ∂i log pi(xi) = −P−1
ii xi. The right

hand side is

Ep[(∂i log(T
∗q))(x)|xi] = −

∑
j

ui(Q
−1)ijujEp[xj |xi]

= −
∑
j

ui(Q
−1)ijujPjiP

−1
ii xi

= −P−1
ii xi.

The last equality follows from the stationary condition of Eq. (20). The fact
that Eq. (20) has a unique solution is shown in Marshall and Olkin (1968).

If d = 2, the profile divergence between p and q is

D̃([p], [q]) = log
1− ρpρq√

(1− ρ2p)(1− ρ2q)

where ρp and ρq are the correlation coefficient of p and q, respectively. This is
a symmetric divergence. By using Fisher’s Z transform ρ = tanh z, we have

D̃([p], [q]) = log cosh(zp − zq),

which is invariant with respect to location shift of z’s.
We confirm that, for Gaussian copulas, the metric induced from the profile

divergence coincides with the efficient information derived in Segers et al. (2014).
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Here the metric induced from the profile divergence for a statistical model {pθ |
θ ∈ Rm} is defined by

g̃ij = − ∂2D̃([pθ], [pϕ])

∂θi∂ϕj

∣∣∣∣∣
θ=ϕ

, i, j ∈ {1, . . . ,m}

(see Eguchi (1983); Amari (1985)). The following theorem is proved in Ap-
pendix B.4.

Theorem 4. For a parametric model of covariance matrices {P = Pθ | θ ∈ Rm},
the metric is

g̃ij =
1

2
tr
{
P−1(∂iP −Π(∂iP ))P−1(∂jP −Π(∂jP ))

}
, (21)

where ∂i is an abbreviation of ∂/∂θi and the projection Π : Rd×d → Rd×d is
defined by

Π(A) = P diag(b(A)) + diag(b(A))P, (22)

b(A) = (P−1 ◦ P + I)−1(P−1 ◦A)1d, 1d = (1, . . . , 1)⊤ ∈ Rd. (23)

The symbol A ◦B is the element-wise product of matrices A and B (Hadamard
product).

5.2 Rank likelihood of Gaussian copulas

For Gaussian copulas, the rank divergence (5) is represented by orthant prob-
ability of Gaussian measures since the integration region {R(X) = R} is the
intersection of half spaces

xt(s,i),i < xt(s+1,i),i, s ∈ [n− 1], i ∈ [d],

where t(s, i) denotes the data number t such that the rank of i-th coordinate
is rti = s. We also defined [n] = {1, . . . , n}. The result is summarized in the
following theorem. The proof is given in Appendix B.5.

Theorem 5. The rank likelihood of the d-dimensional Gaussian distribution
with the covariance matrix Σ is

p̄n(R|Σ) = 1

nd/2|Σ|(n−1)/2|B|1/2

∫
R(n−1)d

+

ϕ(w|0, B−1)dw,

where R+ = (0,∞), ϕ is the Gaussian density and B is a (n− 1)d-dimensional
symmetric positive definite matrix defined by

B(r−1)d+i,(s−1)d+j = (Σ−1)ij

(
n∑

t=1

I{rti≤r,rtj≤s} −
rs

n

)
, r, s ∈ [n− 1], i, j ∈ [d].

13



Table 1: The rank likelihood for n = 2 and rt1 = t (∀t). The values are
multiplied by n!.

θ .00 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95

(rt2) = (1, 2) .5000 .5319 .5641 .5970 .6310 .6667 .7048 .7468 .7952 .8564 .8989
(2, 1) .5000 .4681 .4359 .4030 .3690 .3333 .2952 .2532 .2048 .1436 .1011

Table 2: The rank likelihood for n = 3 and rt1 = t (∀t). The values are
multiplied by n!.

θ .00 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95

(rt2) = (1, 2, 3) .1667 .1918 .2196 .2509 .2866 .3280 .3773 .4381 .5179 .6359 .7302
(1, 3, 2) .1667 .1780 .1880 .1964 .2028 .2067 .2068 .2017 .1875 .1549 .1212
(2, 1, 3) .1667 .1780 .1880 .1964 .2028 .2067 .2068 .2017 .1875 .1549 .1212
(2, 3, 1) .1667 .1542 .1407 .1262 .1109 .0947 .0777 .0597 .0408 .0210 .0106
(3, 1, 2) .1667 .1542 .1407 .1262 .1109 .0947 .0777 .0597 .0408 .0210 .0106
(3, 2, 1) .1667 .1439 .1230 .1037 .0859 .0693 .0537 .0391 .0253 .0123 .0061

It is known that orthant probability of multivariate Gaussian distributions
is computed in high accuracy by the holonomic gradient method (Koyama and
Takemura, 2015). An R package is available (Koyama et al., 2014). Therefore
the rank likelihood and rank divergence is computed via Theorem 5. The com-
putational complexity of the holonomic gradient method is expressed by the
holonomic rank. For m-dimensional Gaussian probability, the holonomic rank
is known to be 2m and the computation cost rapidly increases with the sample
size.

