
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Indexing Graph Search Trees and Applications

Sankardeep CHAKRABORTY and
Kunihiko SADAKANE

METR 2019–12 June 2019

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: https://www.keisu.t.u-tokyo.ac.jp/research/techrep/

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Indexing Graph Search Trees and Applications
Sankardeep Chakraborty
RIKEN Center for Advanced Intelligence Project, Japan
sankar.chakraborty@riken.jp

Kunihiko Sadakane
The University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract
We consider the problem of compactly representing the Depth First Search (DFS) tree of a given
undirected or directed graph having n vertices and m edges while supporting various DFS related
queries efficiently in the RAM with logarithmic word size. We study this problem in two well-known
models: indexing and encoding models. While most of these queries can be supported easily in
constant time using O(n lg n) bits1 of extra space, our goal here is, more specifically, to beat this
trivial O(n lg n) bit space bound, yet not compromise too much on the running time of these queries.
In the indexing model, the space bound of our solution involves the quantity m, hence, we obtain
different bounds for sparse and dense graphs respectively. In the encoding model, we first give a
space lower bound, followed by an almost optimal data structure with extremely fast query time.
Central to our algorithm is a partitioning of the DFS tree into connected subtrees, and a compact
way to store these connections. Finally, we also apply these techniques to compactly index the
shortest path structure, biconnectivity structures among others.

1 Introduction

Depth First Search (DFS) is a very well-known method for visiting the vertices and edges of
a directed or undirected graph. DFS differs from other ways of traversing the graph such as
Breadth First Search (BFS) by the following DFS protocol: Whenever two or more vertices
were discovered by the search method and have unexplored incident (out)edges, an (out)edge
incident on the most recently discovered such vertex is explored first. This DFS traversal
produces a rooted spanning tree (forest), called DFS tree (forest) along with assigning an
index to every vertex v i.e., the time vertex v is discovered for the first time during DFS. We
call it depth-first-index (DFI(v)). Let G = (V,E) be a graph on n = |V | vertices and m = |E|
edges where V = {v1, v2, · · · , vn}. It takes O(m+ n) time to perform a DFS traversal of G
and to generate its DFS tree (forest) with DFIs of all the vertices. The DFS rule confers a
number of structural properties on the resulting graph traversal that cause DFS to have a
large number of applications. These properties are captured in the DFS tree (forest), and can
be used crucially to design efficient algorithms for many basic and fundamental algorithmic
graph problems, namely, biconnectivity [23], 2-edge connectivity [25], strongly connected
components [23], topological sorting [23], dominators [24], st-numbering [13] and planarity
testing [17] among many others.

There are two versions of DFS studied in the literature. In the lexicographically smallest
DFS or lex-DFS problem, when DFS looks for an unvisited vertex to visit in an adjacency
list, it picks the “first” unvisited vertex where the “first” is with respect to the appearance
order in the adjacency list. The resulting DFS tree will be unique. In contrast to lex-DFS,
an algorithm that outputs some DFS numbering of a given graph, treats an adjacency list as
a set, ignoring the order of appearance of vertices in it, and outputs a vertex ordering Q

1 We use lg to denote logarithm to the base 2.

mailto:sankar.chakraborty@riken.jp
mailto:sada@mist.i.u-tokyo.ac.jp

XX:2 Indexing Graph Search Trees and Applications

such that there exists some adjacency ordering R such that Q is the DFS numbering with
respect to R. We say that such a DFS algorithm performs general-DFS. In this work, we
focus only on lex-DFS, thus, given a source vertex, the DFS tree is always unique. Given
the lex-DFS tree, the non-tree edges of a given directed graph can be classified into four
categories as follows. An edge directed from a vertex to its ancestor in the tree is called a
back edge. Similarly, an edge directed from a vertex to its descendant in the tree is called a
forward edge. Further, an edge directed from right to left in the DFS tree is called a cross
edge. The remaining edges directed from left to right in the tree are called anti-cross edges.
In the undirected graphs, there are no cross edges. Note that, we can store the complete
DFS tree explicitly using O(n lgn) bits by storing pointers between nodes. In what follows,
we formally define the problem which we call the DFS-Indexing problem.

DFS-Indexing problem
Input: A directed or undirected graphG = (V,E) where |V | = n, |E| = m,
and a source vertex vs, preprocess G and answer the following queries
with respect to the DFS tree T rooted at vs:
1. Given any pair of vertices vi and vj ,

(a) Who is visited first in the DFS traversal of G?
(b) Is vi an ancestor of vj in T?

2. Given vi,
(a) Return the parent of vi in T .
(b) Return the number of children (if any) of vi in T .
(c) Enumerate all the children (if any) of vi in T .
(d) Return the DFI of vi.

3. Enumerate the order in which vertices of G are visited in the DFS.
4. Given 1 ≤ i ≤ n, return the vertex with DFI i.

We study the DFS-Indexing problem in two well-known models: the indexing and encoding
models [22]. In the indexing model, we wish to build an index ind after preprocessing the
input graph G such that queries can be answered using both ind and G whereas in the
encoding model, we seek to build a data structure encod after preprocessing the input graph
G such that queries have to be answered using encod only. Typically the parameters of
interest are (i) query time, (ii) space consumed (in bits) by ind and encod resp. and (iii) the
preprocessing time and space. We address all these issues in our paper for the DFS-Indexing
problem, assuming our computational model is a Random-Access-Machine with constant time
operations on O(lgn)-bit words. In both models, it is not hard to see that using O(n lgn)
bits, we can answer all the queries of the DFS-Indexing problem in the optimal O(1) time
except the query of 3 which takes O(n) time. Our main objective here is to beat this trivial
O(n lgn) bit space bound without compromising too much on the query time.

The motivation for studying this question mainly stems from the rise of the “big data”
phenomenon and its implications. To illustrate, the rate at which we store data is increasing
even faster than the speed and capacity of computing hardware. Thus, if we want to use the
stored data efficiently, we need to represent it in sophisticated ways. Many applications dealing
with huge data structures can benefit from keeping them in compressed form. Compression
has many advantages: it can allow a representation to fit in main memory rather than
swapping out to disk, and it improves cache performance since it allows more data to fit
into the cache. However, such a data structure is only handy if it allows the application to
perform fast queries to the data, and this is the direction we want to explore for the DFS tree.
More specifically, we are interested in representing the DFS tree of a given graph compactly
while supporting all the queries mentioned above efficiently.

Chakraborty and Sadakane XX:3

1.1 Representation of the Input Graph
We assume that the input graphs G = (V,E) are represented using the adjacency array
format, i.e., G is given by an array of length |V | where the i-th entry stores a pointer
to an array that stores all the neighbors of the i-th vertex. For the directed graphs, we
assume that the input representation has both in/out adjacency array for all the vertices
i.e., for directed graphs, every vertex v has access to two arrays, one array is for all the
in-neighbors of v and the other array is for all the out-neighbors of v. This form of input
graph representation has now become somewhat standard and was recently used in plenty of
other works [2, 6, 7, 8, 9, 10]. Throughout this paper, we call a graph sparse when m = O(n),
and dense otherwise (i.e., m = ω(n)).

