数理6-山西

教員紹介

山西 健司(やまにし けんじ)
山西 健司

東京大学大学院 情報理工学系研究科
数理情報学専攻
教授

〒113-8656 東京都文京区本郷 7-3-1 6号館 345号室
Tel: 03-5841-6895 内線 26895
Fax: 03-5841-8599

E-mail:yamanishi@mist.i.u-tokyo.ac.jp

[ホームページ]

略歴

1987年3月 東京大学工学系大学院計数工学専門課程修了
1987年4月~2008年12月 NEC中央研究所勤務
1992年7月~1995年8月 NEC Research Institute, Inc.. Visiting Scientist
2002年7月~2008年12月 NEC 中央研究所 主席研究員
2005年11月~2008年3月 NECデータマイニング技術センター長
2009年1月~ 東京大学大学院情報理工学系研究科 教授

研究テーマ

1. 情報論的学習理論(情報理論に基づく機械学習理論、モデル選択)
2. データマイニング基礎(異常検知、変化検知、潜在的ダイナミクス)
3. データマイニング応用(セキュリティ、マーケティング、ヘルスケア、交通)

主な論文・著書

・K.Yamanishi: “A Learning Criterion for Stochastic Rules,” Machine Learning, vol.9, pp.165-203, 1992.
・K.Yamanishi: “A Decision-theoretic Extension of Stochastic Complexity and Its Applications to Learning,” IEEE Transactions on Information Theory, vol.44, 4, pp.1424-1439, 1998.
・K.Yamanishi: “Distributed Cooperative Bayesian Learning Strategies,” Information and Computation, vol.150, p.22-56, 1998.
・K.Yamanishi and H.Li: “Mining Open Answers in Quessionare Data,” IEEE Intelligent Systems. pp.58-63、September/October, 2002.
・K.Yamanishi, J.Takeuchi, G.Williamas, and P.Milne: “On-line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms,” Data Mining and Knowledge Discovery Journal, pp.275-300, May 2004, vol.8, issue 3.
・J.Takeuchi and K.Yamanishi: “A Unifying Framework for Detecting Outliers and Change-points from Time Series,” IEEE Transactions on Knowledge and Data Engineering, vol.18, no.44, pp.482-492, 2006.
・K.Yamanishi and Y.Maruyama: “Dynamic Model Selection with Its Applications to Novelty Detection,” IEEE Transactions on Information Theory, pp.2180-2189, vol.53, no.6, June, 2007.
・T.Wu, S.Sugawara, and K.Yamanishi: “Decomposed Normalized Maximum Likelihood Codelength Criterion for Selecting Hierarchical Latent Variable Models,” ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD 2017), pp:1165-1174, 2017.
・金明哲, 村上征勝, 永田昌明, 大津起夫, 山西健司: 「言語と心理の統計学」岩波書店, 第4部 2003.
・K.Yamanishi: “Extended Stochastic Complexity and Its Applications to Learning” In Advances in Minimum Description Length: Theory and Applications (edited by Peter D. Grunwald, in Jae Myung, Mark A. Pitt): The MIT Press (2005).
・山西健司: 「データマイニングによる異常検知」共立出版 (2009年).
・山西健司: 「情報論的学習理論」共立出版 (2010年).
・山西健司: 「情報論的学習とデータマイニング」朝倉書店 (2015年).

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です