Table 1 and Table 2 show the rank likelihood of the two-dimensional Gaus-
sian copula with the covariance matrix

Σ =

(
1 θ
θ 1

)
, θ ∈ {0.0, 0.1, . . . , 0.9, 0.95},

for n = 2 and n = 3, respectively. The first column of R is fixed to (1, . . . , n).
Instead, the probability p̄n(R) is multiplied by n!. As a result, the sum of each
column in the table is one.

Figure 3 shows the graph of the rank divergence Dn([pθ0 ], [pθ]) as a function
of θ, where pθ is the two-dimensional Gaussian copula and θ0 = 0 or θ0 = 0.5.
The sample size ranges from n = 2 to n = 7. In the same figure, the profile
divergence D̃([pθ0 ], [pθ]) and the Kullback–Leibler divergence KL(pθ0 , pθ) are
also plotted. A theoretical relation KL ≥ D̃ ≥ Dn is also observed in the figure.

If θ is fixed, the rank divergence tends to increase as n increases from 2 to
7. However, the curve for n = 7 crosses over those for n ≤ 6. The reason may
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be the computational accuracy for n = 7. Future investigation is necessary.
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Figure 3: The rank divergence Dn(θ0, θ) for Gaussian copulas.

6 Discussion

In this paper, we defined rank divergence and profile divergence. The former
converges to the latter (Theorem 2). However, the copula density function was
assumed to be bounded in order to prove the theorem. This assumption is
too strong and not applicable to practical copula models. A future work is to
weaken this assumption.

In Theorem 4, the efficient information of the Gaussian copula was obtained
by the profile divergence. The fact will be generalized to wider class of copula
models, but is not demonstrated yet. The efficient information is represented
by a system of Sturm–Liouville equations and not obtained explicitly (Bickel
et al., 1993).

We assumed from the beginning that the marginal distributions F1, . . . , Fd

are completely unknown. However, marginal distributions will be of interest in
practice and it may be natural to assume prior information. The estimator by
Chen et al. (2006) is interpreted as such an example. The divergence for these
cases should be derived.

There are various divergence measures between probability distributions
other than the Kullback–Leibler one. It is possible to formally define the rank
divergence and profile divergence on the basis of them. However, it should be
careful if invariance and additivity of divergence do not hold.
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Appendices

A Composite transformation models

Composite transformation models are invariant statistical models with respect
to some transformations. More specifically, consider a family of probability
distributions {Pθ,ν | θ ∈ Θ, ν ∈ N} on a sample space X . Let θ be a parameter
of interest and ν be a nuisance parameter. Suppose that there exists a group G
acting both X and N and it satisfies

x ∼ Pθ,ν ⇒ gx ∼ Pθ,gν .

We further assume that the action G to N is transitive. Then the family {Pθ,ν}
is called a composite transformation model (Barndorff-Nielsen and Jupp, 1988).
It is also called an invariant probability model (Eaton, 1983). The space X is
partitioned into mutually disjoint orbits by the action of G. A statistic is called
maximal invariant if it has a one-to-one correspondence with the orbits. The
distribution of a maximal invariant depends only on θ.

Example 1. Consider a random sample x = (x1, . . . , xn) according to the nor-
mal distribution N(µ, σ2). If we scale the data as xi 7→ axi (a > 0), then the
parameter (µ, σ) is transformed to (aµ, aσ). Thus N(µ, σ2) is a composite trans-
formation model with respect to the scale transformation, where the parameter
of interest is θ = µ/σ and the nuisance parameter is ν = σ. An orbit containing
an observation (x1, . . . , xn) ∈ Rn is given by {(ax1, . . . , axn) | a > 0}. The
maximal invariant is, for example, w(x) = (x1/σ̂, . . . , xn/σ̂), where σ̂2 denotes
the sample variance. The distribution of w(x) depends only on θ. Note that
the maximal invariant on the minimum sufficient statistic (x̄, σ̂) is x̄/σ̂, which
is a constant multiple of Student’s t statistic (Cox and Hinkley, 1974, Example
5.16).