1.2 Our Main Results and Organization of the Paper
We start by mentioning some preliminary results that will be used throughout the paper in
Section 2. Section 3 contains the description of our main index for solving the DFS-Indexing
problem in the indexing model. Our main results here can be summarized as follows,

Theorem 1. In the indexing model, given any sparse (dense resp.) undirected or directed
graph G, there exists an O(m + n) time and O(n lgn) bits preprocessing algorithm which
outputs a data structure of size O(n) (O(n lg(m/n)) resp.) bits, using which the queries 1(a),
1(b), 2(d) and 4 can be reported in O(lgn) time, 2(a) and 2(b) in O(1) time, 2(c) in time
proportional to the number of solutions, and finally 3 can be solved in O(n) time resp. for
the DFS-Indexing problem.

We want to emphasize that obtaining better results for sparse graphs is not only interesting
from theoretical perspective but also from practical point of view as these graphs do appear
very frequently in most of the realistic network scenario in real world applications, e.g., Road
networks and the Internet.

In Section 4, we provide the detailed proof of our index in the encoding model. This
contains a space lower bound for any index for the DFS-Indexing problem, followed by an
index whose size asymptotically matches the lower bound and has efficient query time. We
summarize our main results below.

Theorem 2. In the encoding model, the size of any data structure for the DFS-Indexing
problem must be Ω(n lgn) bits. On the other hand, given any (un)directed graph, there exists
an O(m + n) time and O(n lgn) bits preprocessing scheme that outputs an index of size
(1 + ε)n lgn + 2n + o(n) bits (for any constant ε > 0), using which the queries 1(a), 1(b),
2(a), 2(b), 2(d) can be reported in O(1) time, 2(c) in time proportional to the number of
solutions, 3 in O(n/ε) time, and finally 4 in O(1/ε) time resp. for the DFS-Indexing problem
in this setting.

Building on all these aforementioned results, we also show a host of applications of our
techniques in designing indices for other fundamental graph problems in Appendix A. Finally,
we conclude in Section 5 with some open problems and possible future directions to explore
further.

Remark. At this point we want to emphasize that our results are more general, i.e.,
they can be extended to store any arbitrary labeled tree (arising from some underlying
graph) along with the mechanism for fast querying. This method is very useful as many
graph algorithms (like shortest path, minimum spanning tree, biconnectivity etc) induce a
tree structure which is used subsequently during the execution of the algorithm. Hence, we

XX:4 Indexing Graph Search Trees and Applications

can use our technique to store and query those trees compactly as well as efficiently. Thus,
we also believe that our algorithm may find many other potential interesting applications.
However, we chose to provide all the details in terms of DFS as DFS is very widely popular
graph traversal technique and is used as the backbone for multiple fundamental algorithms,
yet there is no explicit indexing scheme for storing DFS tree compactly. In Appendix A.1,
we show how one can extend these techniques to design indexing schemes for a variety of
other classical and fundamental graph problems.

1.3 Related Works
There already exists a large body of work concerning compactly representing various specific
classes of graphs, for example planar, constant genus graphs etc [1, 5, 16, 19, 21, 22, 26]. All
of these works are able to store an n-vertex unlabeled planar graph in O(n) bits, and some
of them even allow for O(1)-time neighbor queries. Generally what is meant by unlabeled
is that the algorithm is free to choose an ordering on the vertices (integer labels from 1 to
n). Our setting here is slightly different as we work with graphs whose vertices are labeled,
and matches closely with [3]. Also we want to support more complex queries whereas the
previous works only focused on adjacency queries mostly. Even though DFS being such
a widely known method, and having many applications, to the best of our knowledge, we
are not aware of any previous work focusing on compactly representing the DFS tree with
efficient query support.

2 Preliminaries

Rank-Select. We make use of the following theorem:

Theorem 3. [11] We can store a bitstring B of length n with additional o(n) bits such that
rank and select operations (defined below) can be supported in O(1) time. Such a structure
can also be constructed from the given bitstring in O(n) time and space.

For any a ∈ {0, 1}, the rank and select operations are defined as follows :
• ranka(B, i) = the number of occurrences of a in B[1, i], for 1 ≤ i ≤ n;
• selecta(B, i) = the position in B of the i-th occurrence of a, for 1 ≤ i ≤ n.

When the bitvector B is sparse, the space overhead of o(n) bits can be avoided by using
the following theorem, which will also be used later in our paper.

Theorem 4. [22] We can store a bitstring B of length n with m 1s using m lg(n/m) +O(m)
bits such that select1(B, 1) can be supported in O(1) time, select0(B, 1) in O(lgm) time, and
both the rank queries (rank1(B, i) and rank0(B, i)) can be supported in O(min(lgm, lgn/m))
time. Such a structure can also be constructed from B in O(n) time and space.

Permutation. We also use the following theorem:

Theorem 5. [20] A permutation π of length n can be represented using (1 + ε)n lgn bits so
that π(i) is answered in O(1) time and π−1 in time O(1/ε) for any constant ε > 0. Such a
representation can be constructed using O(n) time and space.

Succinct Tree Representation. We need following result from [15].

Theorem 6. [15] There exists a data structure to succinctly encode an ordered tree with
n nodes using 2n + o(n) bits such that, given a node v, (a) child(v,i): i-th child of v, (b)

Chakraborty and Sadakane XX:5

degree(v): number of children of v, (c) depth(v): depth of v, (d) selectpre(v): position of v
in preorder, (e) LA(v, i): ancestor of v at level i can be supported in O(1) time among many
others. Such a structure can also be constructed in O(n) time and space.

3 Algorithms in the Indexing Model

In this section, we provide the main algorithmic ideas needed for the solution of the DFS-
Indexing problem in the indexing model. We start by describing the preprocessing procedure
which is followed by the query algorithms.

3.1 Preprocessing Step

We first describe our algorithms for undirected graphs, and later mention the modifications
required for the case of directed graphs. The preprocessing step of the algorithm is divided
into two parts. In the first part, we perform a DFS of the input graph G along with storing
some necessary data structures. In the second step, we perform a partition of the DFS tree of
G using the well-known “tree covering technique” of the succinct data structures world [14],
and also store some auxiliary data structures. Later, in the final step of our algorithm, we
show how to use these data structures to answer the required queries. In what follows, we
describe each step in detail.