Now consider a random sample x = (x1, . . . , xn) of size n from the distribu-
tion Pθ,ν with the density function pθ,ν . It is natural to make inference based
on the maximal invariant w = w(x). Denote the marginal density function of
w by p̄θ(w) and consider the Kullback–Leibler divergence between two density
functions p̄θ1 and p̄θ2 :

Dn(θ1, θ2) =
1

n

∫
p̄θ1(w) log

p̄θ1(w)

p̄θ2(w)
dw. (24)
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We call it the marginal divergence. The reason why the right hand side is
divided by n is that w has information of order O(n). On the other hand, a
divergence function independent of the nuisance parameter is defined by

D̃(θ1, θ2) := inf
ν2∈N

KL(pθ1,ν1
, pθ2,ν2

) (∀ν1), (25)

where the right hand side does not depend on ν1 because of the invariance of
the Kullback–Leibler divergence. We call D̃ the profile divergence, which is also
called the profile discrimination information in Section 4 of Barndorff-Nielsen
and Jupp (1988). The following lemma is obtained by Laplace approximation of
the marginal distribution. The fact is essentially stated in Section 6 of Barndorff-
Nielsen and Jupp (1988).

Lemma 7. If the true parameter is θ, then we have

lim
n→∞

1

n
log

p̄θ(w)

p̄ϕ(w)
= lim

n→∞
Dn(θ, ϕ) = D̃(θ, ϕ)

under some regularity conditions.

Example 2 (cont.). For the last example, the marginal divergence is the
Kullback–Leibler divergence between two non-central t distributions and not
explicitly expressed. However, the profile divergence is obtained explicitly:

D̃(θ1, θ2) = inf
σ2>0

(
−1

2
log

σ2
1

σ2
2

− 1

2
+

(θ1σ1 − θ2σ2)
2 + σ2

1

2σ2
2

)
= − log

(
θ1θ2 +

√
θ21θ

2
2 + 4(θ21 + 1)

2(θ21 + 1)

)
− θ1θ2

2

(
θ1θ2 +

√
θ21θ

2
2 + 4(θ21 + 1)

2(θ21 + 1)

)
+

θ22
2
.

In particular, if θ1 = 0, then D̃(0, θ2) = θ22/2, and if θ2 = 0, then D̃(θ1, 0) =
(1/2) log(θ21 + 1). Hence D̃ is quite asymmetric. The fact reflects to the asym-
metry between size and power of the t test. In this way, we can study properties
of the composite transformation models by focusing on the profile divergence.

B Proofs

B.1 Proof of Theorem 1

From the definition of profile divergence, we can choose a sequence of density
functions {pm}∞m=1 ⊂ [p] such that KL(pm, q) converges to D̃([p], [q]). Since
{pm} is a tight sequence, we assume that it weakly converges to a distribution
(which may not be absolutely continuous) without loss of generality. Then,
letting q(x) ≤ M < ∞ since q(x) is bounded, we obtain∫

pm(x) log pm(x) dx = KL(pm, q) +

∫
pm(x) log q(x)dx

≤ KL(pm, q) + logM.
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Hence we have

lim inf
m→∞

∫
pm(x) log pm(x)dx ≤ D̃([p], [q]) + logM < ∞.

Then from Corollary 3.5 of McCann (1997), the weak limit of {pm} is absolutely
continuous. Denote the limit density by p∞. Then Lemma 3.4 of McCann (1997)
implies

lim inf
m→∞

∫
pm(x) log pm(x)dx ≥

∫
p∞(x) log p∞(x)dx.

Since q(x) is upper semi-continuous, we have

lim inf
m→∞

∫
pm(x) log(1/q(x))dx ≥

∫
p∞(x) log(1/q(x))dx

(e.g. van der Vaart (2000)). Therefore we obtain

D̃([p], [q]) = lim
m→∞

∫
pm(x) log

pm(x)

q(x)
dx ≥

∫
p∞(x) log

p∞(x)

q(x)
dx > 0,

where the last inequality follows since p∞ is different from q. Indeed, if p∞ = q,
then p∞ is also a copula density, but p∞ = p since p∞ is the weak limit of
pm ∈ [p]. This contradicts to the assumption p ̸= q.

B.2 Proof of Theorem 2

We only prove the two-dimensional case. First consider the two-dimensional
piecewise uniform densities p = pθ and q = pϕ of the form (17). Assume that
the true density is p and derive the asymptotic form of q̄n(R). Theorem 3
implies

q̄n(R) = (IJ)−n
∑
σ

∑
τ

1∏
i σi!

∏
j τj !

∏
i

∏
j

ϕ
nij(R,σ,τ)
ij ,

where σ = (σi) and τ = (τj) are marginal frequencies. Letting π̂ij = nij/n, we
obtain

log q̄n(R) = −n log(IJ) + log

(∑
σ

∑
τ

∏
i

∏
j ϕ

nπ̂ij

ij∏
i(nπ̂i+)!

∏
j(nπ̂+j)!

)
.

For any non-negative integers m, an inequality m logm − m ≤ logm! ≤ (m +
1) log(m + 1) − m holds (see e.g. Feller (1968, Section II.9)). The number of
distinct values of σ and τ are

(
n+I−1

n

)
and

(
n+J−1

n

)
, respectively, which are of

polynomial order. Hence Laplace’s approximation can be applied as

1

n
log((n!)2q̄n(R)) = sup

σ,τ

(∑
i

∑
j

π̂ij log ϕij −
∑
i

π̂i+ log(Iπ̂i+)−
∑
j

π̂+j log(Jπ̂+j)
)
+ o(1),
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where o(1) denotes a term converging to 0 as n → ∞ uniformly in R. Now
using an empirical measure P̂ = n−1

∑n
t=1 δ(xt1,xt2), we write π̂ij = π̂T

ij :=

P̂ (T−1(Aij)) with a map T ∈ T . Here Aij is the small rectangular region
defined in Section 4. Furthermore, T is linear on each region T−1(Aij). Then
determining T is equivalent to determining σ and τ . Then we have

1

n
log((n!)2q̄n(R)) = sup

T

(∑
i

∑
j

π̂T
ij log ϕij −

∑
i

π̂T
i+ log(Iπ̂i+)−

∑
j

π̂T
+j log(Jπ̂+j)

)
+ o(1).

From Glivenko–Cantelli’s theorem (e.g. van der Vaart (2000)), the probability
π̂T
ij converges to πT

ij := P (T−1(Aij)) uniformly in T with probability one. Here
P is the true distribution, that is, P (dx) = p(x)dx. Now, with probability one,

lim
n→∞

1

n
log((n!)2q̄n(R)) = sup

T

(∑
i

∑
j

πT
ij log ϕij −

∑
i

πT
i+ log(IπT

i+)−
∑
j

πT
+j log(Jπ

T
+j)
)
.

On the other hand, since T is linear on T−1(Aij), the derivative is T ′
1(x1) =

1/(IπT
i+) if x ∈ T−1(Aij), and so on. Therefore

KL(p, T ∗q) =

∫
p(x) log p(x)dx+

∑
i

∑
j

∫
T−1(Aij)

p(x) log
1

ϕijT ′
1(x1)T ′

2(x2)
dx

=

∫
p(x) log p(x)dx−

∑
i

∑
j

πT
ij log ϕij +

∑
i

πT
i+ log(IπT

i+) +
∑
j

πT
+j log(Jπ

T
+j).

We proved that

lim
n→∞

1

n
log
(
(n!)2q̄n(R)

)
=

∫
p(x) log p(x)dx− inf

T
KL(p, T ∗q).

The same thing holds for p̄n(R). Finally we have

lim
n→∞

1

n
log
( p̄n(R)

q̄n(R)

)
= − inf

T
KL(p, T ∗p) + inf

T
KL(p, T ∗q)

= inf
T

KL(p, T ∗q)

= D̃([p], [q]),

where the last equality comes from Lemma 4.
If p and q are not piecewise uniform, then the density is approximated by a

piecewise one. More specifically, for any ε > 0, there exists a piecewise uniform
pε such that (1 − ε)pε ≤ p ≤ (1 + ε)pε. Define qε in a similar way. The rank
likelihood is evaluated as

1

n
log

p̄n(R)

q̄n(R)
≤ 1

n
log

(1 + ε)np̄ε,n(R)

(1− ε)nq̄ε,n(R)
→ log

1 + ε

1− ε
+ D̃([pε], [qε]) (n → ∞).