Step 1: Creating Parent-Child Array using Unary Degree Sequence Array.
The main idea of this step is to perform a DFS traversal of G and store in a compact way
the parent-child relationship of the DFS tree T . The way we achieve this is by using three
bitvectors of length O(m+ n) bits. Recall that, our input graphs G = (V,E) are represented
using the standard adjacency array. Central to our preprocessing algorithm is an encoding of
the degrees of the vertices in unary. As usual, let V = {v1, v2, · · · , vn} be the vertex set of G.
The unary degree sequence encoding D of the undirected graph G has n 1s to represent the
n vertices and each 1 is followed by a number of 0s equal to its degree. Moreover, if d is the
degree of vertex vi, then d 0s following the i-th 1 in the D array corresponds to d neighbors
of vi (or equivalently the edges from vi to the d neighbors of vi) in the same order as in the
adjacency array of vi. Clearly D uses n+ 2m bits and can be obtained from the neighbors of
each vertex in O(m+ n) time. Now using rank/select queries of Theorem 3 in Section 2, the
j-th outgoing edge of vertex vi can be identified with the position p = select1(D, i) + j of D
(1 ≤ j ≤ degree(vi) where degree(vi) denotes the degree of the vertex vi). From a position
p, we can obtain an endpoint of the corresponding edge by i = rank1(D, p), and the other
endpoint is the j-th neighbor of vi where j = p− select1(D, i).

We also use two bitvectors E,P of the same length where every bit is initialized to 0,
and the bits in E,P are in one-to-one correspondence with bits in D. The bitvector E will
be used to mark the tree edges of the DFS tree T , and the bitvector P to mark the unique
parent of every vertex in T . The marking is carried out while performing a DFS of G in the
preprocessing step. I.e., if (vi, vj) is an edge in the DFS tree where vi is the parent of vj ,
and suppose k is the index of the edge (vi, vj) in D, then the corresponding location in E is
marked as 1 during DFS. At the same time, we scan the adjacency array of vj to find the
position of vi (as G is undirected, there will be two entries for each edge in the adjacency
array), and suppose t is the index of the edge (vj , vi) in D, then the corresponding location
in P is marked as 1 during DFS. Thus, assuming G is a connected graph, once DFS finishes
traversing G, the number of ones in E is exactly the number of tree edges (which is n− 1)
and the number of ones in P will be n− 1 as root does not have any parent.

XX:6 Indexing Graph Search Trees and Applications

The parent of vi in T is computed in O(1) time as follows. Let vr be the root of T . Then
if i > r (resp. i < r), the marked bit representing the parent of vi is the (i− 1)-st (resp. i-th)
1 in P . Let p = select1(P, i − 1) (resp. p = select1(P, i)) and j = p − select1(D, i). Then
the parent of vi is the j-th neighbor of vi.

We use another bitvector DT of length 2n, which encodes the degree of each vertex in T by
unary sequences. Then the degree of vertex vi in T is select1(DT , i+ 1)− select1(DT , i)− 1,
and j-th child of vi in T is p-th neighbor of vi in G where p = select1(E, select1(DT , i− 1) +
j)− select1(D, i). These are computed in constant time.

Note that, the classical linear time implementation of DFS [12] uses a stack (which could
grow to O(n lgn) bits) and a color array (of size O(n) bits). Thus, the procedure takes
O(m+ n) time and O(n lgn) bits overall. First, we argue that using the same linear time,
we can also create bitvectors D,E and P and fill up them correctly. It’s easy to see that
creating D as well as initializing E and P to all zero takes O(m+ n) time. All it remains is
to show, how one can fill up E and P while performing DFS. For this purpose, we build the
data structures to support the constant time rank/select query (of Theorem 3) on D (and
on E,P as well, the reason will be clear in the query step) and use the result of the select
query to mark the tree edges on E (as they are in one-to-one correspondence). To illustrate,
suppose, while traversing from vi, DFS discovers the edge (vi, vj) as a tree edge in T where
vi is the parent of vj , and suppose vj is the c-th neighbor in vi’s adjacency array, then we
find the index of the c-th zero after i-th one in D (using select query), and the corresponding
index is marked as 1 in the E array. This takes O(1) time for each tree edge marking. After
this, we mark the index in P as 1 corresponding to the edge (vj , vi) to denote that vi is the
parent of vj . Thus, marking parent takes O(degree(vj)) time for the vertex vj . Note that,
all of this happens along with the classical stack-based DFS implementation. Thus overall
it takes O(m+ n) time, and space required to store all these arrays is O(m+ n) bits. We
refer to the bitvector D as the unary degree sequence array, E as the child array, and P the
parent array. These three arrays are stored and used for the query step of our algorithm.
Thus, we obtain the following lemma.

Lemma 7. Given an undirected graph G, there exists an O(m+ n) time and O(n lgn) bits
preprocessing algorithm to construct the unary degree sequence array, parent and child arrays
for G, each of which takes O(m+ n) bits of space.

Step 2: Decomposing the DFS tree by the Tree Covering Technique. The
main idea of this step is to perform a decomposition of the DFS tree, and along with storing
some crucial informations which will be very useful for navigating the tree during the query
step of our algorithm. For this purpose, we use the well-known tree covering technique in
the context of succinct representation of rooted ordered trees. The high level idea is to
decompose the tree into subtrees called minitrees, and further decompose the minitrees into
yet smaller subtrees called microtrees. The microtrees are small enough to be stored in a
compact table. The root of a minitree can be shared by several other minitrees. To represent
the tree, we only have to represent the connections and links between the subtrees. One
such tree decomposition method was given by Farzan and Munro [14] where each minitree
has at most one node, other than the root of the minitree, that is connected to the root of
another minitree. This guarantees that in each minitree, there exists at most one non-root
node which is connected to (the root of) another minitree. We use this decomposition in our
algorithms, and the main result of Farzan et al. [14] is summarized in the following theorem:

Theorem 8 ([14]). For any parameter L ≥ 1, a rooted ordered tree with n nodes can be
decomposed into Θ(n/L) minitrees of size at most 2L which are pairwise disjoint aside from

Chakraborty and Sadakane XX:7

a

b c
d

e f

g h i j

l m

k

n o p

q

s t u v w

r

x y z

Figure 1 An example of Tree Covering technique with L = 5. Each closed region formed by the
dotted lines represents a minitree. Here each minitree has at most one ‘child’ minitree (other than
the minitrees that share its root).

the minitree roots. Furthermore, aside from edges stemming from the minitree root, there is at
most one edge leaving a node of a minitree to its child in another minitree. The decomposition
can be performed in linear time using linear words of space.

See Figure 1 for an illustration. For the purpose of our algorithms, we apply Theorem 8
with L = lgn on the DFS tree T of G. For this parameter L, since the number of minitrees is
only O(n/ lgn), we can represent the structure of the minitrees within the original tree (i.e.,
how the minitrees are connected with each other) using O(n) bits by simply storing both
way pointers (so that we can traverse easily) between the roots of the minitrees. We refer
to this as the skeleton S of the DFS tree T . See Figure 2 for a demonstration of Figure 1’s
skeleton. The decomposition algorithm of [14] also ensures that each minitree has at most
one ‘child’ minitree (other than the minitrees that share its root) in this structure. We use
this property crucially later.