The lower bound is similarly evaluated. The limit ε → 0 gives the result.
The convergence of the rank divergence follows from the bounded conver-

gence theorem. Indeed, since p is bounded from below and above by the as-
sumption, we obtain Cn

0 ≤ p̄n(R) ≤ Cn
1 using 0 < C0 ≤ p ≤ C1 < ∞. The

expression on q̄n(R) is similar. Therefore n−1 log(p̄n(R)/q̄n(R)) is bounded.
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B.3 Proof of Theorem 3

We abbreviate p̄n(R) as p(R). From Eq. (18), the marginal distribution of
N := (nij) is

p(N) =
n!∏

i

∏
j nij !

(IJ)−n
∏
i

∏
j

θ
nij

ij .

We derive the conditional distribution p(R|N) of R given N . Since N is a suffi-
cient statistic on θ, p(R|N) does not depend on θ. Therefore we can assume that
X is distributed according to the uniform distribution without loss of generality.
Since σ and τ are functions of N , we obtain

p(R|N) = p(R|N, σ, τ)

=
p(R,N |σ, τ)
p(N |σ, τ)

=


p(R|σ, τ)
p(N |σ, τ)

if N = N(R, σ, τ),

0 otherwise.

Since X is a random sample from the uniform distribution, p(N |σ, τ) is the
hypergeometric distribution and p(R|σ, τ) = p(R) = 1/(n!)2. In summary, the
marginal distribution of R is

p(R) =
∑
N

p(R|N)p(N)

=
∑
σ

∑
τ

p(R|σ, τ) 1

p(N |σ, τ)
p(N)

∣∣∣∣∣
N=N(R,σ,τ)

=
∑
σ

∑
τ

1

(n!)2
n!
∏

i

∏
j nij !∏

i σi!
∏

j τj !

n!∏
i

∏
j nij !

(IJ)−n
∏
i

∏
j

θ
nij

ij

∣∣∣∣∣∣
N=N(R,σ,τ)

,

which yields Eq. (19).

B.4 Proof of Theorem 4

It is widely known that the Fisher information matrix of the multivariate normal
distribution is

gij =
1

2
tr(P−1(∂iP )P−1(∂jP )).

In general, the metric induced from the profile divergence in the sense of Eq. (25)
is given by

g̃ij = E[{∂iℓ−Π(∂iℓ)}{∂jℓ−Π(∂jℓ)}]

(Barndorff-Nielsen and Jupp, 1988, Theorem 7.2), where ℓ = log pθ,ν is the log
likelihood and Π is the orthogonal projection onto the nuisance tangent space
spanned by ∂ℓ/∂ν. Since the correspondence ∂iP 7→ ∂iℓ of tangent vectors is a
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linear isomorphism, we have Eq. (21). Now determine the orthogonal projection
Π. The nuisance parameter u appears in diag(u)P diag(u) and therefore the
tangent vector at u = 1d is

∂uk
(diag(u)P diag(u)) = diag(ek)P + P diag(ek), k = 1, . . . , d,

where ek is the k-th unit vector. Hence Π is of the form (22). Let Π(A) =
PB + BP where B = diag(b). Then, for any diagonal matrix C = diag(c), we
have

0 =
1

2
tr{P−1(PC + CP )P−1(A− (PB +BP ))}

=
∑
k

ck(P
−1A)kk −

∑
k

ckbk −
∑
k

∑
l

ckbl(P
−1)klPkl,

which implies (P−1 ◦A)1d − (I + P−1 ◦ P )b = 0 and Eq. (23) follows.

B.5 Proof of Theorem 5

Let S = Σ−1. Consider a transformation vi = xt(n,i),i and wri = xt(r+1,i),i −
xt(r,i),i. Then the integration region is vi ∈ R and wri > 0. The inverse

transformation is xti = vi−
∑n−1

r=1 I{rti≤r}wri, where I is the definition function.
The exponential part of the joint density function of X is

n∑
t=1

d∑
i=1

d∑
j=1

Sijxtixtj =

n∑
t=1

d∑
i=1

d∑
j=1

Sij

(
vi −

n∑
r=1

I{rti≤r}wri

)(
vj −

n∑
s=1

I{rtj≤s}wsj

)

=
∑
i

∑
j

(
nSijvivj − 2nSijmivj +

∑
r

∑
s

SijI{rti≤r}I{rtj≤s}wriwsj

)
,

where

mi =
1

n

n∑
t=1

n−1∑
r=1

I{rti≤r}wri =
1

n

n−1∑
r=1

rwri.

Thus the exponential part of the joint density function of (vi), (wri) is

n
∑
i

∑
j

Sij(vi −mi)(vj −mj) +
∑
i

∑
j

∑
r

∑
s

B(r−1)d+i,(s−1)d+jwriwsj .

Integration with respect to vi yields the result.
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