In what follows, we explain how we compactly represent the minitree structure, and we
refer to this compact representation obtained using this tree covering (TC) approach as the
TC representation of the DFS tree. Towards this, first observe that every minitree root
has unique first child and last child inside the minitree. In some cases, both are the same
(see the minitree rooted at node d of Figure 1), and in some cases, both are absent (see the
minitree rooted at node o of Figure 1). Thus, if we specify these two quantities, we can
uniquely identify the root of the minitree (along with the exact portion of the nodes which
are children of the root of this minitree and also belong to the same minitree as the first and
last child of the root) even though the root is shared between multiple minitrees. We use
this idea crucially in the design of the TC representation of the DFS tree.

XX:8 Indexing Graph Search Trees and Applications

a

b d

o

q r

(((()) () (()) ()) () ((() ((() (()) () () ()) ((()) () ())) ())) () ())

a

M1 M2

M3

M4

M5 M6 M7

M8

M1 M2 M3 M4
o M5 M6 M7 o M4 M8b b d aq q r r d

(a)

(b)

(c)

x y z

β

k

n p

M4

M7

Figure 2 (a) A rough sketch of the skeleton of the tree decomposition shown in Figure 1. In this
diagram, the triangles represent the minitrees along with the roots of the minitrees are marked
inside the circle. For example, the minitrees M1 and M2 share the same root b. Also the node o

is a minitree on its own. Strictly speaking, the skeleton will not have the traingles, rather it just
contains the pointers between the roots of the minitrees (i.e., circles in this diagram). But we put
this diagram for better visual description of the compact representation of the previous diagram.

We mark in a bitvector R of size n all the nodes which are the last child of a minitree
root inside a minitree. Note that, there are O(n/ lgn) such nodes which are marked as 1
in R. In the case of a minitree root not having any children, we mark the minitree root
itself as 1 in R. We also build the data structure to support O(1) time rank/select queries
on R using Theorem 3. Next, we create an array C where each of the O(n/ lgn) entries
are O(lgn) bits long, thus overall it takes O(n) bits. Basically, each entry of C stores some
informations regarding the minitree for which the last child of the minitree root is marked 1
in R. More specifically, For a typical node, say vi, which is the last child of some minitree, we
have R[i] = 1, and C[j] (where j = rank1(R, i)) comprises of the following six informations
(some of which could be empty), (i) label of the minitree root, say vr, for which vi is the
last child inside the minitree, (ii) location of the first child, say vj , of vr inside the minitree
in the adjacency array of vr, (iii) DFI of vj , (iv) the edge (vc, vd) (if any) that goes out of
the minitree, (v) the size of the subtree rooted at vc in the DFS tree, (vi) depth of vr in the
DFS tree. The tree decomposition method ensures that a minitree has at most one edge
(vc, vd), where vc is a non-root node of minitree and vd is a root of a different minitree, that
goes out of the minitree. We also mark in a bitvector Z of size n bits all such vertices like
vc (also note, there could be O(n/ lgn) such vertices). We mark in a bitvector L all the
vertices which are the rightmost leaves of every minitree. Note that these vertices (there are,
again, O(n/ lgn) of them) have the highest DFI inside the minitree. In another bitvector
A, we mark all the roots of the minitrees as 1, and build rank/select structure on top of A.
Correspondingly, the F array will store the DFI of the roots so that we can retrieve them in
constant time. More specifically, for a minitree root vr, A[r] = 1 and F [j] (j = rank1(A, r))

Chakraborty and Sadakane XX:9

will store the DFI of vr. Next we build the O(1) time level ancestor data sturcture, say
LA, on the O(n/ lgn) minitree roots (i.e., on the skeleton structure) using [4]. Thus, here,
LA takes O(n) bits and O(n) time. As a root of the minitree is shared between multiple
minitrees, from each node vi of the skeleton S (where vi is a root of a minitree), we store
pointers to all the minitrees (in C array) which has vi as their root. Overall these pointers
also consume O(n) bits. This completes the description of the TC representation. Note that,
the creation of the skeleton and the TC representation for T can be done in O(n) time using
O(n lgn) bits (using Theorem 8) after the DFS (which takes O(m+ n) time and O(n lgn)
bits). Hence, we obtain the following,

Lemma 9. Given an undirected graph G, there exists an O(m+ n) time and O(n lgn) bits
preprocessing algorithm to construct the skeleton S and the TC representation of the DFS
tree T of G, each of which occupies O(n) bits.

First observe that, the outputs of the previous step are the unary degree sequence array
(D), parent array (E), child array (P), the DT array, TC representation of T (this includes
R, C, Z, A, F and L) along with the skeleton S with pointers to C, and finally the LA
structure on S. The arrays D, E, and P take O(m+ n) bits, and the others take O(n) bits.
Now we show how to efficiently solve the DFS-Indexing problem using these structures.

Query Algorithms. Given vi, to answer 2(a) in O(1) time, we do the following. If vi is
the root of the DFS tree, we return null. Otherwise, we can compute the answer by using
only select1 queries on P and D, as described previously.

To answer 2(b) in O(1) time, we use select1 queries on the bitvector DT .
To answer 2(c), we first compute the number of children of vi in T using the query 2(b).

Then j-th child is obtained in constant time as described above.
Note that, the queries 2(a), 2(b) and 2(c) can be answered using only D, E, P and

DT arrays. Before explaining the algorithms for the rest of the queries, we first prove the
following very crucial lemma.

Lemma 10. Given any query node vi which is not a root of a minitree, we can reconstruct
the minitree M containing vi in time proportional to the size of M along with the DFIs of all
the nodes inside M . In the same amount of time, we can also retrieve the root node of M .

Proof. First note that if a node v belongs to the minitree M , its children in T also belong
to M , except for the following two cases. The first case is that v is the root vr of M and
the second case is that v is vc of M . In the first case, as we have stored the location (in the
adjacency array) of the first child, say vj , of vr inside M in the C array, we can enumerate
all the children of vr in M in constant time for each until we hit the rightmost child of vr in
M , which is stored in R. In the second case, we can also enumerate all the children of vc

in T in constant time for each and discard vd. For other vertices in M , we can enumerate
children using constant time for each output. Note also that going to the parent can be
performed in constant time.

The algorithm to achieve the claim can be broken down into three steps. In the first step,
given vi, we launch a DFS starting from vi, and continue till we retrieve the rightmost leaf,
say vj , of the minitree M . In second step, we follow the path in T (by going to vj ’s parent,
then its parent and so on) till we reach the rightmost child, say vk, of the root, say vr, inside
M by using the query algorithm to find the parent repeatedly. In the third and final step,
we use the C array, by using vk, to extract all the informations needed to reconstruct the
full minitree by performing another round of DFS. We provide the details below.

To perform the first step, we only need to use the parent and child related queries, whose
execution we already showed previously. Note that, as we have stored the information (in Z

XX:10 Indexing Graph Search Trees and Applications

array) regarding the only edge that goes out of the minitree, we never incorrectly go out of
M . Also we can verify if we have reached the unique node vj which is the rightmost leaf
of M from the L array. Once we reach vj , it’s easy to see that vk has to be an ancestor of
vj (note that vk and vj could be same in some cases). Thus, we can reach vk from vj by
repeatedly using the parent query algorithm, and this completes the second step. Finally,
once we reach vk, we use the informations in C[j] (where j = rank1(R, k)) to retrieve the
root vr of M and other informations. Then we carry out a DFS from vr by first going to
the first child of vr inside M (retrieved from C), then its first child and so on till we fully
reconstruct M . This step also requires repeated invoking of parent and child query only.

In order to retrieve the DFIs of the nodes inside M , observe that, if M doesn’t have any
child minitree (i.e., no edge is going out of M), then while doing the final DFS from vr, we
can easily compute the DFIs of all the nodes inside M . Otherwise, assume the edge (vc, vd)
goes out of M where vc belongs to M , then the DFI of next node inside M can be calculated
by adding the size of the subtree rooted at vc in T (which is stored in C) to the DFI of vc.
It is clear that all of these procedures can be performed in the time proportional to the size
of M , which is O(lgn) here. This completes the description of the proof. �

As a corollary of the previous lemma, it is easy to see that the query of 2(d) can be
reported in O(lgn) time for any node vi which is not a root of the minitree. Otherwise, it
can be done in O(1) time by reporting the value stored in F [j] where j = rank1(A, i).

To answer 1(a), first we invoke query algorithm of 2(d) for both vi and vj to retrieve
their DFIs respectively, and then answer accordingly. Thus, this also takes O(lgn) time.

Answering 1(b) involves a few cases. In the first case, if both of them belong to the
same minitree then we can figure out the answer by reconstructing the complete minitree.
Secondly, suppose vi and vj are roots of the two separate minitrees, and their depths in T are
x and y respectively (depth can be obtained from C array). Then using these values in LA
data structure, we can figure out the required answer. Finally, if both of these nodes belong
to two separate minitrees but are not the roots of the minitrees, then first we retrieve the
roots of those minitrees using Lemma 10, then follow almost the same procedure as before to
figure out the answer. Note that, in this case, it is enough to reconstruct the path from vc

(of the minitree located near to the root) to the root of that minitree (for the case when one
of the minitree root is an ancestor of the other minitree root) to figure out the answer of the
query. Thus, overall, it takes O(lgn) time.

To return the query for 3, we do a standard DFS traversal on the skeleton S and each
time we visit a new node vi in S, we follow the pointer from vi in S to the part of the C array
where the informations regarding the minitree rooted at vi is stored. Note that, vi might be
shared between multiple minitrees, hence, we always start following these pointers from left
to right. More specifically, if vi is the root of p minitrees, we have p pointers emanating from
vi, and going to p different locations of C array. As these pointers are stored from left to
right order, which is the same order in DFS of all the minitrees that share the root vi. Thus
we follow the first pointer, and reach the specific portion of C, use Lemma 10 to generate
the complete minitree along with the DFIs of the nodes. Then if this minitree has any child
minitree, we go on to explore that and so on (by following the (vc, vd) edge stored in that
minitree). Once we finish all the descendant minitree of the first minitree rooted at vi, we
come back and start exploring the second minitree (by following the second pointer from vi)
and so on. Thus, we need to store these intermediate pointers, in stack, to know how much
progress has been made in every node’s (in skeleton) list. This procedure is continued until
all the nodes of S are exhausted. It is clear that this procedure takes O(n) time as there are
O(n/ lgn) nodes in S and for each node, we spend O(lgn) time. Also, we need O(n) bits (as

Chakraborty and Sadakane XX:11

there could be O(n/ lgn) pointers) of intermediate space for the execution of the DFS.
To answer 4, first note that, in any minitree M , if there is no egde going out (i.e., no

(vc, vd) type edge), then the DFIs inside M are consecutive, i.e., in general, first child of root
inside M has the smallest DFI and the rightmost leaf in M has the maximum DFI, and the
numbers are consecutive. Otherwise, DFIs are consecutive from the root of M to the DFI of
vc, then there is a jump of DFI by the size of the subtree rooted at vc in the DFS tree, then
it’s consecutive DFI again until the rightmost leaf (which has the largest DFI inside M) of
M . Thus, the range of DFIs of the vertices inside any arbitrary minitree M can be broken
into at most two disjoint consecutive intervals. We store these (at most O(n/ lgn)) intervals
in an interval tree along with augmenting it with the last child of M inside M . Now, given i,
we first find the interval where i belongs to from the tree and simultaneously retrieve the
last child, say va, of the corresponding minitree, all using O(lgn) time. Then, we use the
information from R and C array corresponding to va to invoke Lemma 10, and retrieve the
desired vertex with DFI i using O(lgn) overall time. This completes the description of the
query algorithms for undirected graphs.

We can handle directed graphs similarly except a few changes in the data structures.
Recall that, for directed graphs, every vertex vi has access to its in-neighbors array as well
as out-neighbors array, and additionally we create two unary degree sequence arrays (each of
size O(m + n) bits), D1 for the out-neighbors and D2 for the in-neighbors. We also have
two separate arrays, say E1 (having one-to-one map with D1), for marking child of every
node and E2 (having one-to-one map with D2) where parents are marked. It is easy to see
that almost in a similar fashion as in the undirected case, we can correctly mark, for any
node vi, the children of vi in E1 array and parent of vi in E2 array using both the D1 and
D2 arrays while performing DFS of G. The second preprocessing step doesn’t require any
changes for the directed graphs. Now reporting queries also can be suitably modified to make
use of these changes without affecting the asymptotic running time of the query algorithms.
Basically the only change that takes place is as follows, whenever we need to find the parent
of a node, now we need to use the in-neighbor array whereas finding children can be handled
by consulting out-neighbor array along with the mapping with their respective unary degree
sequence array. We omit the details. Thus, we obtain the following,

Theorem 11. Given any undirected or directed graph G, there exists an O(m+ n) time and
O(n lgn) bits preprocessing algorithm which outputs a data structure of size O(m+ n) bits,
using which the queries 1(a), 1(b), 2(d) and 4 can be reported in O(lgn) time, 2(a) and 2(b)
in O(1) time, 2(c) can be answered in time proportional to the number of solutions, and
finally 3 can be solved in O(n) time respectively for the DFS-Indexing problem.

Note that, if the given input graph is sparse (i.e., m = O(n)), then both unary degree
sequence array (D), and parent and child arrays (E,P) take O(n) bits, and every other data
structure anyway takes O(n) in total, thus, we obtain the result mentioned in Theorem 1 for
the case of sparse graphs. When the input graph is dense (i.e., m = ω(n)), we compress the
D,E, P arrays using Theorem 4. Note that we use only select1 queries on compressed arrays
and thus query time complexity on the arrays is still constant. Hence, we obtain the result
of Theorem 1 for the dense graph case. It is worth mentioning that except the case for very
dense graphs, our space bound always beats the space bound of the naive algorithm for every
edge density in the full spectrum, albeit with super-constant query time. Thus, when the
graph is sufficiently dense, it is better to use the standard solution which uses O(n lgn) bits
with constant query time. This completes the description of our algorithms in the indexing
model, and hence, the proof of Theorem 1.

XX:12 Indexing Graph Search Trees and Applications

4 Algorithms in the Encoding Model

Recall that in the encoding model, we seek to build a data structure encod after preprocessing
the input graph G such that queries have to be answered using encod only, without accessing
G. To this end, we first provide a lower bound for the space needed for encod to answer
queries of the DFS-Indexing problem.

4.1 Space lower-bound
Observe that, in order to correctly answer the queries, the data structure encod must contain
the information regarding the topology of the DFS tree T of the graph G along with the
labels of the vertices of T as, unlike the indexing model, we don’t have the access to G
during the query time. It’s easy to see that we need Ω(n lgn) bits to store the vertex labels
mappings. In what follows, we give a proof for the space needed to store the topology of the
DFS tree by counting the number of such trees in any arbitrary graph G.

Lemma 12. For a graph with n vertices and m edges, the size of data structures for storing
the topology of the DFS trees is Ω

(
n lg m

n

)
bits.

Proof. Let us consider the following graph G with n vertices and m edges (m < n2/2). It
has a vertex r, k = m/n vertices u1, . . . , uk, and n−k−1 vertices v1, . . . , vn−k−1. The vertex
r is connected to all ui, and each vj is also connected to all ui. To construct a spanning
tree of G, we choose one edge among all k edges connected to each vj . Then the number of
different spanning trees of G is at least kn−k−1, and for all different spanning trees the set
of DFI’s are different. Therefore the size of data structure must be at least lg kn−k−1 bits,
which is Ω

(
n lg m

n

)
. �

Thus, the space lower bound for encod is Ω(max{n lg m
n , n lgn}) bits, which is Ω(n lgn) bits

as mentioned in Theorem 2. In what follows, we complement the above claim by providing a
simple indexing structure which asymptotically matches this lower bound.

4.2 Upper-bound
Preprocessing Step. Our index for the DFS-Indexing problem consists of two components
which we prepare during the preprocessing step. In the first component, we store, for every
vertex vi, DFI(vi) as permutation using the structure of Theorem 5 of Section 2. Secondly,
we encode the DFS tree succinctly using the structure of Theorem 6 of Section 2.

Query Algorithm. We answer the queries using the two above mentioned structures as
follows. To answer 2(d), we just use π(i). Similarly, 4 can be answered by invoking π−1(i).
We report vi (resp. vj) as the answer for query 1(a) if π(i) < π(j) (resp. π(i) > π(j)).
We enumerate the vertex ordering as traversed in the DFS order by invoking π−1(1), then
π−1(2), and so on till π−1(n). We answer 1(b) in affirmative by checking if LA(vj , depth(vi))
matches with vi, otherwise no. To answer 2(a), we return LA(vi, depth(vi)− 1). We return
the answer of 2(b) by using the query degree(vi). Finally, we enumerate the children of a
node vi as requested in query 2(c) by using the query child(vi, 1) till child(vi, degree(vi)).
Hence we obtain the results mentioned in Theorem 2.

5 Conclusion

In this paper, we provided procedures for compactly storing the DFS tree for any graph with
efficiently supporting various queries in the indexing and encoding models, and showed how

Chakraborty and Sadakane XX:13

to extend these techniques to design indexing schemes for other fundamental and basic graph
problems. With some work, our algorithm can be extended for indexing BFS tree (and other
graph search tree also) as well while supporting similar types of queries. Also, as mentioned
previously, our results are more general, and can be used in other situations as well.

This work opens up many possible future directions to explore. Can we further improve
the query time while keeping the space bound same in the indexing model? Can we prove
a space lower bound in the indexing model? Can we design compact data structures for
indexing problems like maximum flow? Finally, we conclude by remarking that using [2, 9],
we can improve the preprocessing space of our algorithms to O(n) bits (from O(n lgn) bits)
with marginal increment in the preprocessing time.

References
1 H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct data structures for families of

interval graphs. In WADS, 2019.
2 N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space efficient linear time algorithms

for BFS, DFS and applications. Theory of Computing Systems, 2018.
3 J. Barbay, L. C. Aleardi, M. He, and J. I. Munro. Succinct representation of labeled graphs.

In 18th ISAAC, pages 316–328, 2007.
4 M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. Theor. Comput.

Sci., 321(1):5–12, 2004.
5 D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of separable graphs.

In 14th SODA, pages 679–688, 2003.
6 S. Chakraborty. Space Efficient Graph Algorithms. PhD thesis. The Institute of Mathematical

Sciences, HBNI, India, 2018.
7 S. Chakraborty, S. Jo, and S. R. Satti. Improved space-efficient linear time algorithms for

some classical graph problems. CoRR, abs/1712.03349, 2017.
8 S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. A framework for in-place graph

algorithms. In 26th ESA, pages 13:1–13:16, 2018.
9 S. Chakraborty, V. Raman, and S. R. Satti. Biconnectivity, st-numbering and other applications

of DFS using O(n) bits. J. Comput. Syst. Sci., 90:63–79, 2017.
10 S. Chakraborty and S. R. Satti. Space-efficient algorithms for maximum cardinality search, its

applications, and variants of BFS. J. Comb. Optim., 37(2):465–481, 2019.
11 D. Clark. Compact Pat Trees. PhD thesis. University of Waterloo, Canada, 1996.
12 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.).

MIT Press, 2009.
13 S. Even and R. E. Tarjan. Computing an st -numbering. Theor. Comput. Sci., 2(3):339–344,

1976.
14 A. Farzan and J. I. Munro. Succinct representation of dynamic trees. Theor. Comput. Sci.,

412(24):2668–2678, 2011.
15 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees.

Algorithmica, 68(1):16–40, 2014.
16 L. Ferres, J. F. Sepúlveda, T. Gagie, M. He, and G. Navarro. Fast and compact planar

embeddings. In 15th WADS, pages 385–396, 2017.
17 J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
18 F. Kammer, D. Kratsch, and M. Laudahn. Space-efficient biconnected components and

recognition of outerplanar graphs. In 41st MFCS, pages 56:1–56:14, 2016.
19 J. I. Munro and P. K. Nicholson. Compressed representations of graphs. In Encyclopedia of

Algorithms, pages 382–386. 2016.
20 J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations

and functions. Theor. Comput. Sci., 438:74–88, 2012.

XX:14 Indexing Graph Search Trees and Applications

21 J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM J. Comput., 31(3):762–776, 2001.

22 G. Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016.

23 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

24 R. E. Tarjan. Finding dominators in directed graphs. SIAM J. Comput., 3(1):62–89, 1974.
25 R. E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters,

2(6):160–161, 1974.
26 K. Yamanaka and S. Nakano. A compact encoding of plane triangulations with efficient query

supports. Inf. Process. Lett., 110(18-19):803–809, 2010.

Chakraborty and Sadakane XX:15

A Appendix

A.1 Applications
In this section we discuss how to design indexing structure for various graph problems
using the techniques we developed earlier. More specifically, we develop indexing structures
for shortest path, undirected connectivity, bi-connectivity, 2-edge connectivity and strong
connectivity in the indexing model. With some effort, they can also be easily extended for
the encoding model as well. We start with indexing shortest paths first.

A.2 Indexing Shortest Path
In what follows, we assume that, for the weighted graphs, the adjacency array also has the
weights along with the neighbors. We start by defining the following problem which we call
the Shortest Path-Indexing problem.

Shortest Path-Indexing problem
Input: An undirected or a directed graph G = (V,E) where |V | = n,
|E| = m and non-negative O(lgn) bit edge weights, and a source vertex
vs. Preprocess G and answer the following queries:
Queries:
1. Given any vertex vi,

(a) Return the length of the shortest path between vs and vi.
(b) Return a shortest path from vs to vi.

Note that, given a source vertex vs, a shortest path tree in G rooted at vs is a tree
that is the union, over all vi ∈ V , of a shortest path in G from vs to vi, and this tree can
be computed by running Dijkstra’s algorithm [12] on G. Even though we described in the
previous section how one can encode the DFS tree of any graph compactly, observe that,
the method (for storing the tree and querying as well) works for any arbitrary rooted tree
in general. Thus, in the preprecessing step, we run the classical Dijkstra’s algorithm which
takes O(m+ n lgn) time and O(n lgn) bits of space, and computes the shortest path tree Ts.
We run our preprocessing algorithm on Ts to store it compactly in exactly the same way as
we did for the DFS tree with only one extra piece of information. With the every entry in
the F array (where we store the DFIs of the roots of the minitrees), we also the store the
length of the shortest path from the source vs to the roots of the minitrees. Then, to answer
the query of 1(a), using a similar procedure of Lemma 10, we first reach from vi (where vi is
a non minitree root node) to the root, say vr, of the minitree M containing vi, retrieve the
shortest path length between vr and vs, and finally add the length of the path between vi

and vr by using the parent query repeatedly along with retrieving the edge weights of all the
edges in between. Note that, we can retrieve these edge weights from the adjacency array
while finding the parent only. Thus, this whole process can be completed using O(lgn) time.
If vi is a root of some minitree, then from F array we can return the answer in O(1) time.
To return a shortest path from the queried node vi to the source vs, we can repeatedly use
the parent query from vi till we reach to vs. Thus this takes time proportional to the length
of the path, and this is optimal. Thus, we obtain the following,

Theorem 13. Given any sparse (dense, respectively) undirected or directed graph G, there
exists an O(m+ n lgn) time and O(n lgn) bits preprocessing algorithm which outputs a data
structure of size O(n) (O(n lg(m/n)), respectively) bits, using which the query 1(a) can be

XX:16 Indexing Graph Search Trees and Applications

reported in O(lgn) time, and 1(b) can be returned optimally in time proportional to the size
of the solution respectively for the Shortest Path-Indexing problem.

A.3 Indexing Connectivity in Undirected Graphs
Now consider the following problem which we call the Undirected-Connectivity-Indexing
problem.

Undirected-Connectivity-Indexing problem
Input: An undirected graph G = (V,E) where |V | = n, |E| = m.
Preprocess G and answer the following query:
Query: Given any pair of vertices, vi and vj , are they connected in G.

It’s easy to see that, by storing the connected component number for every vertex, we
can solve this query in O(1) using O(n lgn) bits of space. We can optimize on space by
using our technique. More specifically, if the input graph G is disconnected, we do a DFS
of G and store the TC representation for each of the tree in the DFS forest along with an
extra piece of information. With every minitree root, we also store the vertex label of the
root of the tree (in the DFS forest) where the minitree belongs to. Thus, given any pair of
vertices, we just need to reach to the minitree roots containing them, then if the vertex label
stored at both these minitrees are same, they belong to the same DFS tree, thus, they are
connected. Otherwise, they are disconnected in G. Thus, we can solve the required query in
O(lgn) time using Lemma 10, and the final result can be summarized below.

Theorem 14. Given any sparse (dense, respectively) undirected graph G, there exists an
O(m+n) time and O(n lgn) bits preprocessing algorithm which outputs a data structure of size
O(n) (O(n lg(m/n)), respectively) bits, using which the query of the Undirected-Connectivity-
Indexing problem can be reported in O(lgn) time.

A.4 Indexing Strong Connectivity
A directed graph G is said to be strongly connected if for every pair of vertices vi and vj

in V , both vi and vj are reachable from each other. If G is not strongly connected, it is
possible to decompose G into its strongly connected components i.e. a maximal set of vertices
C ⊆ V such that for every pair of vertices vi and vj in C, both vi and vj are reachable
from each other. Alternatively, if G is directed and vi, vj ∈ V , let us write vi ≡S vj if G
contains a path from vi to vj and one from vj to vi. Then it is easy to see that ≡S is an
equivalence relation on V , and each subgraph induced by this equivalence class is called a
strongly connected component. Now let us define the following problem which we call the
Strong-Connectivity-Indexing problem.

Strong-Connectivity-Indexing problem
Input: A directed graph G = (V,E) where |V | = n and |E| = m,
preprocess G and answer the following queries:
Queries:
1. Given vi, return all the vertices that belong to the same strongly

connected component component as vi.
2. Given any pair of vertices vi and vj , check if they belong to the same

strongly connected component.
3. Enumerate all the strongly connected components of G.

Chakraborty and Sadakane XX:17

In the preprocessing step, we use a standard algorithm for enumerating strongly connected
components as follows. First we do a DFS on G and store finish time for each vertex using
O(n lgn) bits and mark roots of the trees in the DFS forest using a bitvector of length n.
Then we do a DFS again using reversed edges in decreasing order of finish time, which can
be done using in adjacency array in our graph representation, and store the DFS forest using
the same data structure as other problems. Each tree in the resulting DFS forest corresponds
to a strongly connected component. We create a virtual root vertex which has roots of DFS
trees as children. The the DFS forest becomes a virtual DFS tree T . The number of edges
increases at most n. We partition the virtual DFS tree T into minitrees using the tree cover
algorithm, and for each minitree root, we store the root node of the DFS tree containing the
minitree root using O(n) bits.

Queries are done as follows. Query 3 is easily solved by finding ones in the bitvector
marking the roots of the DFS trees using select queries. For query 1, given a vertex vi, we
first climb up the DFS tree until we hit the root. Then we do a DFS to enumerate all the
vertices in the DFS tree in time proportional to the tree size. Because the set of vertices in
the tree coincides the strongly connected component containing vi, we can correctly answer
the query. For query 2, first we climb up the DFS tree from vi and vj until we hit a minitree
root or the root of the DFS tree. If we hit the minitree root, we can obtain the root of
the DFS tree. Therefore we can reach the root of the DFS tree having vertices vi and vj

in O(lgn) time. Then it is easy to check if they belong to the same strongly connected
component in constant time by just comparing the ID’s of the roots.

Theorem 15. Given any sparse (dense, respectively) directed graph G, there exists an
O(m+ n) time and O(n lgn) bits preprocessing algorithm which outputs a data structure of
size O(n) (O(n lg(m/n)), respectively) bits, using which the query 1 can be answered in time
proportional to the size of the solution, 2 can be answered in O(lgn) time, and finally 3 can
be returned optimally in time proportional to the size of the solution.

A.5 Indexing Biconnectivity and 2-Edge Connecitivity

Before starting with the next application, let us briefly recollect all the necessary graph
theoretic definitions that will be used subsequently. A cut vertex in an undirected graph G
is a vertex v that when removed (along with its incident edges) from a graph creates more
components than previously in the graph. A (connected) graph with at least three vertices
is biconnected (also called 2-connected in the graph literature sometimes) if and only if it
has no cut vertex. A biconnected component is a maximal biconnected subgraph. These
components are attached to each other at cut vertices. Similarly in an undirected graph G,
a bridge (or cut edge) is an edge that when removed (without removing the vertices) from
a graph creates more components than previously in the graph. A (connected) graph with
at least two vertices is 2-edge-connected (also called bridgeless sometimes) if and only if
it has no bridge. A 2-edge connected component is a maximal 2-edge connected subgraph.
Alternatively, let G be an undirected graph, and e1, e2 ∈ E, the we write e1 ≡B e2 (e1 ≡E e2,
respectively) if e1 = e2 or e1 and e2 belong to a common simple cycle (not necessarily simple
cycle, respectively) in G. Then ≡B and ≡E are equivalence relations on E. Each subgraph
induced by an equivalence class of one of these relations is called a biconnected component in
the case of ≡B , and a 2-edge connected component in the case of ≡E . In the light of above
the definitions, let us define the following problem which we call the Bi-Connectivity-Indexing
problem.

XX:18 Indexing Graph Search Trees and Applications

Bi-Connectivity-Indexing problem
Input: An undirected graph G = (V,E) where |V | = n and |E| = m.
Preprocess G and answer the following queries:
Queries:
1. Given vi, check if vi is a cut vertex of G.
2. Given an edge (vi, vj), return all the edges that belong to the same

biconnected component as the edge (vi, vj).
3. Given any pair of edges ei = (va, vb) and ej = (vc, vd), check if both

of them belong to the same biconnected component.
4. Enumerate all the cut vertices of G.

A similar problem is also studied in [9, 18] but in a slightly different setting. More
specifically, in [9, 18] no preprocessing is allowed. Towards solving the Bi-Connectivity-
Indexing problem, in the preprocessing step, we run Tarjan’s [23] classical biconnectivity
algorithm (which takes O(m+ n) time and O(n lgn) bits of space), and in a bit vector H
mark all the cut vertices. Then, given any vertex vi, we can check if it is a cut vertex in
O(1) time from H for answering query 1. Similary for query 4, using select query on H,
we can enumerate all the cut vertices in optimal O(t) time, if there are t cut vertices in
G. Finally, it is a routine task to peel off the biconnected components by traversing the
DFS tree while avoiding the cut vertices (which are explicitly stored in H). Thus, we can
answer the query 2 in time proportional to the size of the biconnected component where the
edge (vi, vj) belongs to. Similarly, the query 3 can be answered in time O(max(|Bi|, |Bj |))
where |Bi| (|Bj |, respectively) is the size of the biconnected component where the edge ei

(ej , respectively) belongs to. Thus, we obtain the following,

Theorem 16. Given any sparse (dense, respectively) undirected graph G, there exists an
O(m+ n) time and O(n lgn) bits preprocessing algorithm which outputs a data structure of
size O(n) (O(n lg(m/n)), respectively) bits, using which the query 1 can be reported in O(1)
time, 2 can be answered in time proportional to the size of the solution, 3 can be answered in
time proportional to the maximum size of the biconnected components containing the input
edges, and finally 4 can be returned optimally in time proportional to the size of the solution
respectively for the Bi-Connectivity-Indexing problem.

Similar to the Bi-Connectivity-Indexing problem, we also define the 2-Edge-Connectivity-
Indexing problem in the following way.

2-Edge-Connectivity-Indexing problem
Input: An undirected graph G = (V,E) where |V | = n and |E| = m,
preprocess G and answer the following queries:
Queries:
1. Given an edge (vi, vj),

(a) check if it is a bridge of G.
(b) return all the edges that belong to the same 2-edge-connected

component as the edge (vi, vj).
2. Given any pair of edges ei = (va, vb) and ej = (vc, vd), check if both

of them belong to the same 2-edge-connected component.
3. Enumerate all the bridges of G.

We can return the queries of the 2-Edge-Connectivity-Indexing problem almost in an
analogous manner. For this, first we note that only the tree edges of the DFS tree could be

Chakraborty and Sadakane XX:19

bridges, thus, we store in an array, say Y , all the possible bridges of G, and Y is one-to-one
correspondence with the unary degree sequence array, child array and the parent array of the
DFS tree. Then checking if the edge (vi, vj) is a bridge can be done in O(1) time using the
select query. Similarly, enumerating all the bridges can be performed in optimal O(t) time, if
there are t bridges in G. Also, by running another DFS and explicitly avoiding the bridges,
we can peel off the 2-edge-connected component which contains the edge (vi, vj) in time
proportional to its size. Finally, we can return the answer of query 2 by first generating the
2-edge connected component containing ei and then checking whether ej belongs there, thus
it will take time O(max(|Ci|, |Cj |)) where |Ci| (|Cj |, respectively) is the size of the 2-edge
connected component where the edge ei (ej , respectively) belongs to. We can summarize all
the results in the following theorem.

Theorem 17. Given any sparse (dense, respectively) undirected graph G, there exists an
O(m + n) time and O(n lgn) bits preprocessing algorithm which outputs a data structure
of size O(n) (O(n lg(m/n)), respectively) bits, using which the query 1(a) can be reported
in O(1) time, 1(b) can be answered in time proportional to the size of the solution, 2 can
be answered in time proportional to the maximum size of the 2-edge connected components
containing the input edges, and finally 3 can be returned optimally in time proportional to
the size of the solution respectively for the 2-Edge-Connectivity-Indexing problem.

	Introduction
	Representation of the Input Graph
	Our Main Results and Organization of the Paper
	Related Works

	Preliminaries
	Algorithms in the Indexing Model
	Preprocessing Step

	Algorithms in the Encoding Model
	Space lower-bound
	Upper-bound

	Conclusion
	Appendix
	Applications
	Indexing Shortest Path
	Indexing Connectivity in Undirected Graphs
	Indexing Strong Connectivity
	Indexing Biconnectivity and 2-Edge Connecitivity

